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The passage of a test electromagnetic wave through a plane gravitational wave packet is considered. 
The electromagnetic and gravitational waves propagate in opposite directions. The behavior of light 
rays (isotropic geodesics) in the field of the gravitational wave is investigated. It is shown that the 
light rays are focused by the gravitational wave; the nature of this focusing is studied as a function 
of the form of the functions describing the gravitational field. Analysis of the solution of the Maxwell 
equations, carried out under the assumption that the electromagnetic wave has a leading edge and is 
plane prior to entry into the gravitational field, shows that the electromagnetic wave penetrates the 
gravitational wave packet or reaches its back edge at a definite depth corresponding to the point 
where the light rays are focused. The electromagnetic wave is then reflected and subsequently 
propagates behind the gravitational wave. . 

T HE investigation. of the physical properties of gravi­
tational fields is usually based on the study of their ac­
tion on test bodies whose world lines are timelike geo­
desics. Certain elements of the action of a gravitational 
field on an electromagnetic wave can also be studied by 
studying the behavior of isotropic geodesics-the world 
lines of photons. The solution of the Maxwell equations, 
however, allows us to obtain a great deal more informa­
tion about the effect of graVitational fields on an elec­
tromagnetic wave. Unfortunately, owing to the complex­
ity of the Maxwell equations in a curved space-time, we 
are able to solve them in only a few high-symmetry 
cases. One such case, which is especially interesting 
since it concerns gravitational waves, is considered in 
the present work. We investigate the behavior of an 
electromagnetic wave as it passes through a plane 
gravitational wave packet. It is assumed that prior to 
its entry into the gravitational field, the electromagnetic 
wave is also a plane wave and propagates in the direc­
tion opposite to that of the gravitational wave. 

It is convenient for the solution of the problem to use 
the optical tetrad-frame formalism [1,2J. We introduce 
at each point of 4- space a reference frame consisting 
of isotropic real vectors klJ. and mlJ. (klJ.klJ. = mlJ.mlJ. = 0, 
klJ. mlJ. = 1) and_a complex vector tlJ. (tlJ. tlJ. = tlJ. klJ. 
= tlJ.mlJ. = 0, tlJ.tlJ. =-1), such that the metric tensor glJ." 
is expressed in terms of them in the following fashion: 
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From the optical reference frame we construct the 
bivectors: V IJ." = klJ. t" - k"tlJ.' ~" = m1J.1" - m,,11J.' 
MIJ." = klJ. mIl - k"mlJ. - tlJ.t " + t"tlJ. satisfying the condi­
tion V IJ." = - iV/l'" etc., where the asterisk designates 
the dual quantity. 

We shall assume that the quantities describing the 
gravitational wave are characterized by a dependence 
on the phase function u(xll') , while those describing the 
electromagnetic wave are characterized by a depen­
dence on the phase function v(xll'). The phases u and v 
are analogs of the retarded and advanced times. Since 
the hyper surfaces u = const and v = const are isotropic 
hyper surfaces, we choose the vectors klJ. and mlJ. to be 
tangent to them, Le., 

k. = u .• , m. = D •• , (1) 

in which case klJ.; "k" = mlJ.; "m" = O. 
The plane gravitational wave is described in our 

problem by the Riemann tensor, which admits of the 
representation 

(2) 

the eXp'ansion parameter of the rays of the gravitational 
wave[IJ p = -%kl;L = kll . "tWi" being equal to zero. It ,IJ. ,-. 
is precisely in this sense that the gravitational wave is 
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called plane. In the expression (2) lJt is some complex 
scalar function. 

Let us choose as the coordinates xo, Xl the phases u 
and v respectively; xA (A is equal to 2 and 3) are the 
two other coordinates. Then it follows from the system 
of the Newman- Penrose equations[3] , which are equiva­
lent to the Einstein equations, that lJt = lJt(u, 0). We 
shall consider the particular case of a homogeneous 
gravitational wave packet, when lJt = lJt(u) and lJt(u) -J 0 for 
Ul < u < U2, and lJt = 0 for u < Ul, u > U2. This means 
that when u < Ul (region no) and u > U2 (region n2) the 
space-time is flat, and only when Ul < u < U2 (region nl) 
is the space-time curved. We can, for simplicity, as­
sume that lJt(u) is a continuous function of u. 

Let us concretize the coordinate system (u, v, xA) 
in such a way that in the region no the vectors kJ.1., mJ.1. 
and tJ.1. have the form 

k· = 6,·, m· = ,6.·, t· = 2-11 (6," + i6,"" 
k. = ~l.', m. = 6.', t. = -2-Y' (6.' + i6.'), (3) 

while the metric has the form 

ds' = 2dudv - (dx') , - (dx')'. (4) 
In the region n 1 

k· = 6.", m· = 0.· + Q,6,· + Q,6,", t· = 2- 11 (6," + i6,"), (5) 
k. = 6:, m. = 6/, t. = 2-'bQ6: - 2-Y' (6.' + i6.'), Q = Q, + iQ,; 

ds' = -QQdu' + 2dudv + 2Q,dudx' + 2Q,dudx' _ dx" _ dx". (6) 

The functions QA satisfy a system of equations ob­
tained from the Newman-Penrose system, in which lJt 
and the Ricci rotation coefficients also figure as un­
known functions 

(7) 

(8) 

In Eqs. (7) and (8) 

z=x'+ix', :z=4( :x,+i a:')' 
The initial condition for Eqs. (7) and (8) is: 

for u",;; u, Il = t. = Q = O. (9) 

Since lJt = lJt(u), then for the initial conditions (9) the 
functions J.1. and A will depend only on u and the system 
(8) can be written as: 

dA 1 dll (10) 
a;;=-21lt.+2"'l', a;;=-Il'-H. 

It follows from Eqs. (7) that 

Q=X(u)Z+Il(u)z+q(u). (11) 

By means of the coordinate transformation 

z' = z-a(u), 

where 

da / du == Ila + Xii + q, 

we can make the function q(u) vanish. We shall assume 
this below. In the region n2 the functions Q, A, and J.1. 

satisfy by continuity Eqs. (7) and (10), with the excep­
tion that lJt = O. 

Before solving the Maxwell equations in the gravita­
tional field, let us investigate the behavior of the rays 
of the electromagnetic wave, i.e., of the isotropic geo­
desics with the tangent vectors mJ.1.. The behavior of 
these rays is clearly described by the expansion param­
eter 

and the deformation parameter A [lJ. The expansion 
parameter is the rate of change of the area of a small 
section of the wave surface as the wave propagates 
divided by the area itself, while the deformation param­
eter characterizes the deformation of a small section 
of the wave surface. Under wave surface, correspond­
ing to a definite phase v = const, is to be understood in 
the present case a two-dimensional surface defined 
by the conditions u = const, v = const, the various suc­
cessive positions of the same wave surface as it propa­
gates with the velocity of light in 3-dimensional space 
corresponding to different increaSing values of the co­
ordinate u for v = const. 

If a gravitational wave of the type (2) is incident on a 
set of test particles or photons, then the action of each 
of its phases is such that some of the particles which at 
a given moment are on the gravitational wave surface 
receive positive relative accelerations, while the others 
gain negative relative accelerations. In other words the 
gravitational wave brings some particles together and 
makes others move away from one another. The action 
of the gravitational wave over a finite interval of time 
may intensify this effect, but it may turn out to be more 
complex, depending on the form of the function lJt(u) in 
the interval (Ul' U2). 

Let us to begin with consider the case when the real 
and imaginary parts of the function lJt have a definite 
sign in the interval (Ul' U2). It can be seen from the 
second equation of the system (10) that J.1. < 0 when 
u > Ul, while it follows from the first that Re A and 
1m A have the same signs as Re lJt and 1m lJt respec­
tively. In the region n2 Eq. (10) is easy to solve: 

11 = [u' - '!.(R, + R,)] [(u' - R,) (u' - R,) ]-', (12a) 

t. = A,R,R, [ (u' - R,) (u' - R,) ]-'; 

u'=u-u" R,=(IA,j-Il')-', R'=-(Il,+I·t.,i)-', (12b) 
f.L2 = Il(u,), ,A, = t.(u,). 

If the functions J.1. and A are nonsingular in the interval 
(Ul' U2), then J.1.2 < 0, and we can show that IA21 > 1/121 
in the case under consideration (definiteness of Re lJt 
and 1m lJt). Then Rl > 0, R2 < O. This means that at the 
point u = U = U2 + Rl the functions /1 and A are singular. 
The existence of the singularity is due to the fact that 
the gravitational field causes some points of the elec­
tromagnetic wave surface to draw together and other 
points to move away from each other. The relative 
velocities gained by the points of the electromagnetic 
wave surface (the accelerations are equal to zero) 
result, when the surface emerges from the gravitational 
field, in the surface collapsing into a line at the instant 
u = U. From the point of view of an observer in the 
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gravitational wave or behind its back edge, the electro­
magnetic wave surface is a convexo-concave surface, 
although this effect is produced not by the linear curva­
ture of the surface but by the nature of the variation of 
the distance between the points of the wave surface. 

The above-considered behavior of the light rays can 
be observed when the functions J..L and A are continuous 
in the interval (U1' U2) and when Re lJ1 and 1m lJ1 do not 
preserve their sign in the interval (U1' U2). In the latter 
case, however, another situation when IA21 < 1J..L21 and 
R1 > 0, R2 > 0 is possible. The electromagnetic wave 
surface will appear to an observer in the region !h as a 
double concave surface of unequal radii of curvature. 
The surface will degenerate into a line at the points 
u = U2 + R1 and u = U2 + R2. Physically, such an effect 
comes about as a result of the fact that when the signs 
of Re lJ1 and 1m lJ1 are not preserved, the directions of 
the positive and negative relative accelerations of the 
photons can change, so that the subsequent phases of 
the gravitational wave may cause those photons which 
had earlier moved away from each other to draw to­
gether. Finally, the case when J..L and A have a singular­
ity in the interval (Ulo U2) is possible. 

Let us turn to the solution of the Maxwell equations 
in the gravitational field in question. We shall assume 
that J..L and A do not have Singularities in the interval 
(U1' U2), and that IA21 > 1J..L21, i.e., R1 > 0, R2 > O. For 
an arbitrary electromagnetic field the combination 
F J..Lv - iF'Mv of the electromagnetic field tensor and its 
dual can be decomposed [lJ in terms of the bivectors 
VJ..LV' UJ..Lv' and MJ..Lv introduced above: 

F., - iF.,' = F. V,,, + F,U., + F,M",. 

Writing the Maxwell equations (FJ..L v - iF*J..LV). v = 0 in 
the system (kJ..L, m J..L, tJ..L), we obtain four complex equa­
tions for the scalar functions Fk (k = 1, 2, 3) [1J. These 
equations have, with allowance for the vanishing of cer­
tain Ricci rotation coefficients, the form 

2'1, aF, aF. 
---=0 

az au ' 

2'h aFt aF, aF, _ aF, 
--+-+Q-+Q-+2[lF =0 

{)z ()u az oz 3, 

of, aF, _ aF, of, 
~a +Q~+Q-_2'I'_+"F =0 u az az oz"" , 

aFt 'I aF. 
--+2'---AF =0 ou az ,. 

(13) 

The problem of the passage of an electromagnetic 
wave through a gravitational wave packet reduces to the 
solution of Eqs. (13), with the functions J..L and A defined 
by Eqs. (10) when u > U1, while when u ::s: U1, iJ. = A = O. 
The initial condition for the functions Fk is prescribed 
thus: 

F. = Fa = 0, F, = fell) for u.s;; u.. (14) 

The condition (14) implies that prior to its entry into 
the gravitational wave packet, the electromagnetic wave 
is a plane wave propagating toward the gravitational 
wave. 

Since the hypersurface u = const is a characteristic 
of the Maxwell equation, we must introduce one more 
condition for the determination of the solution. We shall 
require that the function f(v) be different from zero 

when v > V1' This implies that the electromagnetic 
wave has a leading edge. Thanks to the last condition, 
the function F1 can be expressed in terms of the func­
tions F2 and F3 thus: 

"s ~ 'I aF,) F. = /AF, - 2 '-- dT\. 
. az .. (15) 

As can be seen from the equations of the system (13) and 
the conditions (14) and (15), the functions Fk do not de­
pend on xA and are of the form 

F.=O, F,=f(u)exp (- j [l(s)ds), 

" 

F. = A (u)exp (- I [l(s)ds ) Si(x)dx. 
Ul VI 

(16a) 

(16b) 

Thus, upon entry into the gravitational field the elec­
tromagnetic wave, which is heretofore a uniform field 
:in the sense that the invariants FiJ.VFJ..Lv and FJ..LvF'Mv 

vanish), ceases to be uniform. Its algebraic structure 
is expressed by the relation: 

F,. - iF.: = F. VO' + F,U.v , (17) 

where F1 and F2 are given by the formulas (16a) and 
(16b). PhYSically the structure (17) leads to a situation 
in which the electric and magnetic intensity vectors de­
termined in the local tetrad frame are not equal in 
magnitude and not perpendicular to each other, and the 
energy flux density is not equal (up to the factor c) to 
the energy density. 

In the region !h, when U2 < u < li, we can, using the 
formulas (12a) and (12b), derive explicit expressions 
for F1 and F2, 

F2 = f(v) iR.R,j '''[ (R. - u') (u' +IR,I)] -'I, exp (- S [l'(s)ds ) ,(18a) 
u, 

F, = A,jR,R,j'i,[ (R , - u') (u' + j R,j) ]-'1, cxp (- S'[l(s)ds ) jf(X)dX. 
" '1 ,(18b) 

The functions Fl and F2 become infinite at the point 
U = U2 + R1, In order to interpret physically the singu­
larity of the functions F1 and F2, let us compute the en­
ergy and the energy flux of the electromagnetic wave 
relative to an observer with 4- velocity VJ..L = hiJ. (0) 
= miJ. + %kJ..L. The world lines corresponding to the 
chosen vector field VJ..L are timelike geodesics. Rela­
tive to these observers the electromagnetic wave propa­
gates in the direction hiJ.(1) '" mJ..L - Y2kiJ.. Let us also 
introduce two unit spacelike vectors h J..L(2) and hJ..L (3), 
which together with hJ..L(O) and hJ..L(l) form a reference 
frame: 

h"(2) = 2-';'(t" + t·), hu (3) = -i2-'I'Ct"- t·). 

Relative to the given system of the observers the elec­
tric and magnetic vectors determined by the reference­
frame components of the tensor F iJ. v [4J are equal to 

f" = F.,h·Ci)h'CO) = to, 2-'1, (ReF. +~ Re F,), 2-'1, (ImF. - 4- ImF, n, 
(19) 

Hi = F.:h"CO)h'Ci) 

= {0,2-'I'(rmF.+frmF,), '2-'1, (-ReF, + ~ ReF2)}' 

The energy density Wand energy flux density pi are 
respectively equal to 
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w = IfdE' +9') = 1/2 ( IFd' + I/,IF,I'), pi = {P, 0, o}, 

P=-{;IF,I'--}IFd'=+exp (-2 J ~(s)d~) (20) 
", 

X[~If(v)I·-IA(U)I·IJf(X)dxl·]. (21) 
., 

The expression in the square brackets in (21) vanishes 
at a certain value u \u < u) and then becomes negative. 
This shows that the electromagnetic energy correspond­
ing to a definite phase v = const penetrates the gravita­
tional wave packet or reaches its back edge at a certain 
distance. The electromagnetic energy is then reflected 
and subsequently propagates behind the gravitational 
wave. The point u = U2 + Rl determines the maximum 
penetration depth of the electromagnetic energy. Notice 
that for u - U, IFll »IF21 and the electromagnetic 
field becomes a uniform field, i.e., a pure wave that 
propagates behind the gravitational wave. 

Although the system of the observers with the 
4-velocities Vil = mil + %kll is convenient for the 
computation of the energy and the Poynting vector, it 
conceals a number of distinctive features of the behav­
ior of the electromagnetic field, since the world lines of 
the observers are not parallel geodesics. Let us con­
struct in the region !h a tetrad system consisting of 
the vectors: 

h"(O) = (112 + B13)k" + m" + Ht" + m", 
h"(i) = (_1/2 + BH)kO + m" + Ht" + m", 
h"(2) = -2-"'(1" + t") - 2-'hk"(B + 13), (22) 
h"(3) = -12-'" (t" - t") - i2-V'k"(B - 13), 

where B = _2-1/2 (IlZ + ~z). It can be shown that the 
vectors (22) are unit tangent vectors to the Cartesian 
coordinates (t, xl, X /2 , X /3 ), the latter being related to 
the coordinates u, v, x2, and x3 by the transformation 

t = u + X' =1/2U + V + IMJ.lZz + '/,('),z' + Xx')], 
x' = v - 'i,u + IM~zz + 1/2 ('),z' + XZ')], (23) 

Relative to the tetrad system (22), i.e., in terms of the 
Cartesian coordinates (t, xI, x2, ~), the electromag­
netic energy density and the components of the Poynting 
vector are equal to 

w = 1M IF,,' + (1/2 + IBI')'IF,I' - B'F,F, - H'F,F,], 
P, = 1M (II, - IBI') IF,I' - IFd' + B'F,F, + H'F,F,], 

P' = 2-'1,[ (B + Ii) (1/2 + IBI') IF,I' - BF,F, - HF,F,], 
po = -i2-'I,[ (H - B) (1/2 + IBI') IF,I' + IiF,F, - BF,F,j. (24) 

The equation of the family of electromagnetic wave 
surfaces corresponding to a definite phase v = const 
coincides with the second equation of the system (23): 

v = x' + 1/2U - IM~zz + '/,(Az' + Xx') J. (25) 

It is easy to obtain from Eq. (25) the unit vector n of 
the normal to the two-dimensional wave surface corre­
sponding to v = const and t = const. The vector n indi­
cates the direction of propagation of the electromagnetic 
wave in the Cartesian system of coordinates: 

{ :IBI'-'I, (~+ReA)x'-Im'Ax' (J.L-ReA)x'-ImA.x'} 
n= IBI'+'I,' IBI'+'I, ' IBI'+'I, .(26) 

The expression (26) shows that the direction of propaga­
tion of the electromagnetic wave at each spatial point 
(with the exception of the axis,c = x3 = 0) varies in 
time as u increases, until, in the limit, as u - ti, it 
coincides with the direction of propagation of the gravi­
tational wave. The distinguishability of the axis x2 = x3 

= 0 is connected with the choice of the given Lorentz 
reference frame; when we go over to another Lorentz 
reference frame another direction turns out to be the 
preferred direction. 

Comparison of the components of the Poynting vector 
(24) with the vector n shows that the direction of energy 
propagation does not coincide with the direction of 
propagation of the wave, but the energy flux also changes 
it~ sign when u - U. Indeed, for u close to Ul the vector 
pI f':j pI R; Ys IF212. When u - U, 11, A, and, consequently, 
B are very large, and we have 

pi ~ P' ~ -1/2IBI'IF,I'. 

Thus, a "reflection" of sorts of the electromagnetic 
wave takes place when it penetrates into the field of the 
gravitational wave. The same result is obtained in the 
case when IA212 < 11121 2, i.e., when Rl > 0, R2 > O. The 
maximum penetration depth of the electromagnetic wave 
is determined by the Singularity U = U2 + Rl closest to 
U2. The same situation evidently obtains when 11 and A 
become infinite inside the gravitational wave packet. 

An interesting phenomenon is observed if the elec­
tromagnetic wave is itself a wave packet, i.e., if f(v) 
j: 0 for VI < V < V2. Then, as can be seen from Eqs. 
(16a) and (16b), when v > V2 the quantity F2 = 0, but Fl 
does not vanish: 

u .. 

Fi - A(u)exp (- J ~(~)ds )J f(x)dx" O. 
ft.1 "'I 

This means that an observer in the gravitational field 
or behind the back edge of the gravitational wave will, 
when v > V2, detect the "tail" of the electromagnetic 
radiation in the form of an electromagnetic wave propa­
gating behind the gravitational wave. 
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