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The kinetics of echo signal decay is determined under conditions when the resonance frequency ran­
domly migrates within the limits of the observable spectrum. It is found that, even in a highly corre­
lated case, frequency migration cannot always be regarded as spectral diffusion and in all cases 
attraction to the center of gravity of the spectrum should be taken into account. Variation of free in­
duction (either directly or on the basis of the three-pulse echo technique by a prescribed procedure) 
and a measurement of the echo signal permit one to easily distinguish correlated variation of the fre­
quency from noncorrelated variation. Concurrently the width of the spectrum involving migration and 
the migration rate can be determined. 

THE migration of the resonance frequency in an in­
homogeneously broadened spectrum is often called 
"spectral diffusion." This term is taken not in its 
literal sense, but refers instead to a phenomenon 
caused by random modulation of the frequency of an 
atom or molecule. The physical cause of frequency mi­
gration in glasses or in crystals is the reorientation of 
the molecule or of an individual group of molecules [IJ . 
It is a sudden, random process, which shifts the fre­
quency jumpwise to the right or left on the spectrum by 
some interval ow, by an amount that depends on the 
anisotropy existing in the medium and on the angle of 
rotation. In exactly the same fashion, the phase and 
Doppler shift of the atomic fre~uency vary as a result 
of collisions in the gas phase[2 , as does the number of 
the hyperfine components in magnetic-resonance spec­
tra when quantum transitions change the angle between 
spins. [3J In all the given examples, frequency migration 
is brought about by a succession of jumps of different 
magnitude separated by time intervals of varying 
lengths. 

Strictly speaking, a diffusion description of such 
processes in frequency space is not always possible, 
and is inadmissible in principle for some spectrum 
shapes. It is more correct to distinguish between corre­
lated and non-correlated migration on the basis of 
whether the magnitude of the jump is small compared 
to the full breadth of the spectrum, or commensurate 
with it. ThiS, in turn, depends on the mechanism of the 
molecular process that is causing the frequency modula­
tion. The rotation angle of a molecule in the elementary 
act of rotational diffusion may be either large or small; 
the velocity after collision may retain some value close 
to its previous value or assume other values, with equal 
probability. The selection rules for dipole transitions of 
nuclear spins only permit successive variation of the 
hyperfine-structure components, whereas spin diffusion 
as a result of transport or an exchange process removes 
that prohibition. If we had the ability to differentiate 
between correlated and non-correlated frequency migra­
tion, it would then be possible to reach important con­
clusions about the mechanism of the elementary proces­
ses that cause it. 
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Unfortunately, in most physical manifestations of 
migration only its rate is important, regardless of whe­
ther it is composed of small but frequent steps or of a 
few large ones. It is known that so long as that rate is 
small compared with the width of the statistical spec­
trum, frequency modulation merely broadens its com­
ponents, without changing either the shape of the enve­
lope or the gist of the matter-that the spectrum con­
tinues to remain inhomogeneous. On the other hand, 
very rapid modulation levels out the differences between 
components, while the spectrum as a whole, becoming 
homogeneous, is transformed and turns Lorentzian; it 
begins to broaden or to narrow down, depending on its 
original form [4J. Although in both cases the migration 
rate can be determined experimentally, it is quite diffi­
cult to ascertain from the form of the stationary ob­
served spectrum (or from the fading of the free induc­
tion) whether a strong or weak shift of frequency is tak­
ing place in a separate act of migration; the degree of 
correlation in the process is only revealed in the fine 
details of the transition from the slow to fast migration. 
Such an opportunity presents itself rather rarely. As a 
rule one has to deal with the inhomogeneously broadened 
spectrum alone, and then only the echo method permits 
one to distinguish in principle between the two types of 
spectra. Static frequency dispersion has no effect on the 
decay of this signal, while the modulation manifests 
itself in diverse and detailed fashion. In this paper we 
have calculated the kinetics of echo fading by the two­
and three-pulse methods; in the quasistatic limit this 
kinetics is qualitatively different for correlated and non­
correlated migration, being exponential in the latter 
case and intrinSically connected with the shape of the 
static spectrum in the former, as many observers have 
found[3,5,6J. 

1. GENERAL FORMALISM 

Echo Signal fading, caused by frequency modulation, 
is determined by the expression[5] 

, 
V(t)= < exp (- is s(t')CiJ(t')dt') , (1.1) 

o 
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in which the function s(t) is given by the method of 
measurement and equals 

s(t = { 1 for O<t<T, 
) -1 for T<t, 

{ 
1 for O<t<T, 1 2 

s(t)= ° for T<t<T, ( . ) 
-1 for T<t, 

for the two-pulse and three-pulse schemes, respec­
tively. Here T is the instant of action of the second pulse 
and T that of the third pulse. The brackets indicate 
averaging over the different realizations of the random 
process in the time interval (0,5), from the onset of the 
pulse to the time when the echo is observed. Without 
loss of generality, we assume in what follows that the 
random process is centered, i.e., w(t) = 0, for otherwise 
the corresponding average can be included in the Larmor 
frequency, which is the carrier frequency of the signal. 

It is absolutely necessary to have most detailed in­
formation about the random process in order to carry out 
the averaging that is required in (1.1). Jumpwise varia­
tion of the frequency greatly facilitates this task, since 
it allows us to regard w(t) as a purely discontinuous 
Markov process whose characteristics are determined 
by the mean time To between jumps and by two probabil­
ity density distributions cp(c.!) and f(w ' , w). The first of 
these defines the probability of any frequency value at 
an arbitrary time of the process, and is nothing more 
than the normalized-to-unity frequency distribution in 
the observed static spectrum of the system. The second 
distribution gives the conditional probability that, as the 
result of a jump the value w' will be replaced by a new 
value w (Fig. 1). Its width determines in fact the degree 
of frequency- migration correlation. 

The two distributions are related[7] by the require­
ment that the process be stationary: 

cp(w)= ff(w', w)cp(w')dw', (1.3) 

which becomes unique if we assume that 

f(w',w) = Hw-'I'w'). (1.4) 

Some assumption about the form of f(w', w) is indispen­
sable in order to make the process concrete, and (1.4) 
is one of the most general assumptions. It is compatible 
with symmetric spectra cp(w) of any form, although it 
had been used only for a Gaussian contour [7,8] . By tak­
ing the Fourier transforms of both parts of (1.3), with 
allowance for (1.4), we easily establish that 

F(t) = X(t) / X(yt), (1.5) 

where 

F = S f(z)e'" dz, X = S cp(w)e'·' dw 

are the Fourier transforms of f and cpo 
The differential form of the argument in f(z), as 

postulated in (1.4), simplifies not only the definition of 
this function in terms of cp but also the solution of the 
integral equations for V(t), of which it is the kernel. In 
doing this we retain the possibility of comparing solu­
tions that pertain to static spectra of various forms. If 
we distinguish among them in what follows on the basis 
of their Fourier transform 

X(t) = e-Q(Il, (1.6) 

it is essential to bear in mind that in the polynomial 
repres entation 

Q(t) =~nltln (1.6a) 

n = 2 corresponds to the Gaussian contour, n = 1 to the 
Lorentzian contour, and n = 1/2 represents a spectrum 
even narrower than Lorentzian, similar in form to the 
static line wings in gases and solid solutions. The 
parameter 6 determines the width of the corresponding 
spectrum. If we use (1.5), we can easily verify that F(t) 
has the same form as (1.6), but the fall-off r~te of this 
function is given by the width 15 = 6(1 - yn)l/n of the 
conditional probability distribution, which differs from 
6 according to the parameter y, which ranges from ° to 
1. When y « 1, the two widths roughly coincide and the 
process is weakly correlated, because in practice all 
memory of the previous frequency value is lost after 
the very first jump. In the limiting case y = 0, which is 
particularly favorable for study, both widths and distri­
butions coincide fully: 

f(w', UJ) = cp(UJ) , (1. 7) 

as follows directly from (1.3) and (1.4). If, however, 
y ~ 1, the conditional distribution is much narrower 
than cp(w) and a large number of jumps are required be­
fore the frequency is Significantly moved away from its 
initial value. This case, too, is more convenient to study 
in the limit as 1- y - ° and To - 0, but the migration 
rate, the order of which is (1- y)/To, is fixed. Taking 
this circumstance into account, we consider first a 
method of calculating the response in general, and pro­
ceed to the study of the two limiting situations each by 
itself. 

In the three-pulse method of observing the echo, the 
averaging that one must carry out in (1.1) breaks up 
naturally into three stages: 

V(t)= SdaSd~(exp(ifw(t')dt') <p(a,~;T-"t) 
" . 

(1.8) 

where the end of one stage serves as the beginning of 
the other, and both occur at the same frequency: a at 
the instant T and {3 at the instant T. In the first stage, 
the response of the system is averaged over all possi­
ble random-perturbation values that terminate in the 
same value of a, in the last stage over all possible 
values having the common initial value {3, and between 
them the averaging leads to a simple summation of 
probabilities of all processes that begin at a value a at 
the instant T and end with the value {3 at the instant T. 
The latter gives the ordinary conditional probability 
cp(a, T; (3, T) = cp(a, (3; T- T), which by virtue of the 
stationarity of the process depends only on the differ-

f 

FIG. I 
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ence of its time arguments. The echo-signal decay in 
the two-pulse method is described by a formula obtained 
easily from (1.8), if it is noted that at T = T we have 
<pea, (3; 0) = 6(a - (3). 

Noting that the echo-signal maximum is reached 
when t = T + T, we easily obtain the shape of the enve­
lope for the three- pulse method from (1.8): 

V(T+T)~ SdaSdPK'(a,1:)<p(a,P;T-1:)K+(~,T), (1.9) 

and likewise for the two-pulse method 

V(2T)~ S K·(a,'t)K+(a,'t)da. 

Here 

(1.10) 

K(a, T) ~ < exp (- i,1 w(t')dt' ) ~ ,K+ (a, 't) ~ ~ < exp (- i j w (t')dt') 

are partial averages that differ only as to whether the 
averaging, which was specially formulated for the sub­
sequent procedure in (1.9) or (1.10), is carried out over 
the initial or the final frequency. In view of the station­
ary character of the process K and K+, as well as 
<pea, (3; t), depend only on the time differences. 

The conditional probability of a purely discontinuous 
Markov process satisfies Feller's equation[7,9J. 

:t <p (a,w; t) ~ - :0 [ <p(a, w; t) - S f(w', w) <pta, w'; t)dw']. (1.11) 

An equation similar in form has been derived for the 
partial response [7J : 

:'t K(w,'t)~ iwK(w,'t)- 't~ [ K(lfJ,'t)- S f\W',w)K(w','t)dw'] .(1.12a) 

The equation for K+ is obtained in completely analogous 
fashion[loJ: 

:T K+(w,'t)~ iwK+(w,'t)- :0 [K+(w,'t)- S f(w,w')K+(w','t)dw'] 

(1.12b) 
and forms the natural complement of (1.12a). Taken to­
gether, these equations form a system similar to the 
Kolmogorov- Feller equations for the conditional proba­
bility. Although from the formal point of view both equa­
tions are of equal weight, until recently it has not been 
necessary to employ the second of them, since all the 
information could be extracted from K(w, T). It is only 
in our problem that the sought quantity is expressed in 
terms of K( w, T) and K+( W, T) perfectly on par. Thus, to 
obtain results pertaining to the two-pulse method it is 
necessary to solve the entire system of equations (1.12) 
with initial conditions 

K(w,O) = <p(w), K+(w,O) = 1, (1.13) 

while for the three-pulse method one must add the solu­
tion of (1.11) s atis fying t he condition <p ( a, w; 0) 
= o(a - "-'). The final result is obtained after averaging 
these solutions in (1.10) and (1.9), respectively. 

2. THE NON-CORRELATED PROCESS 

In the limiting situation defined by condition (1.7) the 
problem is greatly simplified. In that case Feller's 
equation becomes differential, and its solution is easily 
found[7J: 

<p(a,w;t) = 6(a-<u)exp (-t/'t.)+ql(w)[1-exp(-t/To)]. (2.1) 

In the same way the integral part of both equations 
(1.12) is appreciably Simplified. As a consequence it 
turns out that 

(2.2) 

and it then becomes a matter of solving the single equa­
tion 

o 1 
-0 K+(w, 't) ~ iwK+(w, 't) --[K+(w, 't)- K(T)], (2.3a) 

't ~ 

in which 

K('t)~ SK(<il'T)dw~ SK+(w,'t)<r(w)dw~(exp (i jw(t')dt'~)3b) 
o 

is none other than the free induction signal (the Fourier 
transform of the stationarily-observed stationary spec­
trum). 

An identity transformation reduces the system (2.3) 
to a single integral equation[4,7J : 

K('t)~ X('t)exp( -~) +~ S' X('t- t)exp (-~) K(t)dt. (2.4) 
'to 'to 0 'to 

Its solution determines uniquely K( T), and through it K+ 
as well, according to a formula obtained from (2.3a) by 
direct integration: 

. l' 
K+~ l1+-S K(t)exP(-iwt+tho)dt]exP(iwT-'tho). (2.5) 

'to 0 

Relation (2.2) considerably simplifies the general form­
ulas (1.9) and (1.10). From the latter we obtain, in par­
ticular, 

V(2,)~ S IK+(w,'t) I'<p(w)dw, (2.6) 

while (1.9) with the help of (2.1) takes on the form[3J 

V(Th)~V(2,)exp(- T:,'t)+IK('t)I'[ 1-exp (- T:,'t)] .(2.7) 

K+ can be eliminated completely from the last formulas 
by using (2.5) in (2.6). The resulting cumbersome ex­
pression can be further simplified by recourse to (2.4). 
The final result is of the following form: 

V (2't) ~ [1 + ~ j IK(t) I' exp (~) dt] exp (_ 2't) . (2.8) 
'to 0 To To 

From this it obviously follows that in the noncorrelated 
process the echo damping is expressed by both proced­
ures directly in terms of the decay of free-induction 
signal K(T). 

The rest of the calculations reduce, therefore, to the 
solution of a Volterra of the second kind with a differ­
ence kernel, which Eq. (2.4) is. This equation was re­
cently considered in connection with another problem [7J, 
and we can therefore proceed directly to the results: 

where 

K('t)~ {x(,)exp(-'tho)2(1~n), 
exp(-W't) , 

L'.'to ~ 1, n ~ 1, '/2 , 

L'.To « 1, 

1 ~ t dt (2L'.'0, n ~ 2, 
W~-SQ(t)exp(--)-~ L'., n~1, 

'to 0 'to 'to l'nL'./4't~, n ~ '/2• 

(2.9a) 
(2.9b) 

(2.10) 

Here we observe the natural parameter t:. T a that deter­
mines whether we are dealing with the quasi-static 
situation (2.9a) or with fast migration (2.9b). In both 
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cases the behavior of K(T) correlates with the form of 
the stationarily observed spectrum, which coincides in 
practice with cp(w) at 6 To » 1, and has at 6 To « 1 the 
form of a Lorentz contour of width W. 

The long-term asymptotic result (2.9a) can be ob­
served only in the wings, in the case of the gently-slop­
ing static spectrum (n ~ 1), or on the tail of the free­
induction decay. In both cases it is masked by the noise, 
and so important information about the migration fre­
quency in the quasi-static limit eludes our direct obser­
vation. Only the echo method permits the study of mi­
gration on an inhomogeneous contour as the main effect. 
Indeed, using (2.9a) in (2.8) we obtain an expreSSion of 
first order in (6Tofl 

2 ' 2 
V(2T)=[1+~Sr(t)dt]exp(- T:)' (2.11) 

o 

in which the exponential decay and the static decay ex­
change roles. In the zeroth approximation in (6To), the 
echO-Signal decay in the two-pUlse method is exponen­
tial at a rate equal to double the migration frequency. 
This conclusion is firmly supported by experiment[3] 
and is of a quite general character. It is valid for all 
contours of cp(w), since the shapes of the latter deter­
mine only the form of the correction term in (2.11), of 
first order in (6Tofl. To explain its role, one must sub­
stitute (1.6) in (2.11) and expand the exponential in a 
series in Tho, retaining all terms of first order. It 
turns out then that in 

1 4'( t" 

V(2T)=t-2{;0 - !lTofexp[-2Q(~)]dt} (2.12) 

the integral term is small compared to the linear term 
when T > 1/6, and therefore the two-pUlse echo decay 
can be considered as purely exponential from this time 
on. On the other hand, when 

V(2T) "" r O('), 

4 ' 4 !l" 
8(,) = - SQ(t)dt = ---T"+" 

To 0 n+ 1 To 
(2.13) 

and a marked qualitative difference in the time depen­
dence of V(2T) is observed for contours of different 
shapes, the decay being slower the narrower the con­
tour. This effect is not observable in practice, however, 
since the non-exponential start of the decay is so short­
lived that after its completion the signal amplitude de­
creases at most by an amount on the order of (6To) 
(Fig. 2a). 

In the three-pulse method of echo measurement, as 
seen from (2.7), the exponentially varying V(2T) and the 
rapidly vanishing K(T) compete with each other as addi­
tive components of the decay, wherein the statistical 
weight of each is set by the pause T - T between the 
second and third pulse. When that pause is lengthened 
the role of V(2T) is diminished while that of K(T) in­
creases. This uncovers a possibility of measuring K(T) 

directly by varying T at a fixed value of T. One must 
bear in mind that this is the only reliable means of 
determining the spectrum of the frequencies acbl3.11y 
involved in the migration, which in general may not co­
incide with the stationarily observed spectrum. If, how­
ever, T is varied with T fixed, this way of observing the 
echo may serve as a direct means of measuring the mi­
gration frequency 1/70' 

In the case of fast migration the result is relatively 
trivial. Substitution of (2.9b) in (2.8) gives the exponen­
tial decay 

V(2T) = V(T+T) = !K(T)!'=e-'w" (2.14) 

which takes place at the same rate as the fading of the 
free-induction signal W. That is what we must expect, 
when we recall that fast migration changes an inhomo­
geneous contour into an homogeneous one. For this 
reason neither the two-pulse nor the three-pulse echo 
can extract To from the measurable magnitude (2.10). 

In the case of a Lorentz contour (n = 1) it is possible 
to trace by echo decay the manner in which the broaden­
ing gradually becomes homogeneous as the migration is 
speeded up. The point is that in this special case Eq. 
(2.4) has the exact solution: 

K(T) = r"' at ,!l'fo ~ 1, 

which, substituted in (2.8), gives 

!lTo> t 

!lTo <: t ' 

(2.15) 

(2.16) 

in full agreement with the limiting equations obtained 
above. It is a fact worthy of attention that the decay 
of the free induction K( T), as well as its Fourier trans­
form (the stationarily observed spectrum), is invariant 
with respect to the migration, i.e., the Lorentz contour, 
as distinct from all the others, changes neither in width 
nor in shape when the migration is speeded up, so that 
it is impossible to tell from its shape whether we are 
dealing with an homogeneous spectrum or an inhomo­
geneously broadened one. This can be decided only by 
comparison of K(T) and V(2T). In homogeneous spectra 
the free-induction signal and the echo disappear in the 
same manner, whereas in inhomogeneous ones the in­
duction signal remains unchanged, while the echo is 
damped at the migration rate l/To, which differs radic­
ally from 6 both in nature and in its magnitude. 

3. CORRELATED PROCESS 

It is clear from (1.5) that F(t) - 1 as y - 1 from 
which it might seem that f(w', w) - a(w - yw'). In real­
ity, however, narrowing f(z) does not always change it 
into a a-function, since the remote asymptote of F(t) 
coincides with X(t) for any y F 1. If the F(t) and X(t) 
fail to decrease quickly enough, as for example when 
n -c:: 1, of the sought functions in the integral parts of 
(1.11) and (1.12) cannot be expanded in power series, 
since all the moments except the zeroth diverge. This 
excludes the possibility of a diffusion description of mi­
gration, as well as the solution approach that can be 
used in the case of a normal frequency distribution[ll] 
To prevent the appearance of divergences in the general 

y V b 

I=P I-I 

If-f' .. 

up A-' y-t or v- t or 
FIG. 2 
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case, one must resort to the Fourier transformation, 
making use of the fact that a kernel of the form (1.4) 
permits convolution of the integral parts of the equa­
tions. As a result, we obtain in place of (1.11) and (1.12) 
respectively 

where 

with 

(J 1 
-x(t', t;,;) = - -[x(t', t;,;) - F(-t)x (t', 'I't;,;) ], a,; ';0 

a a 1· 
-R(t, ,;)= -R(t; ,;)--[R(t, ,;)- F(t)R(yt,,;)], 
a,; at ';0 

a 1 a 
"hW(yt,,;) = yiiiR+(yt,,;)-

-~[W(yt,,;)- F(-t) R+(t,,;)], 
';0 y 

(3.1) 

(3.2a) 

(3.2b) 

R= S K(oo,';) e'·' doo, (3.3) 

~ 

R+ = J K+ (00, ,;Ye'·' doo, 

x(t',t;O) =2nll(t'-t), R(t,O) =X(t), W(t,O) =2nll(t). 

The general procedures for determining the free induc­
tion and echo decay are redefined by newly introduced 
quantities in the following manner: 

K(,;) =R(O,,;), (3.4) 

(3.5) 

1 ~ ~ 

V(T+';)=--S SW(t',,;)x(t',t;T-';)R+(t,,;)dt'dt. (3.6) 
(2n)'_~ _~ 

These formulas can only be profitably employed if (3.2) 
and (3.1) have been solved. Unfortunately, even with a 
specified f(Ct!', w), the problem for arbitrary y still re­
mains too complicated for analytic solution. Success is 
achieved only by going to the limit as 1 - y - 0 at a 
fixed migration frequency 11= (1 - y)/To = inv. This 
situation is the complete opposite of that treated in the 
preceding section, and by comparing them one is able to 
clarify the role of memory in frequency-modulation 
processes. 

The limit is taken after expanding all the y-depen­
dent functions in a series in 1 - y and retaining only 
terms of first order in that parameter. As a result, 
Eqs. (3.1) and (3.2) are transformed, with allowance for 
(1.5), into the following 

ax ax 
~+ vt-at+ <D·(t)x = 0, 

aR aR 
--(1- \It)-+ <D(t)R= 0, 

a,; at 
&R+ . aR+ 
--(1 + \It)-+[<D·(t)- v]R+ =0, 

&,; at 

where 

<D(t) = lim 
1-F(t) =-vt dInX·(t). 

';0 dt 

(3.7) 

(3.8a) 

(3.8b) 

(3.9) 

This reduces then to the solution of first-order partial 
differential equations with boundary conditions (3.3). We 
find, by the standard method, 

X·(t) 
x = 2n/) (t' - te-") X" (te "r' (3.10) 

1-

X( ( S dInX(z) dz ) 
R = t)exp , 

, dz 1-vz 
(3.11a) 

t+ 

R+ = 2nll (~+) X (~+) exp (v,; _ S d In X (z) dz ) (3.11 b) 
X· (t) . _, dz 1 - vz ' 

where 

~± = ~[1- (1 ± vt)e±YT]. 
v 

(3.12) 

If we now take the inverse transform of (3.10) to recon­
struct the form 

1 - • 
<p (00',00;';) = - S dy exp fiY (00 - 00' e-") - S <D (ye-")dt ], (3.13) 

2n_~ 0 

we can see that this distribution determines the random 
process considered by Klauder and Anderson[sJ, who 
characterized it by the function <I>(z). Formula (3.9) 
permits one to determine the form of this function for 
any given static contour, and to establish by the same 
token a unique correspondence of both approaches to the 
problem. In this way it becomes evident that the ran­
dom process implicitly defined in [5J is due to purely 
discontinuous frequency migration in the case when the 
frequency is distributed after each jump in a narrow 
interval near the preceding value, and furthermore ex­
actlyas was assumed in (1.4). For the model contours 
(1.6), the function <I>(z) may be determined from (3.9) 
explicitly: 

{ kz' n = 2 
<D(z)=nv~n[z[n= , 

m[z[, n= 1 
(3.14) 

and turns out to be a polynomial of the same degree as 
the argument of the exponential term in (1.6). Relation 
(3.14) establishes a one-to-one correspondence between 
the natural parameters of the Rroblem 6 and II, and the 
symbols k and m introduced in [5J , thus explaining their 
physical meaning. The correspondence established is 
such that the final result can be extracted directly from 
the formulas obtained in[5J by transforming them as re­
quired. However, it is obtained more easily from (3.4) 
and (3.5) by substituting in them (3.10) and (3.11). If we 
express it in terms of the function <I>(z) defined in (3.9) 
we have: 

(" 1D(11) ) K(,;)=cxp - J--dx , 
o V11 

) ( S' ID (-V11') + vrllD (-11) d ) 
V(2,; =exp -2 (1+) x , 

o v11 V11 (3.16) 

where 77 = (1 - e- lIx)/II. For the three-pulse echo we 
find in exactly the same fashion: 

V(T+,;) (3.17) 
_ . { .S'<D(11) (1+ \l1l1'])-ID(Il1'])+ID(Il11-1'](1+VIl11» dx} 
-exp - 0 V11(1+VIl11) , 

where fJ. = e- II(T - T). At T = T this formula can be re­
duced by a change of variables to the previous one. 

Before distinguishing among the possible situations 
according to the spectral inhomogeneity parameter 
6/11, it is useful to analyze the time variation of the 
sought functions at an arbitrary ratio of II to 6, but at 
different stages of the decay. Expanding up to first­
order terms in liT, we can simplify the general formulas 



416 A. B. DOKTOROV and A. 1. BURSHTEIN 

(3.15) and (3.16) to the perfectly lucid forms: 

K(-r) = X(--r)exp (- j !l> (x) dx + I/,!l>(-r)-r ), 
o 

(3.18) 

, '!l>( ') 
V (2-r) = exp (- 2 S !l> (x) dx - 2 S ~;x dX). (3.19) 

o 0 

These expressions differ from those in formulas ~2.12) 
and (2.15) of the paper of Klauder and Anderson[5 in 
that the latter lack the second terms in the arguments 
of the exponentials. The absence of these terms is a 
result of an incorrect transition to the limit in[5]. 
Klauder and Anderson maintain that by assuming v = 0 
in (3.13) they effect the required transition with an ac­
curacy up to zeroth- order terms in VT. Since they had 
not established a relationship similar to (3.9) between <P 
and the static contour, they overlooked the fact that <P is 
not of zeroth but of first order in II, and it is therefore 
necessary to retain in the expansion of the exponential 
at Wi in (3.13) a term of that order of magnitude. This 
mathematical misunderstanding appears to be the result 
of having introduced the inappropriate symbols k and 
m, whose actual dependence on the parameter v, ob­
served in (3.14), was obscured. 

The resultant descrepancies cannot, however, be re­
duced to purely mathematical ones. Random frequency 
migration in accordance with (2.14) shifts the frequency 
distribution towards the center of gravity of the spec­
trum after each jump, whereas for f(w ' , w) = f(w - w') 
the center always stays at the same spot as in the be­
ginning. The first process is called inhomogeneous and 
transforms any initial frequency distribution into a sta­
tionary one, while the second (homogeneous) process 
causes an unlimited broadening of the distribution, in­
consistent with any contour of finite width. The limiting 
transition recommended in[5] has reduced the inhomo­
geneous process during its initial stage to a simpler 
homogeneous one which, in the opinion of the authors, 
was supposed to approximate it correctly. 

It was thought that as long as the width of the diffus­
ing distribution was small compared to ~, the limited 
nature of the spectrum cp(w) should not have a telling 
effect on the course of the process. In reality, however, 
it does not work that way, and the inhomogeneous proc­
ess is in principle not reducible to the homogeneous 
one. The limiting situation in which y - 1 at the same 
time as To - 0 is qualitatively different from the one 
that can arise when y == 1. The difference between them 
is the same as between diffusion in a parabolic potential 
well and in free space. The first process is stationary 
regardless of the degree of curvature of the well, and a 
particle flow towards the center occurs for any non­
equilibrium distribution, however narrow it might be. 
To top it all, in a one-parameter distribution of typ~ 
(1.4), to which Klauder and Anderson had recourse m 
practice, the shift of the function f and its width are 
given by the same quantity 1 - y. The diffusion and flux 
terms are therefore of the same order in 1 - y: they 
enter in the diffusion equation that describes frequency 
migration at n = 2 with linearly- related coefficients [7J , 

similar to the mobility and diffusion coefficients in 
Einstein's equation. The limiting tranSition, which is 
equivalent in effect to dropping the flux term, is there­
fore not valid, and is the exact reason for the vanishing 
of equivalent terms in the arguments of the exponentials. 

One may estimate the degree to which this affects the 
results of the calculations by substituting <p(t) from 
(3.9) and (1.6) in (3.18) and (3.19): 

K(-r) = X(- ,)exp {- ~ j [Q(,)- Q(t) ]di+ +v,'-~~}' (3.20) 
o 

V(2,)=exp {-2v j[Q(,)-Q(t)]dt-Q(v,')}' (3.21) 
o 

The integral terms in the arguments of these exponen­
tials correspond to the "diffusion" components in K(r) 
and V(2r), while the others correspond to the "flux" 
components. Making these formulas specific with the 
aid of (1.6a) we get: 

KCr)=X(,)exp vt1 nn(n-1) -rn +1 (3.20a) 
2(n+1) , 

V(2,) = exp {_t1n,n [ n~1 n+(v-r)n]}. (3.21a) 

As one can see from (3.18), the competing terms in the 
exponential arguments have different signs. The numer­
ical coefficients calculated from (3.20a) differ therefore 
from those given in[5] not only in magnitude, but in sign 
as well: 1/3 instead of - 2/3 for n - 2 and 0 instead of 
-1/2 for n = 1. In spite of the radical character of these 
corrections, their effect on free- induction decay is in­
significant, since the kinetics is determined principally 
by the function X{T). On the other hand, the fading of 
the echo Signal is given only by the exponential factor, 
and changes in its argument are even more Significant. 

The Klauder and Anderson result is obtained from 
(3.21a) by retaining only the first term in t?e .curl~ 
brackets. It is easily seen that for n = 2 thls IS qUite 
sufficient since the flux term is of the next higher order 
in VT. For n = 1 these terms are of equivalent magni­
tude, and consequently the decay rate is increased two­
fold, while for n = 1/2.the very kinetics of th~gr?cess 
is transformed, changmg from exp(-2/3~T ) mto 
exp(-T~. The latter contour occupies the same in­
termediate pOSition among the others in the series with 
respect to the two-pulse echo as the Lorentz contou~ 
does in regard to free induction: for n > 1/2 decay IS 
faster than exponential, and for n < 1/2 it is slower. 
This case (n = 1/2) is degenerate also in the sense that 
the decay remains exponential to the very end, whereas 
all the others retain their form only till r ~ 1/v, taking 
on an exponential asymptotic form beyond this time 
limit. Indeed, for VT « 1 we get from (3.15) and (3.16) 

(3.22) 

where 

Such is the asymptotic decay of all the echo signals: it 
is exponential and proceeds with the same rate, and at 
~ « v we have the relation: 

V(2't) = V(T +-r) = IK(,) I'. (3.23) 

At n = 1/2 the rate is the same as in the beginning, 
whereas at n < 1/2 it is greater than in the beginning of 
the process, and at n > 1/2 it is less. This rate, as 
direct comparison with (2.10) shows, differs only by a 
numerical factor from the one which takes place in the 
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noncorrelated process. From the obtained asymptotic 
estimates, it is easy to form an idea of the kinetics of 
the process as a whole. In the quasi-static situation 
(L:. »11) all signals, disappear almost completely in the 
interval 0 < T < 1/11, while at the end of this interval 
their amplitude is of the order of exp[- (c:'/II)n] « 1. In 
this way the observed kinetics of echo decay is des­
cribed by formulas (3.20) and (3.21), and, in general, 
has a non-exponential character. The decay rate does 
not coincide here with the migration frequency and re­
veals a clear dependence on the width and shape of the 
static contour. This sharp qualitative difference from 
what takes place in the noncorrelated process permits 
us to distinguish them easily (Fig. 2b). 

If, however, C:. « II, i.e., the contour becomes homo­
geneous, then in full agreement with the foregoing, the 
decay of all the signals is identical and proceeds at a 
rate equal to the width of the observed spectrum, start­
ing with the time T > 1/11 where its value is still imper­
ceptibly close to unity: exp[-(L:./II)n] F::J 1. This situation 
replaces the preceding one by a simple shift of the 
boundary between the non- exponential and exponential 
decay. 

If a situation is encountered intermediate between 
the two discussed, the form of the solution can still be 
determined exactly for any n by simple substitution of 
(3.9) in the general formulas (3.15) and (3.16): 

K(-t) = exp (- n~n j 'l]n- 1 dx) , 
o 

(3.24) 

[ 
'l]n(1 +'IIn- 1'1]"-I) ] 

V(2't)=exp -2n'll~nS dx , 
. 0 1 + '11'1] 

(3.25) 

whose limiting behavior agrees with that described 
above. 

As to the three-pulse echo decay, the same thing 
holds as in the noncorrelated case; it duplicates the 
shape of free-induction decay at T - T » 1/11, as seen 
directly from (3.12) by putting 11 = o. 

CONCLUSION 

The aggregate of the information obtained leads to 
the unambiguous conclusion that it is possible to dis­
tinguish between processes with correlated and non­
correlated frequency variation. To this end it is neces­
sary to focus attention on the regions of significant 
variation of the echo Signals and to compare the results 
that are primarily accessible to observation. 

In the quasi-static Situation, in view of the variety of 
the results, the essential data were extracted from the 
general formulas and reduced to tabular form, allowing 
one to consider separately and compare the kinetics of 
echo damping for specific contours, among them the 
Gaussian (n = 2) and the Lorentzian (n = 1). For the 
sake of uniformity, the migration frequency is every­
where designated by the letter II, although in the non­
correlated process it is none other than l/To. It follows 
obviously from the table that, by comparing the kinetics 
of free-induction decay and two-pulse decay, it is easy 
to choose between noncorrelated (y = 0) and correlated 
(y - 1) frequency variation, determining at the same 
time the parameters of C:. and II the problem. For all 

-In K 
1 ___ n=_2 __ I __ n_=_I_- i __ n_=_'_" 

6.l-t1 A.oe (ll:c)'/s 

n=tf. 

1 
2VT 1 2hVT' 1 2VT 1 (hv)'I'T 1 2vr ·1 (hv)'I'(T)'I, 

(r=O) (r~l) (r=O) (r~l) (r=O) (r~j) 

contours, the choice between these mutually exclusive 
possibilities is unambiguous. And only if n = 1/2, when 
tJie kinetics of two-pulse echo decay is exponential in 
both cases, it is essential to compare the rates at which 
K(T) and V(2T) vaniSh, and their temperature or concen­
tration dependance for a conclusive answer to the ques­
tion. 

Thus, two measurements of the free induction and 
of two-pUlse echo, permit one to distinguish easily be­
tween correlated and noncorrelated frequency variation 
for any contour shape. This conclusion does not, how­
ever, extend to homogeneous spectra observed during 
fast migration (L:. « II), since in that situation the decay 
of all signals is identical. It is likewise very important 
to be able to compare the echo signal with the free in­
duction, the direct observation of which is no simple 
task. If this is impossible and the Fourier transforma­
tion of the spectrum is unreliable, we can obtain the 
essential information from the three-pulse echo by 
varying T at fixed T. 

It is interesting to note that for all n > 1, when the 
"flux" term in the exponent of (3.21) is not significant, 
the remainder of the expression coincides, apart from 
a numerical factor, with its analog obtained from form­
ula (2.13). It would seem that the original, non-exponen­
tial stage of decay, which exists but is not observed in 
the noncorrelated process, shifts with increasing 
correlation (y - 1) towards the region of large times, 
displacing the exponential asymptote (see Fig. 2). 
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