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The interaction between a rarefied neutron gas and an inversely populated medium consisting of 
nuclei in an excited isomeric state is considered. The neutron spectrum is approximately described 
by a Gaussian function with a mean energy Ee which considerably exceeds the isomer excitation 
energy Em. The conditions of existence and range of applicability of such a distribution are dis­
cussed. It is pointed out that the multiplication factor for systems containing nuclei with a fission 
threshold can be increased by multiple acceleration of the neutrons by the surrounding isomers. 

1. We consider an inversely-populated medium in which 
all the atoms or nuclei are raised in some manner to an 
excited state, so that the medium has a negative tem­
perature. Assume that this state can exist for a suffic­
iently long time. A rarefied gas of extraneous particles, 
when interacting with such a medium, can either ac­
quire energy through inelastic collisions of the second 
kind, or else transfer energy to the medium in different 
deceleration acts. If the fraction of the energy lost by 
the gas particles in each individual deceleration act is 
small (for example, in elastic scattering of electrons 
by atoms and ions, of neutrons by heavy nuclei, etc.), 
then one can expect from the energy balance that the 
average energy of the gas particles in the quasiequili­
brium state will greatly exceed the excitation energy of 
the particles of the medium. 

By way of example, let us consider the interaction 
of a rarefied neutron gas with an inversely populated 
medium. When the neutrons collide with nuclei in an 
excited isomeric state, we can have besides the pure 
elastic scattering (n, n) also the inelastic accelera­
tion reaction (n, n"), in which the outgoing neutron 
carries away the excitation energy Em of the isomer[ll. 
Subsequent multiple collisions with isomers can 
greatly increase the energy of the initially slow neu­
tron. 

Let us estimate the average energy Ee to which the 
neutron is accelerated in a sufficiently large block 
conSisting of isomers only. We assume for simplicity 
that the leakage and absorption of the neutrons can be 
neglected, and that the next excited level of the isomer 
lies much above Ee. The decay of the isomer in the 
reaction (n, n") or (n, n) brings the system compris­
ing the isomers and the neutron gas into an equilibrium 
state. However, if the isomers are long-lived and the 
neutron density per unit volume n is smaller by many 
orders of magnitude than the isomer density nm, then 
the relaxation time of the entire system is much longer 
than the time of establishment of the quasistationary 
distribution of the neutrons. 

The energy Ee acquired by the neutron per unit time 
is approximately equal to NmUgVEm, where Ug is the 
cross section of the reaction (n, n") and v is the neu­
tron velocity. In the case of spherically symmetrical 
scattering in the c.m.s., the energy loss amounts to 

2E 
N .. (a,+ a.)v-­

A +1' 
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where Us is the cross section for pure elastic scatter­
'ing and A is the ratio of the masses of the nucleus and 
of the neutron (A» 1). In the stationary state, both 
expressions are equal and 

E. = (A + 1)0, 8m • 

2(0.+0.) 
(1 ) 

For long-lived isomers, Em usually amounts to tens 
and hundreds of keV. Although the reaction (n, n") has 
so far not been observed directly, the cross section Ug 
can be determined from the inverse reaction (n, n'), 
the excitation of an isomer level by a neutron, using 
the detailed-balancing principle. For example, ug(E) 
of 1l5mIn (Em = 0.335 MeV, Tm = 6.5 h) amounts to 
several tenths of a barn at E = 0.3 MeV[2l. Ug is 
smaller than Us because the neutron must overcome 
the centrifugal barrier. With increasing E, the contri­
bution of the latter decreases and Ug increases so that 
Ee can be of the order of several MeV. 

2. We now explain the character of the distribution 
of the neutrons with respect to energy. Since kT « Em, 
it is possible to assume that the isomer nuclei are at 
rest in the laboratory frame. For the quasistationary 
neutron density in phase space, we can write the non­
re lati vistic kinetic equation 

dn(E) / dt =N .. {I,n(E) + I.n(E)} =0, 

where Ig is the inelastic-collision operator: 

I,n(E) = S dp' {a:',p6(E' + 8 m -Eq -E)n(E') 

- ap!' (j(E+ 8m -E. -E')n(E)}, 

p' (p-p')' 
E = 2m' E. = 2mA ' p = my. 

(2) 

(3) 

In formula (3), ap,p' is the square of the amplitude 
of the transition from the state p to the state p', 
summed over the final spin states and averaged over 
the initial ones. In the operator Is it is necessary to 
put Em = 0 and replace a~,p' by ap,p" If we take the 

integral with respect to the angles in the first term of 
(3), then the remaining integral with respect to the en­
ergy lies in the range E1(E):s E' :s E 2(E), where 

E [V (A-1)e,. ]' 
E.,,(E)= (A-i)' A 1- AE +1 , 

(4) 

The region of integration of (4) is shown in Fig. 1. We 
note that in the absence of pure elastic scattering 
(a~,p' = 0) we have n(E) = 0 at E < Et = O'4)AEm. 
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FIG. I. Region of integration in the inelastic-collision integral 
(shaded). 

Indeed, it follows from the energy conservation law 
that the recoil energy Eq transferred to the nucleus in 
backward scattering can compensate for the energy Em 
acquired by the neutron, but only starting with a thresh­
old energy Et. The energy Et can be determined from 
the equation Et = E 2 ( Et) (see formula (4) and Fig. 1) 
or from the condition Eq = Em at p' = -p in the lab. 
When E < Et. the initially slow neutrons will be only 
accelerated in each collision, until they go beyond the 
threshOld. There will therefore be no neutrons with 
energy E < Et in the time-asymptotic quasistationary 
distribution n (E). 

The differential equation for n(E) near Ee can be 
obtained from (2) by the standard method used to de­
rive the Fokker-Planck equation[3 l. We multiply (2) by 
an arbitrary function cp (E) having the required number 
of derivatives, integrate with respect to dp, and inter­
change the order of integration with respect to dp and 
dp' in the first inte gral of (3). Expanding then cp ( E ') 
in a Taylor series about the point E, we obtain 

~ 1 0' 
NmSdpn(E)p L,A.(E)kT""8Ek<P (E) = 0, (5) 

k=1 

A,(E)=~ S dp/(E' -E)' {a.~p' tl(E + 8m -E.-E') 
p 

+ ap,p' tl(E -E.-E')}. (6) 

We introduce the density of the collisions per energy 
interval 

q(E) = Nma(E)n(E)2mE, (7) 

and also the k-th moment of the energy transferred to 
the neutron 

<11'E) = A,(E) _ mA.(E) 
A,(E) a(E) , 

(8) 

where (] = (]g + (]s is the total cross section. We inte­
grate each k-th term of the sum (5) k - 1 times by 
parts, setting the expression equal to zero at the inte­
gration limits. Then, by virtue of the arbitrariness of 
the derivative cp/(E), which can be taken outside the 
summation sign, the sum itself must vanish, i.e., 

~ (-1)'-t~{<I1'E)q(E)}=O. (9) 
£...J k! OE'-' '_1 

Confining ourselves to the first two terms, we ob-
tain an equation for the apprOximate function go( E): 

f 0 
<I1E) q,(E)-2'aE {<I1'E) q,(E)} - 0, (10) 

which in the stationary problem is a consequence of the 
vanishing of the total neutron current denSity in energy 
space. Equation (10) means that the energy transferred 
by pure diffusion current through the phase-space 
energy surface compensates for the energy that is ac­
quired (or lost) in the mean by the neutrons as a result 
of the collisions. The accuracy of such an approxima­
tion will be estimated below. 

Integrating (10), we obtain 

( ) Ct {2 S" <11t) d } (11) 
n E a(E)E <I1'E) exp <I1't> t , 

where C1 can be determined from the condition of 
conservation of the total number of neutrons per unit 
volume: 

4n S n (E) p' dp = N. (12) 

The moments < <lkE ) are more conveniently calcu­
lated in the c.m.s. For A~(E) we have 

( A \0+'[ (A+1)8m ]'" [ 2E ) 
A,'(E)=m A+i) 1+ AE S dQa'(fl) (8m - A + 1 

+ ~(1+ (A+l)8m )'h]' 
fl A+ 1 AE ' 

where jJ. is the cosine of the scattering angle in the 
c.m.s. Introducing the notation 

(13) 

<!(fl»s,.='J as,. (fl)!(fl)dn'/J i"i-Cfl)dn, 7= a,<jl.k),+a,<fl'), ,(14) 
a,+ a, 

we obtain for (<lkE ) 

<11'E> = [ AA+ 1fr: ([(em - A~l) 
+ ~(1+ (A+1)em )'h]k) +~[~ ]"« -1)')}. (15) fl A+l AE g a A+l 1.1 • 

For E » Em, discarding terms of the order A-I, we 
get for not too large values of k 

<11'E)=a;([em_2~ (l-fl)r).+a~ [2:r«fl- 1)') .. (15a) 

We see from (15) that when E» Em, with accuracy 
to < jJ.)g(EOm/E)K1 and < jJ.)gH- 2 , we have (<lE) = 0 at 
the point Ee: 

[A + 1 + <fl>,la,(E,) 
E.= em. 

2[ 1- fL(E,) laCE,) 
(16) 

In the case of spherically symmetrical scattering « jJ.) gs = 0), expression (16) goes over into (1). 
Near Ee we can confine ourselves only to the linear 

term of the expansion of the integrand in (11), and the 
neutron energy distribution turns out to be Gaussian: 

n(E)=C,exp [- (E~~.),], f'-- <I1'E.) (17) 
o - B (I1E>IBEIE, 

If we introduce the probability, normalize the unity, 
that the neutron has an energy E: 

weE) = 4nmy2mEN-tn (E) , 

then 
f [(E-E,)'] w(E)=-_-exp - , 

1n r, r,' 
(17a) 

and the mean-squared deviation from the energy Ee is 
r~/2. 

3. It follows from (15a) that 

O<I1E> I =-2(1-il)+em~[(J,] + 2E. ~J . 
BE E. A BE a E. A BE IE. 

(18) 
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FIG. 2. Average energy gained or 
lost by the neutron vs E. The region 
of values of <L'>E> is shaded. 

If ag/ a increases in such a way that il( 6.E )/ilE lEe 

> 0, then r~ < 0 and the energy Ee = Eb corresponds 
to the minimum in the distribution of the neutrons. 
According to formulas (8) and (13), when E « ~m we 
have ag ~ E-1/2. When E > ~m, the cross section 
ag(E) should increase with increasing E, owing to the 
decreased contribution of the centrifugal barrier 
(kR ~ 1 at neutrons energies on the order of tenths of 
a MeV). At an energy of several MeV, ag(E) and 
as(E) vary slowly, whereas i:(E) increases. Figure 2 
shows qualitatively one of the possible variants of the 
behavior of €ma g / a and 2E (1 - il)/ (A + O. The region 
of the values of (6.E ) is shown shaded. The arrows 
indicate the direction of the growth of the neutron spec­
trum. The energy Eb is the limiting energy that -
divides the double-hump distribution of the neutrons. 
Neutrons with initial energy near Eb will be accelera­
ted in the main at E > Eb and slow down at E < Eb' 
Thus, a low-energy neutron trap can be produced at 
E < Eb. Depending on the behavior of the cross section 
of the concrete isomer, the curves in Fig. 2 can have 
two or one intersections. If the cross sections as and 
ag have broad resonances, the neutron spectrum be­
comes even more complicated. 

When determining the high-energy part of the spec­
trum near Ee , we can assume that Ee» ~m' Since 
allowance for the derivatives of the cross sections and 
iI( E) calls for detailed information on the concrete iso­
mer, we calculate ro for a simple model, in which 
ag(/.J.) and as(J.d depend little on the energy, so that we 
can confine ourselves to the first term in (18). Accord­
ing to (17), (18), and (15) we obtain discarding terms of 
order A-1 and above, 

ro'= 8 m ' A 0", {1_~[2_.0",~]}. (19) 
2u(1-ft) u u(1-ft)' 

In the limiting cases we have 

'j ,Au, E Bm Bm e, 

ro' = 2u(~ fl) _ 
,~ ft'- fl' = e E 11'-fl' 

em 2 (1-flf' m' (1-fl)" 

0", <t:: 0; 

a s 4=: o. (19a) 

4. Let us estimate now the accuracy of Eq. (10) and 
the region of its applicability. According to perturba­
tion theory, the contribution of each of the discarded 
terms of (9) to q(E) is 

E dE' (-1)'-' if-' " , 
qo(E)'ll,(E)=-qo(E) S qo(E')(!'J.'E') -k!-aE"-' {(!'J.E )qo(~d~') 

where go(E) is the solution of (10). If ag(/..d and as(j..L) 
have a weak dependence of the energy, then it follows 
from (15a) that 

~I !:.....(ll'E> I-~I(!'J.'-IE>I, ~1(ll'E>1. 
k de A kE' 

Therefore when E » ~m we can take (6.kE') from out­
side the differentiation operator in (20) with accuracy 
of order A- 1 in comparison with the term if!k-l' 

For the case a~« a we can confine ourselves to the 
region ~m « E « Y2A€m. When k 2: 2, it follows from 
(15a) that (6.kE) ~ ~~ag/a. Near Ee we can replace 
qo( E) in (20) by the Gaussian function (17). Using the 
definition and properties of Hermite polynomials 
Hk-l( x) = ( 2ktl dHk( x)/ dx, r 4), we obtain 

1 ek- 2 (E _ E ) 
'llk(X)---- ~-2 Hk(x), X= f '. (21) 

k! k fo 0 

Thus, the expansion of (9) near Ee is an expansion 
in the parameter ~m/ro = (~m/Ee)1/2. The largest 
contribution to q(E) is made by if!s(x): 

",,(x) ~ (em/E,)'" ['/,x - '/.:c']. 

In order for the main part of the spectrum to be de­
scribed by a Gaussian distribution, it is necessary that 
formula (17) be valid up to values x2 ~ 1. The dis­
carded terms are small if if!3(X) « 1, Le., under the 
condition 

0.4(1- J11A-'x'~'o,/0~ 1, 

where x 2 can amount to several units. 
For the case as = 0 and spherically symmetrical 

scattering in the c.m.s. we have 

E, = '/,(A + 1)em, fo' = '/. (A + 2)em', 
<!'J.'E,) ~ 8'm? 

and the quantity (6.kEe > vanishes for odd values of k. 
This means that to estimate the accuracy of (10) it is 
necessary to retain in if!3 the linear term of the ex­
pansion of ( 6. 3E > in x, and also to make use of if!4. By 
performing the calculations we can show that the sum 
(1/J3 + 1/J4) contains terms of order A-t, A-1x2, and 
A-1x4 • If these terms are neglected, then we can retain 
terms of order A-1/ 2x and Kl/2X3 in n (E) calculated by 
formula (11): 

n(x)= 2(2nm~/.roE.'I' (1-3bx)exp [ -x'+ ~ bx'] , 

X= E-E, =~ (E-E,) b=..G..= (~) 7.. (22) 
r. b E, E, 3A 

The normalization factor in (22) has been calculated 
accurate to Kl. In Fig. 3, the solution (22) for A = 100 
is compared with a numerical computer solution of the 
exact integro-functional equation Ign( E) = 0 (see 
formula (3)) under the condition that ag does not depend 
on either the energy or the angles. As seen from the 
figure, the two solutions coincide a t the accuracy indi­
cated above. We note incidentally that Eq. (10) and 
formula (22) could be obtained by expanding the 0-
function in (3) in terms of the difference (~m - Eq) 
and retaining only the quadratic terms. 

5. It follows from the foregoing that the process of 
eqUilibrium establishment in an inversely populated 
medium differs from the analogous processes in an 
ordinary medium, where the energy of the initially fast 
neutrons decreases continuously as a result of modera­
tion, tending to become equalized with the average en­
ergy of the nuclei. To the contrary, in an isomeric 
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FIG. 3. Stationary distribution of 
neutron energy at Us = 0 (A = 100);.­
numerical integration of the the integral 
equation (2); X-solution (22) of the 
Fokker-Planck equation. 

medium the neutrons with initial energies exceeding 
the average energy of the nuclei will be repeatedly ac­
celerated until a quadistationary Gaussian distribution 
with average neutron energy E = Ee » Em and a 
~adratic variance (E - 'Ef = r~/2 is established. 
E decreases and the non-equilibrium distribution n{E) 
begins to deviate gradually from the Gaussian distribu­
tion only as the nuclei in the ground state (No) accumu­
late. To describe these processes it is necessary to 
include in (2) the terms proportional to No and take the 
inelastic moderation into account. The time To of 
transition of the nuclei to the ground state is connected 
with the lifetime of the nucleus in the isomeric state by 
the relation 

'1'0 = 'I'm (1 + Nu.V'I'm)-'. 

For long-lived isomers at a low neutron gas density 
To can amount to weeks and months. The quasistation­
ary spectrum (17) will exist at times t « To. However, 
t can be increased if the heat is removed from the 
system at a sufficiently rapid rate and the unexcited 
nuclei are replaced by isomeric ones. 

In the analysis of systems with real isomers, it is 
necessary to take into account the neutron leakage and 
absorption, which make it impossible for the neutron 
to exist for a long time in the system without stationary 
sources. The quasistationary spectrum n{ E) will then 
be intermediate between the source spectrum S{ E) and 
the Gaussian distribution (17), going over into the 
latter in the limiting case of a neutron loss that is 
small in comparison with the (n, nil) reaction. 

Another important circumstance that must be taken 
into account in real systems is the existence of upper 

excited levels of the isomeric nucleus. The contribu­
tion of inelastic moderation to the neutron spectrum 
can be neglected if the energy E2 of the second excited 
level satisfies the inequality E2 - Em - Ee » roo In 
the opposite case, the spectrum begins to decrease al­
ready starting with E ~ E2, and the average neutron 
energy turns out to be lower than Ee. If the double­
humped distribution discussed in Sec. 3 obtains, then 
the inelastic moderation transfers the neutrons to the 
low-energy trap, where the capture cross section is 
usually relatively large, thereby increasing the effec­
ti ve capture. 

For most isomers, <02 amounts to several hundred 
keY. Near the magic nuclei, the distance between the 
levels increases and <02 increases. Thus, for example, 
for 9lmNb (em = 0.1 MeV, Tm = 92 d) we have <02 
= 1.2 MeV[51. 

To calculate the neutron spectra in real systems it 
is necessary to accumulate detailed information on the 
dependence of the differential cross sections of the 
reactions (n, nil) and (n, n) on the angles and energies 
for concrete isomers. These data will answer the 
question whether it is feasible in principle to obtain a 
chain reaction in systems with substances having a low 
fission threshold, such as 234U, 238U, and 240pU [61. The 
neutrons moderated below the fission threshold could 
be raised back in these systems above the threshold via 
multiple acceleration by the surrounding isomers. 

In conclUSion, the author is deeply grateful to V. N. 
Gribov and V. L. Gurevich for a discussion of the work 
and valuable remarks. 
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