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The tensor of the coefficients of thermal conductivity of electronic excitations in the normal layers in 
the intermediate state of a superconductor i s  calculated taking into account the special character, due 
to the Andreev reflection of electrons and holes from the boundaries with the superconducting layers, 
of the trajectories of the excitations in a magnetic field. A technique for averaging expressions con- 
taining the Green function of the electron system over the impurity distribution i s  developed by means 
of variational derivatives of the Green function with respect to the ~Lexternal-source" field. The ther- 
mal conductivity of the normal layers i s  found to be substantially lower than that of the infinite normal 
metal and displays characteristic oscillations with variation of the normal-layer thickness. 

A characteristic feature of the contact between a layer 
of the normal metal and a superconductor is,  along with 
the proximity effect,"' the distinctive reflection of nor- 
mal electron excitations, with energy less than the mag- 
nitude of the gap A in the superconductor, from the in- 
terface of the layers. According to Andreev,"' these 
excitations a r e  reflected from the interface, being trans- 
formed from an electron to a hole and vice versa while 
the Fermi momentum is almost conserved and the sign 
of the velocity vector thus reversed. In other words, a 
coherent state i s  established, describing the correlations 
between the electrons and holes that a r e  characteristic 
for a superconductor even deep into the normal layer, 
where the superconducting order parameter A i s  equal 
to zero. 

In a previous paper by the  author^,^^' it was shown 
formally that the described picture of reflection of ex- 
citations i s  conserved in the presence of a magnetic 
field. In this case, in the Schradinger equation for the 
two-component wavefunction of the excitations, it is 
necessary to take into account the coherent phase dif- 
ference of the superconducting order parameter that is 
established between two superconductors and compen- 
sates the increment of the vector potential of the mag- 
netic field obtained on passing through the normal layer 
(AAy = HL; L is the layer thickness, and the y-axis i s  
directed along the layer, perpendicular to the magnetic 
field). Taking this phase difference into account leads 
to non-conservation of the canonical momentum along 
the y-axis and, correspondingly, to a successive shift 
of the x-coordinate of the center of the orbit of a nor- 
mal excitation by k2L for each reflection. At the same 
time, the ordinary (kinematic) momentum is  conserved, 
and the velocity vector changes sign. As a whole, the 
motion of the excitations can be turned round into the 
successive passage, by an electron and a hole alter- 
nately, round a complete circle (see Fig. a). It i s  easily 
seen directly from the form of these trajectories that, 
as was shown earlier by one of the authors,C4' in the 
absence of a magnetic field the motion of an excitation 
along a straight-line segment confined between two 
superconductors i s  unstable to the switching on of an 

arbitrarily weak field. Unlike the case of ordinary 
specular reflection, in which a weak magnetic field 
perturbs the trajectory negligibly (see Fig. b), in the 
present case, the dynamics of the excitations becomes 
substantially more complicated, and this leads to a new 
spectrumc49s1 and, generally speaking, should be mani- 
fested in different kinetic characteristics of the normal- 
metal layer. [" 

The purpose of the present work is to calculate the 
thermal conductivity of the normal electron excitations 
in the most natural example of layers of a normal metal 
separated by superconducting layers, namely, in the in- 
termediate state of a superconductor at temperatures 
T << A, when the contribution of the superconducting 
layers to the thermal conductivity can be neglected. As 
i s  well known,c51 the magnetic field in the normal lay- 
e r s  is parallel to the layer interfaces and i s  equal to 
the critical field Hc. The corresponding calculations of 
the thermal conductivity without allowance for the effect 
of a magnetic field were performed in 

In connection with the fact that the "isotopic spin" 
(cf. '3741) in the electron-hole space i s  an essentially 
quantum quantity, to calculate the conductivity tensor 
it i s  appropriate to make use of the general quantum 
linear -response methods, [" although in the intervals 
between the reflections the motion of the excitations i s  
semi-classical. A generalization of these methods to 
the case of thermal perturbations was proposed in C879'. 

Here we shall make use of the results of the work of 
~ u b a r e v , " ~  modifying them somewhat in such a way 
that, in the subsequent calculations, it i s  possible to 
apply the standard techniques of correlation functions 
and temperature Green fun~ t ions .~ '~ '  
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According to ['I, the nonequilibrium statistical oper- 
ator of a system in the presence of a temperature gra- 
dient VT has the following form:" 

Here p(r) = 1/ T(r), and T(r)  = T + AT(r) i s  the local 
value of the temperature (I AT(r)J << T, T = const); 
%(r) i s  the Hamiltonian density of the system. The heat 
flux operator q,(r, t )  i s  considered in the Heisenberg 
picture: 

qo(r, t) = eIRJqa(r) e-'"0'. 2 0  = $ dV % (r). 

p = po+pl,  po=exp(-P%o), 

pI = -. i j dfe-d [e-i%'J(leixi, e-b*], + 0. (4) 

By means of thl  expression found for p (cf. (4)) it i s  
not difficult to obtain the connection between the aver- 
age value of the heat flux and the corresponding corre- 
lation function: 

The correlator (q,, qp ) (r, r' ; t )  i s  defined as  follows: 

(9.; qp)(rr, rz; ti - tt) = iO(tt - tz)([qa(ri, tt), q~(rz, tr) I), (5) 

where B(t) i s  the Heaviside step function; the angular 
We shall describe the interaction of the electron ex- brackets denote averaging over the equilibrium state. 

citations with nonmagnetic impurities randomly dis- Going over to the Fourier transform of the correlator 
tributed in the normal layer by means of the scattering 
potential 

U(r)= Sdv1u(r-r')n(rr), 

where n(r) = C 6(r - r i )  i s  the density of the & & r i b ~ -  and defining in a natural Way the nonlocal thermal Con- 
i ductivity coefficient ~ , p ( r ~ ,  r,) 

tion of impurities, r i  a re  their coordinates, and u(r) i s  
the potential of one impurity. Then the Hermitian Ham- (qa(r) ) = - J ~ v '  xDP(rr r') VPT (rf), (6) 
iltonian density 8 ( r )  of the normal excitations in the 
"isotopic-spin" representation has the following form: We obtain for the latter the simple relation: 

PI 1 0  E(P)=--p. i f i - E - I ,  ( ) (2) According to [lo', the correlator (5) can be found in 
2rn 0 -1 the temperature technique with a subsequent analytic 

The operators qo;(r) and cps(r) (s = *I)  w e  the canoni- continuation from the Matsubara frequencies to real 
cal creation and destruction operators for electrons frequencies in such a way that the function obtained be 
and holes and m e  related to the ordinary electron op- analytic in the upper half-plane of w ,  in accordance with 
erators as follows: the definition (5). The calculation i s  conveniently per- 

formed by defining the temperature correlator in the 
form of a variational derivative (cf ., e.g., 

. . 

and obey the Fermi anti-commutation relations (qa; q0)'(zI, x2) = - ( 8(qa(xt)' ) , x , .  (8) ~ x P ( x ~ )  x=o 

{cp.(r), '?,.+(rl)} (p,(r)~..+(r') + 9,.+(r1)0.(r) = 6..-6(r-r1), Here, the averaging i s  performed Over a state which is 
{cp.(r), cp., (r')) = {cp.+(r), cp..+(r1)} = 0. described by a Hamiltonian with the "external sources" 

Using the expression (2) and the energy conservation X@(X): 
law in operator form: 

a 1 ( r )  /at  + div q(r) = 0, ia%(r) I at = [%(r), 1 0 1 ,  

we find the heat-flux operator q,(r): 

~ ( r )  = '/2 (9+(r1), Vajr, r') i ~ r  + o ~ ( r ) )  
+ (err+ + o z v  (r') (r, r') , cp (r) 1 r--r, 

& (r,, rr) = oz[pIa - pra - 2ozeAa(r~) I I2m. (3) 

Confining ourselves to the study of the linear re-  
sponse of the system, we expand the operator p(1) in the 
perturbation VT, using formally the time representation 
and Liouville's equation for p: 

0 

i =  PI, 1 ,  = PI d v j  dtev'qa(r,t) V=T(r), 
at - s 

Defining the temperature matrix Green function 
K.., (x, 5') = (~4.  (z)%., (xr) ), - - - 

9 (z) = eT"q (r) e-'", cp (x) = erXq+ (r) e-'" (10) 

and using (3), we obtain an expression for the average 
heat flux appearing in (8): 

(qa(s))av= --sP@.(~~-K(T 7 ~ ' ) ) ~ v ~ ' - + o ~  
q = ( ~ )  = 'Iz[ua(r) (E + U) + (e + U) va(r) 1. (11) 

Here and below, the subscript "av" denotes averaging 
over all possible configurations of the impurities, and 
we have formally introduced the integral operators: 

e ( s ,  rz) = a.E(pI - o,eA(rl) ) 6(r, - r2), 
 he complete system of equations for thermal perturbations U(rl, rr)-= orU(r1)6(ri - r2), 

(cf. L91) contains, along with the energy conservation law, the particle- &(r; r,, PS) = ua(rt, r ~ )  (6(rt - r) b(rl - r 4 ) .  
number conservation law corresponding to a perturbation V p  of the 
chemical potential of the system. However, in metals, the electroneu- the following, we shall need an equation for the Green 
trality condition ensures that the electron density and chemical poten- function (10); in the presence of the " S O U ~ C ~ S "  %int 
tial p are constant. (cf. (9)), this equation has the following appearance: 
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a + + + J ] K ( , , ~ )  (12) we find the equation which the mass operator $I satis- 
$71 fies : 

The averaging over the distribution of impurities of 
the expressions which contain the Green function and 
appear in (11) can be performed, a s  is  well known,c121 
by averaging Dyson's equation. For small impurity con- 
centrations, the averaging procedure reduces to a se- 
lective summation of a certain class of diagrams for the 
corresponding mass operator. In this paper, for this 
purpose we use the technique of variational derivatives 
of the Green function with respect to the field ~ ( r )  of 
the fictitious "external sources" conjugate to the im- 
purity density n(r). This approach makes it possible to 
develop general methods of averaging both :he Green 
function itself and expressions of the type UK (cf. ( l l ) ,  
(12)) and the different correlation functions. For this, 
we formally associate with the Green function K(rl, r2) 
the functional 

It is clear that the value of this functional for 77 = 0 is 
the Green function averaged over the position of the im- 
purities : 

K ( r l ,  r2; ~ 1 s - o  = Kav(~r ,  r r ) .  

By direct inspection, one may convince oneself of the 
validity of the following relation: 

- 6K(711Tz;  ' )  + K ( T ~ ,  zz;  q ) n ( r ;  q ) .  
6q ( r )  

Corresponding to Eq. (12) for the Green function is 
an equation for the functional (13), which, taking (14) 
into account, we can represent in the form: 

where 

f ( r ;  X )  = '/r [ &(7) + ( r ) ; ] ,  ; (T)  = j dV x.(z) j.(rj, 

Since the basic idea of the selective summation in 
the averaging over the impurities in consists in the 
fact that the expansion in powers of the small concen- 
tration is performed in the mass operator and not in the 
Green function. which contains "dangerous" pole de- 
nominators, it 'is appropriate to introduce the mass 
operator 6I into Eq. (15) in explicit form: 

a 
{ - + ~ + ~ ( z , ; ~ ) + ~ d ~ n ( r ; q ) [ ~ ( r ) + ~ ( r , ~ , ; ~ ) ~ } ~ ( r ~ . ~ ; n )  ax, 

+ Jdzi ( r , ,7 ;q)K(z ,z2;q)=6(r i -zz) .  
(16) 

We note immediately, however, that for 77 = 0 Eq. (16) 
goes over into the exact equation for the averaged Green 
function; therefore, it is sufficient to find the form of 
the operator fi for 77 = 0. Comparing (15) and (16) and 
using the known relation 

In Eq. (I?), it is now possible to perform an expan- 
sion in the impurity Concentration. It is not difficult to 
see that this expansion, generally speaking, corresponds 
to an expansion in the variational derivatives 6/677. With 
the aim of simplifying the calculations, we make use of 
the Born approximation for the electron-impurity scat- 
tering amplitude. Then in Eq. (17) we can confine our- 
selves to terms quadratic in the scattering potential.2' 
In addition, for the subsequent calculation of the corre- 
lation function (8), it is sufficient to retain only terms 
linear in the perturbation ~ ~ ( x ) .  Thus, from (17) we find 

Hence, taking into account the easily proved relations 

n ( r ;  q ) n = o  = n,, = n, 
6n(r l ;  q )  (w) s = ~  =(n(r , )n(r2) )cp-nz=nb(r l -r2) ;  

we obtain the final expression for the operator 6l for 
r ] = o :  

M(%,  T * )  = ~ ( t , ,  tz; q)"=o 

and the equation for the averaged Green function 

The averaging over the impurity distribution in the 
formula (11) determining the average heat flux is per- 
formed analogously. Going over to the calculation of the 
correlator (8), we note that it follows from (11) and (14) 
that 

6 
(4.; q d T  (11, ~ a )  = - ~p { l / a [ L ( r r )  (;+ $ + ( ~ ~ G ) j . ( r , )  ] 

6x1 (2%) 

6K-I ( z I f ,  z,'; q )  - JJI d~ dzll dta' @, (r ,  r l )KaV(r l ,  71') KaV(tz', ri + 0 )  1 , 
6rl ( r )  s-0, x-0 

where (20) 
&"'(r)= ~ / ~ [ U ^ a ( r )  (El+ ~ U L ( O )  )+(l+ n j ( ~ ) ) & ( r )  I ,  

,. .. 40)= $ d ~ < r ) ,  ~ z ( r ~ , r ~ ) =  1 / z [ u ( r 1 ) u a ( r z ) ~ ~ ( r 2 ) ~ r l )  I. 
The functional differentiation in (20) is performed 

taking into account the relations 

Introducing for the variational derivative of the Green 
function the notation: 

2 ) ~ t  can be shown, exactly as in [IZ], that taking account of the 
discarded terms in the approximation linear in the concentration gives 
the total scattering amplitude. 
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we obtain 

( c ;  qp)'(r,,xz) = ~p { q z '  ( r , ) L , ( ~ , , a  +o;  GI- n  jJ  d v d r & ( r ,  r , )  

x [ L p ( ~ i .  Z ;  x2 ) ; ( r )K(r ,  + 0 )  + K  ( T ~ ,  T )  u ( r )  L@(T, r1  + 0 ;  X I )  1 

- n  j d ~ d = ( r .  r , ) ~ ( ~ ~ , r d d ~ ( r ,  ~ ) K ( T Z ,  tl + 0) ] (22) 

(here and below, for brevity, we have dropped the sub- 
script "av" from the averaged Green function Kav). 
The variational derivative satisfies an integral equation 
which stems from Eq. (19): 

La (T, ,  7%; x)  = - d~,' d71' K  (z , ,  r,' IS 
X K(T%', 7 ,)  = -K(T , ,  7 )  it' ( r )  K  ( r ,  T , )  + n S j d v l  d ~  

X [ K ( r l ,  T ) Q = ( ~ ' ,  r)K(%, ? ' ) i ( r 1 ) ~ ( ~ ' , T 2 )  + K(TI,T')  - 

Ra(o+,  o-; r )  - n  jdV' K(w+)  u(&) ~ . ( o + ,  w-;  r )  . 
x C ( r f )  K ( a - )  = K ( o + )  ( r )  K ( a - )  . (28) 

The following calculations will be performed with the 
assumption that the impurity potential i s  short-range: 
u(r) = u,,B(r). Then Eq. (26) for the Green function i s  
simplified: 

[-io +-E - nu,'o,K (r, r;  o )  o . l K ( o )  = 1 (29) 

(here we have omitted the constant term nu,, which leads 
to a renormalization of the chemical potential). The 
Green function K(r,  r ;  w) of coincident arguments can 
be calculated by making use of its bilinear expansion in 
the eigenfunctions of the impurity-free system: 

K.., (r, r', o )  = 
$:(r) $.,'(rf) 

e ( i ) - i ,  . (30) 

X i ( r )  K (d, 7 )  6- (r', r )  K  (T, T,) ] + n j j I  d v  drrl d z l  . Here s and s' a re  the indices of the matrix elements of 

X K (T,,T~') i ( r f )  L- ?;I; z) i (r') K (T;, 7%) .  
the Green function (s = kl); @(r) and €(A) a re  the eigen- 

(23) functions and spectrum correspondina to the se t  of auan- 
tum numbers A- is  the "ren&malizedw frequency; the 

a in in (22) and relation of which to the usual Matsubara frequency can 
(23), we have be found from (29). The eigenfunctions of the system 

('I.; q.)'(r1, r2; v . ) =  T Z  Sp { i t )  ( r I ) L p ( o + ,  o-i r 3  satisfy the SchrBdinger equation: 

and an equation for L, : 
La(u+, m-; t ) =  - K ( o + ) ~ $ '  ( r ) K ( o - )  

The Fourier transformation in (24) and (25) is de- 
fined, as  usual, [lo' a s  follows: 

K ( T ,  - T Z )  = T K(o , )exp  [- io .(z l  - r z )  1, r, 
W" 

Y r 

The resulting relations (24) and (25) can be simpli- 
fied by substituting 

and then using Eq. (19) for the Green function for x = 0: 

and were found in papers c9'41. According to these pap- 
ers ,  the functions @(r) a r e  the two-component wave- 
functions of the electron-hole excitations, with $, cor- 
responding to the electron and $-, corresponding-to a 
hole with charge and mass of the opposite sign. 

In the case under consideration (the intermediate 
state of a superconductor), pair electron-hole excita- 
tions with energy €(A) < A a re  trapped in the normal 
layers (la < x < la + L, 1 = 1,2, . . . , N labels the layer, 
and a i s  the period of the structure; the x-axis is per- 
pendicular to the layers) between the superconducting 
regions (la + L < x < (1 + 1)a)  and move in a magnetic 
field Hc directed along the z-axis. On reflection from 
the boundary with the superconductor, the respective 
components $, and I)-, of the wavefunction, as  observed 
above, acquire an extra phase factor exp (*2i@y) 
(@ = eHL) in the gauge Ax = AZ = 0, Ay = Hx. There- 
fore, Eq. (31) possesses translational symmetry along 
the y-axis: y -- y + n/9 ,  and, related to this, the spec- 
trum of the excitations has a band character and the 
wavefunctions have the form of Bloch waves. The ex- 
pressions found in c3941 for the wavefunctions and spec- 
trum can be generalized without difficulty to the case 
of 2N alternating normal and superconducting layers, 
when the latter a r e  sufficiently thick (N >> 1, a - L 

[ - i o + e + n u ( ~ ) l ~ ( o ) - n S d ~ u ^ ( r ) K ( w ) ; ( r ) K ( o ) =  1. (26) >> to, 5, is the coherence u ( k + 2 @ ~ - @ 1 - @ ( ~ - l a ) / L )  length): 

The formula (24) for the correlator of the heat fluxes ( : L , ) ( ~ ) = Z (  u ( k + 2 @ ~  + Q ) z + @ ( x - l a ) / L )  
then acquires the form: xexp[. i (p.z+ ky + 2 @ v y ) ] ,  l a < x <  la+  L; 

1 

,--, 
- i (a+ + o-) 

2 
( K  ( o + )  ;@(rz) + & . ( r z ) K ( o - ) )  - K ( o + )  &@' ( r i j -  Q:'' ( r2 )K(o-1  

Here [x] is the integer part of x: [x] = x - {x} ,where the 

+ J~V~(K(~+)~(~~)K(.+)~,(~~, .)+ ~ , ( ~ l ,  ~ ( " - ) ; ( n  K( , - )  fractional part 1x1 i s  defined such that {XI > 0; v i s  the 
volume of one normal layer: v = LyLZL; the role of the 

where the quantity R,(w+, w-; r )  satisfies the equation extra quantum number, arising from the periodicity of 
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en (k, pz)  = 1 ( - 1 )  [ ( t - h ) / o l  Y m d t .  
nm - p  

the structure in x, is played by the layer number I .  Ob- 
viously, the spectrum has the character of a set of 
strongly overlapping bands and is  periodic in the quasi- 
momentum with period 2a. Thus, a complete rearrange- 
ment of the ordinary space-quantization spectrum oc- 
curs in a magnetic field,"] and special magnetic quan- 
tization arises, associated with the instability, noted 
above, of the trajectories of the excitations with respect 
to the switching on of an arbitrarily weak magnetic field. 
In real systems, a s  was pointed out in C9'41, magnetic 
quantization appears only in the presence of a sufficiently 
strong magnetic field, when the radius of the orbit of the 
electron-hole excitation is  small compared with the di- 
mensions of the normal layer along the y-axis: rH 
= p/eH << Ly. It is obvious that for the appearance of 
important magnetic-quantization effects, the mean free 
path of the excitations must also satisfy this condition: 
I >> rH. These inequalities will be used in the course of 
the following calculations. 

We return to Eq. (29) for the Green function. By 
means of formulas (30) and (32), we find (the calcula- 
tions are given in the Appendix) 

mpr . 1 .  I ~ P P  , - nunZ - K.,, ( I ,  r;  o )  = ifjSat- sign 6; 13 = o + - slgn o ,  - - 
2? 2t  7 7 

where T has the meaning of the "mean free time" of the 
excitations. 

To simplify the following calculations we turn to the 
determination of the thermal conductivity coefficient 
K ~ P  (6), (7). The latter, generally speaking, is  an inte- 
gral operator in the coordinates; however, it can be 
shown that the characteristic radius of the kernel of 
this operator is  of the order of the mean free path I .  
At the same time, the temperature gradient VT varies 
appreciably over distances much greater than 1; there- 
fore, the integral relation (6) between q and V T can be 
replaced by the local relation: 

q ( r )  = ( I )  V T  r  x,$(r) = S ~ V '  ( r ,  r'). 

Moreover, because of the macroscopic uniformity of 
the system ( I  >> L), we can assume that VT = const and 
confine ourselves to calculating the average heat flux 
(V is the total volume of the sample): 

- 
Q. = -xagVpT, 

- xr. = - j j  1  dV dV'xa@(r ,r l )  = L ~ J J  d V d V 1  <pa: (1 ,  r'; Y)..,. V VT idci, 
(33) 

Combining the formulas (27) and (33) and denoting by 
the symbol ivnf + w + iO the analytic continuation in the 
sense indicated above, we have 

- I d  
x,g = -- (AO@ ( ~ ~ ~ ) i ~ , ~ , + ~ + ~ o ) ~ + o ,  

T  idw 

- i  ( o ,  + o - )  
2  

( K ( w + ) & +  & K ( " - ) ) -  ~ ( w + ) i f ' -  G ; " K ( ~ - )  I) .  (34) 

that do not depend on vnr (and which, consequently, go 
to zero on differentiation with respect to w), and have 
introduced the notation: 

An equation for R,(w+, w- ) can be obtained from (28), 
and, if we take into account the short-range character 
of the scattering potential, has the following appearance: 

Putting here r, = r, and substituting the bilinear ex- 
pansions (30) of the Green functions into the right-hand 
side of (35), we obtain the equation for R,(r): 

R a ( r )  - nunZ dV' K +  ( r ,  r') o ,R,(r l )  o ,K-  (r', 1 )  S 
+ -  (*+ 

= h k + - i c  - i a )  (36) 
+ - 

HereAKf = K(wi), e+ = f(A*), I)+ ( r )  = ~"(r ) ,  and 
( A ,  I V, 1 A- ) are  the matrix elements of the velocity 
operator : 

< + 6 1 1 )  = d  s ( ( r  1 r  ( 1  , (37) 

which, a s  is  not difficult to check, have the following 
form: 

Analytic expressions for v, a re  given in the Appendix; 
their important property is  their periodicity in the 
quasi-momentum k: 

We turn to the solution of Eq. (36). Omitting the in- 
termediate calculations connected with performing the 
summation over the quantum numbers, we give the final 
expression for the right-hand side of (36): 

Pa , 
V, ( p y  + sol + s@ ( x  - la) l L ,  PZ, n )  

-*(6+-6-)  I d p i x  j d y T . ( y )  
4n n +I>- + i R n  

- # F  *=-- -' 
l a < x < l a + L ,  (39) 

where s, sf = *1, are, a s  above, the indices of the ma- 
trix elements, 6% = sign w*, and 

1 dt ( - 1 )  " cos ( n  arc cos z) 
T n ( x ) = ~ o .  hi,)=- 

rill-x -' Y 1 - t  n  1 1 7  . 
In accordance with the form of (39), it is  natural to seek 
the solution of Eq. (36) in the form of a periodic function 

x  - la 
~ . : ( l )  = 6...Ra smi + s s  -), la c x < lo + L, 

L 
R a ( z + 2 @ )  = R , ( z ) .  

(40) 

Substituting (40) into (36), and performing the necessary 
calculations, we obtain an equation for R,(z): 

~ P P  d~  ' T, ( 2 )  v, ( z  + ps, p,, n )  = - - ( 6 + - 6 - )  j ~ z j  & 
2rr. 2 p ~  -1  

a,. - a- 4- iRn (41) 

where 

In the expression for A,p we have omitted the terms We expand the periodic functions occurring in (41) in 
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Fourier series:  R,(z)  = R.(v) en'"'", r, 
va(z,  p,, n)  = v , (v ,  p,, n)  

Then the integral equation (41) goes over into an alge- 
braic equation for the Fourier components R,; the so- 
lution of this has the following form: 

where 

1 1  

Q. (v,  p,) = j 5 dz  dy Q. (x,  y) e"'vP(x-u"m = 
T ,  ( v ,  pz) T: (v ,  p,) C a + - f i - + i Q n  ' 

After substitution of the resulting solution (42) into 
Eq. (35), the latter i s  transformed into an equality de- 
termining the quantity R,(w+,  w - ) .  Using formula (34) 
for ,? we obtain finally E = K") + K ( ~ )  where 00' ffP ffP 00' 

where 6;= 6 * / 2 ~ ,  E +  = 6, 6- = E - On, and 77 = L/a i s  
the concentration of the normal phase. It i s  not difficult 
to convince oneself that, a s  w+, w- -- m, the function 
IIl(w+, w-) falls off like l/w+ and l/w- respectively; 
therefore, it can be represented in the form of an inte- 
gral of the Cauchy type (cf. ["I), which is  convenient 
for the summation over the frequencies and the analytic 
continuation: 

where x1(z+, z-) i s  the spectral function: 

The summation over the frequencies and the analytic 
continuation a r e  performed taking into account the prop- 
erties of the Cauchy integral and lead to the following 
result: 

The summation and analytic continuation occurring 
in the formula for ~ g b  a r e  performed analogously; after 
integrating over the energy in (43), we obtain the follow- 
ing expressions for the components of the thermal con- 
ductivity tensor 

- ( 1 )  (1) 
nap = X.P + nap , 

( 1 ) -  ~ P P  dp, v.'(v, P Z ,  n ) v ~ ( v ,  P I ,  n )  
1 + i Q ~ n  

V n 

T; ( v ,  p,) T,(v,  p,') va' (v ,  P Z ,  n) va(v, pZ', m)  
X - 

1 - Q ( V )  ( 1  + iQzn) (1 + i Q m )  ' 

where 

The further calculations a r e  performed taking into 
account the inequalities Or >> 1 and cP << PF3' (or L 
<< r~ << 1). Then the components kXZ, kzX, EYZ and ZZy 
vanish because of the chosen geometry of the Fermi 
surface (quadratic dispersion law). In addition, kn 
= Exy = Eyx = 0 (for these, ~ ( l '  = - K")), which reflects 
the impossibility of heat transport by the normal exci- 
tations in the direction perpendicular to the layers, in 
view of the total reflection of the excitations from the 
interface. Only the components ityy and Ezz a r e  non- 
zero: 

Here K~ = r 2 n e r ~ / 3 m  is  the thermal conductivity coef- 
ficient of the normal metal, and d~ = 2 r ~ ;  c(x) is  the 
Riemann zeta-function (c(3) = 1.202); II-,(x) is the 
primitive periodic function of order n considered in ['I: 

The formulas (45) show that the thermal conductivity of 
the normal layers of the intermediate state of a super- 
conductor is  substantially (because L << d ~ )  less than 
the thermal conductivity of the normal metal. In addi- 
tion, because of the complicated dynamics of the motion 
of the excitations and the presence of correlation be- 
tween the electron and the hole, oscillating terms ap- 
pear in the components Rap. It can be seen from the 
Figure that these oscillations a r e  connected with the 
discontinuous change in the number of reflections of 
the excitation on continuous variation of the thickness 
L of the normal layer (i.e., on change of the external 
magnetic field in which the sample is  situated). Numer- 
ical estimates show that the largest relative magnitude 
of the oscillations (- 20%) should be observed when the 
thermal conductivity is  measured along the y-axis. 

In conclusion, we point out again that, a s  we should 
expect, on decrease of the mean free path, the magnetic 
quantization effects disappear. In particular, the formu- 
las (44) in the case L << 1 << rH give the result obtained 
earlier by AndreevLs' by the kinetic-equation method 
disregarding the magnetic field: 

3 ) ~ t  is clear that it is in precisely this case that the effects of mag- 
netic quantization appear most strongly; in the opposite limiting case 
( r ~  4 L), the effects of the special reflection of the excitations are 
small and we have the ordinary Landau quantization. 
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Finally, for 1 << L << rH, the characteristics of the re -  
flection of the excitat:ons become unimportant, and the 
result is the trivial one: tyy = tzz = VKn. 

APPENDIX 

To calculate the Green function K(r ,  r ;  w) of coinci- 
dent arguments, we substitute the formulas (32) for the 
wavefunctions and spectrum into the bilinear expansion 
(30): 

sin S ( 5 )  sin S ( 5 ' )  
( P 2  - 5 2 )  % ( p 2  - ~ 1 2 )  'I. ' 

,,"! 

s - la s - l'a 
~ = k + 2 Q , v - s Q , l - s Q , -  & ' = k + 2 @ ~ ' - $ ' Q , l ' - s ' Q - .  

L '  L 

Discarding in the latter expression al l  those terms 0s- 
cillating over an electron wavelength, and going over 
from integration over k and summation over v to inte- 
gration over 5 ,  we have 

We note that in this formula we can replace the summa- 
tion over n by integration over the energy: WE.. . 

n - J. .  . dc. This i s  connected with the strong overlap, 
noted above, of the bands in the spectrum (0 << 6,). The 
integral over E i s  to be understood, a s  in [lo', in the 
sense of the principal value: 

+- R 

J . .  . de = lim J . . . de. 
- rn n---,? 

Taking all this into account, we obtain 

K,.,(r,  r; o)  = i6,.,=sign a. 
2n 

Substituting tkis expression into (39), we arrive at  an 
equation for w : 

Choosing a single-valued branch of the function G(w), 
we have finally, 
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1  
a - o + - s i g n o .  

2? 

Calculation of the matrix elements from formula (37), 
taking into account the properties of the wavefunctions 
(32), gives the following result: 

i dt uz(k,  p,, n )  = -- f & ( - I )  [('-h)lw sin 
nm-= 
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