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The mechanism of ~ d "  ion interaction resulting in nonradiative deactivation of the excited state is 
investigated. It is demonstrated that such a mechanism consists in c ross  relaxation via the 4 ~ 1 y z  

level. The temperature dependence of the process is related to  population of excited Stark compon- 
ents. The total energies of the components enter the expression for the populations. Temperature 
stimulation of nonresonant interaction connected with filling up of the phonon states becomes ap- 
preciable on increase of temperature. 

AN investigation of the temperature dependences of wCr, 10' =-' wCr, lw  WC-~ 

the excited states of impurity ions in a crystal  lattice 
is an effective tool for the study of the interactions of 
these ions. In particular, in ionic crystals activated 1 
with trivalent rare-earth ions, the nonradiative trans- 
fer  of excitation energy had been intensively studied. 2.0 
The effects in these objects have not been unambigu- 2.6 I,B 
ously interpreted in the l i terature,  and there is no 2,Z 1,s 
meeting of minds concerning the mechanisms of the f,B 
nonradiative transfer.  According to one point of view, 
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ionsr1921. The basis for this assumption is that the tem- FIG. 1 .  Temperature dependence of the cross-relaxation probability: 
perature dependence of the lifetimes T of the excited a-experimental data from [ 'I], b-present data (points-experiment, 
state a re  given by curve-calculated from formula (2) at AE = %AEge, curve 2-at AE = 

T (T) = 7 ,  (1 - Be-m1ZhT), 
AEge). 

where T i  is the lifetime measured a t  low temperatures, An analysis of this dependence shows that i t  is not ex- 
when 7 f f(T),  B is a constant that does not depend on ponential. 
the temperature, and AE is the energy of the f i rs t  ex- An examination of the crystal  splitting scheme of the 
cited Stark component of the ground state of D. The Nd3' ions in our case (Fig. 2) shows that the most prob- 
factor 2 in the denominator of the argument of the ex- able channel of nonradiative losses of excited Nd" ions 
ponential is due, in the opinion of the authors to is cross  relaxation via the transitions 4 ~ y ~  - ?ls/n and 
the essentially nonstationary character of the diffusion 4 ~ 9 / ~  - 4~15/2f5-71. The loss of excitation via the interac- 
over the donor ions during the lifetime of the excited tions 4 ~ 3 / z  - 4~13/2 and ?g/z - 6115/2 has low probability 
state. in our case,  for in this case  at least two phonons must 

In an ear l ier  paper[31, we have succeeded in elim- take part in order  to cover the energy deficit. This 
inating the influence of the migration on the tempera- conclusion is corroborated by experimental data below. 
ture dependence of the deactivation of the excited state.  At T = 4.2"K the nonradiative loss of excitation may 
This was made possible because the Nd3+ ions tend to be due to  cross  relaxation with participation of the 
form pairs in the fluorite crystals investigated by us, transitions 10 - 3 and 1 - 3. With rising temperature, 
i .e ., the Nd3' ions a r e  disposed in neighboring points of when the levels 2 and 11 a r e  populated, about 50 transi- 
the crystal  lattice already a t  sufficiently low activator tions can take part in the c ross  relaxation. Some of 
concentrationsr4]. When such a pair is produced, the them a r e  resonant transitions. We can write for the 
local crystal field of the ion is altered, and separately temperature dependence of the c ross  relaxation 
standing lines of the paired emission centers a r e  ob- 
served in the optical centers. We have investigated the K, (T) = Wgn,2 + W ,  (%n, + n,2) + Wn-(ngn,+ n,Z) n, + Wn+(rgn,+ne)Z(E,+ 11, (1 ) 
temperature dependence of the relative quantum yield 
of the luminescence of paired centers in the tempera- where WO = 1/71 - 1/70, 7 1 is the lifetime at  low tem- 
ture range 4.2-70°K. It turned out that the quantity peratures,  where, 7 f f (T) ,  and 7, is the radiative life- 
directly dependent on the temperature is the elementary t ime-  According to the data 71 % 100 ClSec and 

act of nonradiative D - A energy transfer.  The tem- 7 0  = 550 IJ. SeC; 
perature dependence of the effectiveness of the elemen- 
tary act of ~ d ' '  ion interaction is illustrated in Fig. l a .  w, = y, y,"zk:j3 wn- = ~t:>~ 
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i = 10, 11, j = 3 - 9, k = 1, 2 a r e  the level numbers 
(see Fig. 2), wr is the probability of the resonant 

lk,jj 
cross  relaxation for the transitions i - j and k - j a t  
fixed i, j, and k, and only resonant transitions a r e  
taken into account in the summation; is the prob- 

ability of nonresonant cross  relaxation of the transi-  
tions i - j and k - j with anti-Stokes deviation a t  
fixed i, j, and k, the summation including only transi-  
tions that give an anti-Stokes deviation from resonance; 
wf<,jj is the probability of nonresonant cross  relaxa- 
tion of the transitions i - j and k - j with Stokes 
deviation a t  fixed i, j, and k, the summation including 
only transitions that give a Stokes deviation from reso- 
nance. 

Since AE1,2 = 36 cm-' and AElo,ll = 40 cm-I (Fig. 2), 
we assume, without incurring an appreciable e r r o r ,  
that AE,,Z = AE,,,,, = AEge = 38 cm-'. Then ng = 1 
- (exp ( ~ E g e / k T )  + I)-' is the population of the ground 
Stark components of levels 4 ~ 3 / 2  and 4~e /2 ,  while ne 
= (exp(hEge/kT)  + I)-' a r e  the populations of the ex- 
cited Stark component of the ' F ~ / ~  level and of the first- 
excited Stark component of the 4~a ,2  level, normalized 
s o  that ng + ne = 1. The 4 ~ s / 2  level splits in our case 
into two components, and the energy of the second ex- 
cited Stark component of the 4 ~ e / z  level is much higher 
than AEge. Under these conditions, our normalization 
is valid a t  temperatures up to 55°K. The nr 
= [ e x p ( ~ ~ ~ / k T )  - I]-' a r e  the occupation numbers of 
the phonon states with energy AEr. The factor nr + 1 
corresponds to processes with phonon emission, and 
nr to processes with phonon absorption. In our case 
we a r e  dealing in formula (1) with certain averaged 
values nr,  since nonresonant transitions correspond 
to a large number of deviations from resonance. The 
combination of transitions 10 - 3 and 1 - 3 is also 
excluded from the summation over i, j, and k. These 
transitions account for a cross-relaxation probability 

wg. 
Thus, the first  term in the right-hand side of (1) is 

the efficiency of cross  relaxation with participation of 
the ground Stark components of the 4 ~ 3 / z  and 4~e /2  
states.  The second t e rm is the efficiency of the reso- 
nant cross  relaxation with participation of excited 

FIG. 2. Scheme of crystal field splitting of the levels of paired emis- 
sion centers of Nd3+ in CaF,, participating in the cross relaxation (the 
transition energies are given in cm-I). 
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Stark components. The third and fourth t e rms  a r e  the 
effectivenesses of nonresonant c ross  relaxation with 
participation of excited Stark components (the third and 
fourth terms represent processes with phonon absorp- 
tion and emission, respectively). These processes a r e  
accompanied by creation o r  absorption of acoustic pho- 
nons. Indeed, as shown by an analysis of the crystal  
field splitting scheme, the maximum Stokes deviation 
from resonance is 82 cm-'. The anti-Stokes cross  re -  
laxation can be realized with participation of phonons 
whose energy is AE, - kT ( k  = 0.7 cm-'/deg, 
T = 4.2-55°K). 

An examination of the frequency dependence of the 
density of the phonon states p ( w ) ~ ' ]  shows that in the 
region of our deviations from resonance p (  w) agrees 
well with the Debye approximation p(w) - w2. It fol- 
lows from the foregoing that in a certain temperature 
region the function Wcr(T) is determined only by the 
temperature-dependent variation of the populations ng 
and ne. Indeed, a t  low frequencies the density of the 
phonon states is lowre1. No acoustic phonons of high 
energy (AEr > kT) a r e  excited. Thus, a t  low tempera- 
tures the third term in (1) is small ,  and the fourth 
varies with temperature like ngne + nk. At low tem- 
peratures we then have 

where Wint = Wr + WA. Since experiments on many 
crystals (Y3A15012, Y3Ga5012, LaF3, SrMoO,, 
NaLa (Moo4), activated with ~ d "  yielded Vin(T)  

exp ( - A E ~ ~ / ~ ~ T ) " ,  where AEge is the energy of the 
f i rs t  excited Stark component of the ground state of 
D ,~ ' ]  we thoughtit necessary to attempt to describe the 
experimental curve by substituting in (2) the expres- 
sions for the populations a t  Y ~ A E ~ ~  and AEge. The 
only attempt known to  us  a t  a description of the tem- 
perature dependence of 7 by using the total energies 
of the excited Stark components ended in failurer5]. As 
already indicated, the experimental  result^^'^^^ yield 
an activation energy ' / ~ A E ~ ~ .  The authors be- 
lieve that this is due to the diffusion of the excitation 
and to  the nonstationary character of the process. In 
our opinion this statement can be regarded only as a 
hypothesis, since the calculation inr1] was performed 
under assumptions whose validity is far from obvious. 

Our results a r e  shown in Fig. lb .  At T = 20°K, using 
the experimental results ofrS1 (Fig. la) ,  we obtained 
from (2) the value of Wint a t  AE = %aEPe. In the 
former and latter cases  Wint is equal to"3 x lo4 and 
6.7 x lo4  sec-'. It turned out further that in the tem- 
perature region (up to 30°K) where expression (1) 
takes the form (2), the experimental curve is correctly 
described by formula (2) with AE = AEge and a t  Wint 
= 6.7 x lo4 sec-'# f ( T )  (Fig. lb). The latter confirms 
the validity of the assumptions under which expressions 
(1) and (2) were obtained. At higher temperatures, the 
temperature stimulation of the c ross  relaxation, due to  
the filling of the phonon s ta tes ,  comes into play and i t  
is convenient to represent (1) in the form 

l)i;iiint(~) is the average probability of excitation-energy migration 
over the donor ions, followed by transfer to the acceptor. 
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FIG. 3. Function of temperature stimulation 

3 - of the cross-relaxation effectiveness. 

where hEint (T)  is the function of temperature stimula- 
tion of the cross-relaxation efficiency, due to  the filling 
of the phonon s ta tes .  Its plot shown in Fig. 3 was ob- 
tained from (3) by using the experimental resul ts  (see 
Fig. la) .  The extrapolation of hEint (T)  into the region 
of low temperatures shows that a t  T = 3 0 ' ~  the value of 
a E i n t ( T )  is lower than Wint by about one order  of 
magnitude. 

It must be noted that when crys ta ls  with high activa- 
t o r  concentrations a r e  investigated2', when the lifetime 
T of the excited s ta te  at T = 4.Z°K is shor ter  than the 
radiative lifetime, the art if icial  distinction between 
temperature-dependent and temperature-independent 
interactions of the ~ d "  ions, proposed inr'jZ1, must be 
separately justified in each concrete case .  Formally 
this means an  est imate of the contribution made to the 
temperature dependence by the t e r m  of the fo rm 
wgn; in Eqs.  (1)-(3). 

Thus, our results  allow u s  to make the following 
conclusions : 

1. The quenching of the luminescence of ~ d ~ '  is de- 
termined in our case by the c r o s s  relaxation through 
the 4~,5/2 level, s ince interaction via the transitions 
4 ~ 3 / 2  - 4~13/2 and 4 ~ 9 / ~  - 4~15/z could not yield the ex- 
perimentally observed dependence. 

2. At low temperatures (up to  30°K), the tempera- 
ture  dependence of the cross-relaxation effectiveness 

*)precisely such crystals were used in [ ' I .  

is determined by the population of the excited Stark 
components. The expressions for the populations con- 
tain in this case  the total energies of the excited Stark 
components " . 

3. When the temperature is increased ( T  > 30°K), 
the effectiveness of the nonresonant c r o s s  relaxation 
is stimulated by filling of the phonon s ta tes .  

In conclusion, the authors thank V. A. Myzina for  
help with the paper. 

n ~ h e  mechanism proposed by us in ['I for temperature activation 
of nonresonant transfer, connected with population of the phonon state, 
was used to interpret the temperature dependence of the relative quan- 
tum yield of luminescence in the case when the deviation was much 
larger than kT (the case of interaction of Nd3' and Eu3' ions). 
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