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Some features of exciton transitions in a metal model which assumes Fermi  surfaces of similar shape 
for electrons and holes a r e  studied. It is shown in particular that the transition under pressure  a t  
T = 0 may involve the appearance of a new period which is not a multiple of the period of the initial 
lattice. 

A few years ago, Keldysh and ~ o ~ a e v [ ' ~  and Kozlov 
and ~ a k s i m o v ~ ~ ~  proposed a brilliant model for the 
metal-dielectric transition corresponding to the pro- 
duction of a bound exciton from an electron and a hole. 
The model ofC19Z1 included the assumption of a spherical 
Fermi  surface. The influence of the anisotropy was in- 
vestigated by ~ o ~ a e v [ ~ ]  and by zit tartzC4].  The main 
conclusion of their results is that anisotropy hinders 
dielectric pairing. A number of interesting properties 
that appear in the exciton transition in the presence of 
anisotropy have gone unnoticed in13741. We investigate 
here the features of a metal-dielectric transition when 
the anisotropy parameters a r e  varied, for example 
under the influence of applied pressure.  

We make the following preliminary remarks. The 
initial premise inC1"] is that the mechanism producing 
the transition is the screened Coulomb interaction be- 
tween the electrons and holes. Such a picture, based on 
the effective-mass method, is naturally applicable to a 
material with a small  number of carr iers .  In s o  far  a s  
we know, it is sti l l  unclear whether there exist physical 
objects in which the metal-dielectric transition can be 
described by the exciton-transition m ~ d e l ~ " ~ ~ .  In par- 
ticular, in metals of the bismuth group the difference 
between the electron and hole Fermi  surfaces i s  too 
large. It seems to us, however, that the question of 
dielectric pairing is not only of methodological interest 
alone, since this mechanism may be one of the causes 
of small  gaps and small  ca r r i e r  groups in the electron 
spectra. One can imagine, for example, the initial metal 
(neglecting the interaction between the bands) to have 
two similar large Fermi  surfaces of the electron and 
hole type, spaced half the reciprocal-lattice period 
apart. The exciton pairing of the two bands leads to a 
restructuring of the spectrum whereby, generally 
speaking, anisotropy makes possible the appearance of 
closed equal-energy surfaces in certain directions. The 
fact that the number of ca r r i e r s  does not vanish when 
the spectrum becomes restructured in semimetals in 
the presence of anisotropy was noted also by ~ o h n [ ~ ] .  

We describe the lattice by the set  of parameters 
This se t  is of course different for different crys- 

talline modifications and is determined by symmetry 
considerations. Given the external conditions, one of 
the modifications {a}. { 0 is realized. Assume that for 

l o  
{a). the Fermi surface has electron and hole Fermi  

l o  
surfaces of identical shape but separated by the vector 
qo. The single and double shading in Fig. 1 denotes the 

multiplicity of the occupation of the electron states in 
the reciprocal lattice (we disregard spin degeneracy). 

The matrix element for the diagram of Fig. 2, which 
corresponds to scattering of an "electron" from band 1 
by a "hole" from band 2, contains the product 
Gl(p)Gz(p - qo) of the Green's functions considered 
ini19z1. It i s  easily seen that the existence of a logar- 
ithmic contribution from this diagram is not connected 
with the spherical character of the Fermi  surfaces,  a s  
was assumed inC1'21, and requires only that the sur- 
faces coincide when they a r e  superimposed. 

We shall henceforth attempt, apart  from the assump- 
tion that the interaction between bands 1 and 2 is weak, 
not to simplify the models further, our aim being to ob- 
tain results that a r e  a s  general as possible. Follow- 
ingC1921, we obtain the following integral equation for 
the determination of the temperature Tco 

"'=CO 

2 a s  
(J%(P,= ). ( ~nT-~'~~r)U~ (1) 

0 

using in i ts  derivation the fact that the electron spectra 
in the two bands, reckoned from the normal to the Fermi 
surfaces,  a r e  respectively el = vlt and EZ = -vzt; vl, VZ, 

and the interaction XK(p ep') depend on the position of 
the point on the Fermi  surface S ; is the cutoff of the 
interaction and is of no importance in what follows 
("w eF). 

Equations of the type (1) with kernel K(p.pl) were 
investigated by ~ o k r o v s k i l ' ~ ~ ]  in connection with the 
anisotropic generalization of superconductivity theory. 
The formal results ofC7] a r e  directly applicable to our 
problem. In particular, in the weak-coupling limit it 
follows from (1) that Tco is exponentially small. We 
note also that the dependence of the dielectric gap u(p) 
on the direction is always determined by a certain func- 
tion ~ ( p ) ,  viz., u(p) = o ~ ( p ) ,  where ~ ( p )  is a suitably 
normalized solution of the homogeneous equation (1) and 
o depends only on the temperature. 

The dashed lines in Fig. 1 show the deformation of 
the Fermi  surface when # 0. Accordingly, the elec- 

FIG. 1 FIG. 2 
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tron spectra in the f i r s t  and second bands can be ex- of changes in the parameters {o}~, assuming that the 
pressed in the form lattice part is automatically specified when {eli a r e  

given. Using Landau's theory of Fermi  liquids, we can 
EL = u l ( t  - q,(p))and EZ = -u?( t  - ~ I ( P )  )I, express the change of the thermodynamic potential 652, 

where v1 and 172 a r e  small  deformations of the Fermi  a s  a quadratic functional with respect to the variations 
surfaces,  reckoned along the normals to the initial sur- of the occupation numbers of the electrons and holes 
faces. Obviously, the electroneutrality condition (equal- near the Fermi  surface (we omit the spin indices, 
ity of the numbers of electrons and holes) means that T = 0): 

A difference between the shapes of the Fermi  sur- 
faces decreases the logarithmic contribution to the dia- 
gram of Fig. 2, and consequently decreases the tem- 
perature Tc of the transitionc3943. Without giving the 
details, we write down the general relation from which 
the transition temperature is determined in the aniso- 
tropic case for ql, q2  # 0: 

where the angle brackets denote averaging over the - .  

Fermi surface: 

and the solution ~ ( p )  of Eq. (1) is assumed to  be norm- 
alized by the condition 

The quantity 6ae/6ni(p) = ei(p) has the meaning of the 
excitation energy reckoned from the chemical potential: 

The first  term in (7) equals v l ( t /  or  vzltl for electrons 
o r  holes, respectively; the term linear in cuk corre- 
sponds to the distortion of the spectrum as a result of 
the external change of the lattice, and the integral 
effects takes into account the variation of the self- 
consistent field and depends therefore on the electron 
interaction. In accordance with our  assumption that the 
interaction between bands 1 and 2 is small ,  we omit 
terms of the flz type from (6) and (7). Allowance for the 
functions fi changes the general picture little. 

The condition ci@) = 0 determines the equation of the 
Fermi  surface: 

u,r18(p)+ c , ~ ( P ) u ~  + ( 2 ~ ) - ~  ~ ~ , ( P P J ) ~ , ( P ~ ) ~ s I  = 0. (8) 
2dS 1. f I X ( P ) ~ ~ ~ =  Equation (8) coincides, a s  i t  should, with the condition 

At small  ql, 772 << T ~ ~ / v  we have that 652, be minimal following variation of the shape 

AT, 
of the Fermi  surface at given {cY}~, and determines the 

-=-- (?I - ? d 2  u,Z ua2 
T.. 4 ( (ui + u2)* > . (4) dependence of qi(p) on Using (8), we obtain 

At low temperatures we use the representation for the 1 d S  dS ds' (9) 
11, function: O Q ~ = - ~ ~  [ f  ~ ~ n r ' - + f f f ~ ( ~ ~ ' ) ~ . ( ~ ) q ~ ( ~ ~ ) - - ]  ( 2 n )  ( 2 n )  . 

Substituting this expression in (3) and expanding form- 
ally as 1 / ~ ,  - m, we obtain 

We note immediately apropos the right-hand side 
that the vicinity of the line ql  - qz makes no significant 
contribution to (3) at low temperatures, a s  can be veri- 
fied directly. The formally diverging integral in (5) 
should therefore be taken in the sense of 

The fact that the right-hand side of (5) is positive 
imposes a lower bound on 77. In other words, the Tc 
curve for the exciton transition, a s  a function of the 
external parameters {&Ii, takes the form shown in 
Fig. 3a. At sufficiently low temperatures the transition 
may turn out to be of first  order with respect to  the 
change in the lattice. 

Let us discuss this question in greater detail. 
Neglecting the interaction between the electrons and 
phonons, the system energy consists of electron and 
lattice contributions. We shall consider only the elec- 
tronic part, or more accurately i t s  variation as  a result 

This expression should be compared with the energy of 
the state when pairing is taken into account. Detailed 
calculations a r e  possible in a concrete model. We shall 
therefore confine ourselves here to a qualitative discus- 
sion of the properties of the thermodynamic quantities 
in the exciton phase. These a r e  determined by the s i ze  
of the dielectric gap o,  which in turn is determined by 
integrals of the off- diagonal thermodynamic functions 
which in our case take the form (cf. the equations incz5 
andC7]) : 

Let us consider for  simplicity the case T = 0. To 



R O L E  O F  A N I S O T R O P Y  I N  E X C I T O N  T R A N S I T I O N S  363 

determine the thermodynamic quantities, we shall there- take place in the condition that follows from (5) and de- 
fore need to calculate the integrals of (10) with respect termines,  a t  T = 0, the limit of the stability of the me- 
to the frequency and the momentum. We write down the tallic phase against smal l  fluctuations U ~ ~ + ~ ( P ) .  Recog- 
roots in the denominator of (10): nizing that vl(p) and q2(p) a r e  not changed by the substi- 

&I $- Ez I - E z  
tution p - - p, whereas v(p) reverses  sign. We can write 

mi,. = - i-* i [ ( % )  + I X ( P )  l2o'] *. (10') this condition in the form 2 

The integral of (10) with respect to w differs from zero 
if the roots w,,, l ie in different half-planes, and is equal 
to 

2 n x ( p ) o /  ((8, - ~ 2 ) ' f  ~ I x ( P )  1 '~2) 'h .  

Substituting here the expressions el = vl(t -ql) +6p,and 
€2 = -v2(t - q2) + 6 p ,  for l and c2, we obtain" 

? , T x ( ~ ) u /  { [ (u ,  $ uz)t  - V,?t - uzrl?lz$ ~ I x ( P )  I Z ~ Z ) 5 .  (11) 

When integrating with respect to t ,  i t  is convenient to 
make the substitution u = t - (vlq + vzqz)/(vl + v2). We 
see  from (11) that the integral with respect to t ,  and 
hence the value of o and all the thermodynamic quanti- 
ties, does not depend on 77 s o  long a s  the roots wl and 
w2 do not reverse sign in the entire interval of varia- 
tion of u. Making the substitution t - ul in wl, we obtain 

2u,u2y ( ln {I  ('I - ; v2q" ( nTc, (u, + u;) )')) -0. (57 

from which we see  that the stability limit shifts towards 
larger  77. A qualitative study of this relation shows that 
there should exist a vector qmax that maximizes the 
deformation of the lattice At smal ler  deforma- 
tions, the normal phase is absolutely unstable against 
fluctuations of o clo qmax(p). Figure 4 shows schematic- 
ally the stability limit of the normal phase in the ( o ,  q) 
plane. 

We now turn again to the question of the singularities 
of the transition a t  lower temperatures. At the given 
conditions, the normal phase is in a definite crystalline 
modification characterized by the s e t  of parameters 
{a}io corresponding to the given symmetry. By varying 
the pressure ,  we change the deformation, i.e., we change 

i the quantity o in Fig. 3b (the sign of aa,/aP is of course 
~ i = T { l ( u , + u ~ ) 2 u z + 4 1 ~ ( p ) 1 2 ~ z ] ' ~ - ( ~ , - u , ) ~ + 2 6 p +  u i u ~ ~ ~  lb) } unknown). Then, a s  shown above, when o decreases the 

The root w1 lies in the upper half-plane for all  u,  if metallic phase is stable against small  perturbations 
only when a, > amax, and a t  the point amax we have 

ui + vz  (13) absolute instability against infinitesimally small  per- 

turbations of o (p). Two possibilities a r e  then 
90 + qmax The condition (13) is violated first  a t  certain points of conceivable. In the former case is smaller than 

the Fermi surface. Figure 3b shows schematically the (the point of intersection of the solid and dashed 
behavior of the dielectric gap and of the thermodynamic curves of Fig. 3b). Here a. determines the true meta- 
potential 6 a e  in the exciton phase; the point f f  * corre- stability limit of the normal phase, and the transition 
sponds to condition (13). The dashed line corresponds from the metallic into the exciton phase is of first 
to the quadratic relation (9). order. The second possibility, amax > oo ,  is shown in 

Once condition (13) is violated, ca r r i e r s  of opposite Fig. 3b; in this case the transition is of second order, 
signs appear in certain regions of the reciprocal lat- and the resultant new phase i s  characterized by a cer- 
tice, inasmuch as the anisotropy can cause the "lower" tain new reciprocal- lattice vector q0 +  he dash- 
branch of the energy spectrum in one direction to be dot line in Fig. 3b shows the behavior of the electronic 
higher than the second branch in the other direction. part  of the energy of the new phase. It is impossible to 
The requirement that the particle number be constant state in general whether amax > a,o a,maX < a,O. In 
leads to the "electroneutrality" condition, from which the simplest models it seems that a,max > a,o always. 
6p is determined. It is easy to verify that the electro- This takes place, for example, for a spherical Fermi 
neutrality condition reduces to  equality of the volumes surface a t  /q  - q21 = const2). The new phase, when pro- 
in phase space, where Im wl < 0 and Im wz > 0. duced, is characterized by rather complicated proper- 

It follows thus from an examination of the curves of ties. The appearance of finite oq + 
Fig. 3 that at sufficiently low temperatures the transition 0 qmax (P) near a,,,, 

from the dielectric phase into the metallic phase, fol- means that, in addition to doubling of the period, there 
lowing lattice deformation, should be of f i rs t  order. The appear in the new phase long-wave oscillations of the 
actual situation may be more interesting. Let us inves- electron and (or) spin densities ("singlet" and "triplet" 
tigate the stability of the metallic phase relative to pairing according to the terminology of Kozlov and 
formation of a dielectric gap corresponding not to a 
period qo, a s  everywhere in (1) and (3) above, but to a 
certain qo + q, with q << qo. To this end we consider the 
matrix element of the diagram of Fig. 2 ,  which contains 
the Green's function product Gl(p)G2@ - qo - q). It is 
easy to verify that this circumstance leads to  substitu- 

! 
tion q1 - 772 - q1 - 172 - vq in the argument of the dL 

a m 0 2  
+-function of Eq. (3), where v is the cosine of the angle 
between the vector q and the vector normal to  the Fermi  FIG. 4 

surface at the given point. A change 
?-)The case q,-q ,  = const denotes, in accord with (2), that the num- 

bers of the electrons and holes are different. This case was considered by 
')6p is the change of the chemical potential in the new phase. Rice [8]  in connection with the magnetic properties of chromium alloys. 
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~ a k s i m o v ~ ~ ~ ) .  In the formal sense, qm, f 0 corre- 
sponds to helicons of some sort ,  just a s  in the case of 
antiferromagnets (see, e.g., the paper by Dzyaloshin- 
skifC9]). It is important, however, that the electron- 
density oscillations inevitably restructure the lattice 
and cause production of a certain resultant period of the 
structure. We therefore propose that upon further 
change the transition from the new phase into the ordin- 
a ry  exciton phase occurs jumpwise a t  the point ?To shown 
in Fig. 3b. 

In conclusion, we note the mathematical analogy be- 
tween the question considered above and the problem of 
the properties of the superconducting state in the pres- 
ence of an exchange fieldC107. 

The authors thank A. I. Larkin and Yu. V. Kopaev 
for useful discussions. 
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