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It is shown that long-range Coulomb forces between electrons and ions may lead to the appearance of 
equilibrium single-phase disperse systems containing metallic particles of - 10-100 h; size. Such 
systems ar ise  if an insoluble substance is introduced into a semiconductor or plasma, it being ener- 
getically profitable for the electrons, but not the ions, to pass over to the particles of the substance. 
Spontaneous dispersion may also occur in systems with readily variable composition o r  internal 
parameter, providing that localization of electron groups near such alterations is thermodynamically 
advantageous. The conditions a r e  investigated for which disperse systems a re  stable with respect to 
decomposition involving formation of the massive phase. The s izes  and shapes of the particles a r e  
determined. 

1. INTRODUCTION 

DISPERSED systems have an excess surface energy, 
and a r e  therefore not in thermodynamic equilibrium and 
should coagulate and break up into two different phases 
after a sufficiently long time. The only exceptions a re  
systems with negative surface tension coefficients 
(type-I1 superconductors) o r  with one that is very small  
(5 1 erg/cm2). These known conclusions can change, 
however, if account is taken of the long-range Coulomb 
forces that play an important role in systems containing 
electrons and ions. Then, a s  will be shown below, one 
can obtain a single-phase stable disperse system in 
thermodynamic equilibrium, consisting of a substance 
containing !mall charged particles (measuring - 10- 100 A) with changed properties and composition. 

Let us consider, for example, an impurity semicon- 
ductor or  an electron-ion plasma (phase I) in contact 
with an atomic substance (phase II) that is not soluble in 
the semiconductor. We assume that the system energy 
decreases when an electron goes from the semiconductor 
into this substance, and increases in the case of an ion. 
Neglecting Coulomb interaction, it would be thermo- 
dynamically advantageous to transfer from phase I into 
phase 11 only electrons, leaving the ions in the semicon- 
ductors, but the tremendous Coulombrepulsion forces 
produced in bulky phase II make this process impossi- 
ble, s o  that the electrons and ions can be dissolved only 
in pairs. If, however, the particle dimension and hence 
the number of electrons in i t  a r e  small ,  then the 
Coulomb energy is also small, and dissolution of elec- 
trons alone becomes thermodynamically advantageous. 
The ions, on the other hand, remain in the semiconduc- 
tor and form a Debye atmosphere that screens the par- 
ticle charge. The equilibrium particle dimension is de- 
termined in this case by the relation between the elec- 
tron dissolution energy, the Coulomb, energy, and the 
particle surface energy per electron. The produced 
single-phase system containing such particles may be 
thermodynamically favored over either a mixture of 
bulky phases I and II or an atomic solution of phase II 
in phase I. Since the concentration of the electrons in 
the particles is high, they a r e  metallic even if the ma- 
terial  of the bulky phase Jl is dielectric. 

Another example of an equilibrium disperse system 
is a semiconducting solution near the decay point, a 
single- component substance near a first-order phase 
transition point, a magnetic semiconductor, o r  any other 
system in which fluctuations of the internal parameters 
a r e  relatively easily produced. In some temperature in- 
terval there can be produced in such a system fluctuons, 
which a r e  autolocalized states in which the electrons 
a r e  localized near the fluctuations of the internal param- 
e ter  and maintain this fluctuation stationary by means of 
their At appreciable ca r r i e r  densities, a 
noticeable density of complexes with several  electrons 
is produced. Since the electrons in the A-B solution in 
question interact much more strongly with atoms of one 
type (A) than of the other (B), i t  follows that a t  a suffi- 
ciently high (limiting) concentration nC of the ionized 
donor impurities C the solution should decay and form a 
compound of the ions C,  the electrons, and atoms A (with 
a slight admixture of the atoms B). 

If, however, the ions C interact weakly with the atoms 
A, then a disperse system of the type indicated above 
can be produced a t  an ion concentration somewhat lower 
than the limiting value. In such a system, relatively 
large numbers of electrons (say on the order of 10') a r e  
localized in regions of the altered composition of the 
solution (or of the altered internal parameter in a 
single-component substance), and the ions a r e  located 
mainly outside these regions. The decrease of the 
thermodynamic potential (TP) of the system upon local- 
ization of the electrons should offset i ts  increase due to 
the production of the inhomogeneity of the composition 
or  of the internal parameter,  and also the Coulomb en- 
ergy. Obviously, such localized large electron groups 
can be thermodynamically favored even if the fluctua- 
tion states of the individual electrons a r e  unstable. 

We note that "metallic" drops can be produced also 
in single-component strongly doped semiconductors a s  
a result of fluctuations of ionizing impuritiesC5]. These, 
however, unlike the systems considered here,  a r e  non- 
equilibrium formations. Qualitative ideas concerning 
the stabilizing role of electrons localized in quasime- 
tallic centers in alkali-halide crystals were advanced by 
a number of workersCB3, but in systems without internal 
parameters such centers a r e  apparently unstable, and 
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are considered as intermediate non-equilibrium nuclei 
of a new phase. 

2. MODEL OF HETEROGENEOUS SYSTEM AND 
DETERMINATION OF THE CHARAC TERBTICS OF 
ELECTRONS IN PARTIC IZS 

To determine the equilibrium characteristics of the 
disperse systems, we consider an impurity semiconduc- 
tor (solid or liquid) in which all the impurities a re  ion- 
ized at the temperature under consideration. Assume 
that the semiconductor contains NO identical particles, 
each of which has a volume 52 and area S, and contains 
N electrons and N' ions. We consider the case when the 
volume of all the particles 52, = p52 is much smaller 
than the volume 522 of the semiconducting medium, and 
assume that the electron gas inside the particles is de- 
generate (this assumption is confirmed by calculation). 
Then the TP of the system can be written in the form 

@ = O 0 +  N O k T ( Q v + S a - N U -  N'U1+ N K + 6 Q ,  
+ 6@' + NE, + In ( N o  I Noes) 1. (I) 

Here a. is the TP of the initial homogeneous semicon- 
ductor with volume 51' = $2, + 5 2 ~  and electron and ion 
density no = ~ ~ / 5 2 '  (Ni = Ne is the total number of ions 
or electrons in the system), kTu is the difference be- 
tween the TP per unit volume of the particle material 
(without the electrons and ions) and the medium, kTa is 
the coefficient of surface tension on the particle boun- 
dary, - UkT and - u'kT are  the changes of energy when 
the electron on the bottom of the conduction band or an 
ion from the medium is transferred to the particle (the 
contact potential energies for the electron and ion), 
NkTK is the kinetic energy of all the electrons in the 
particles, N'%T~+'  and N%~(bcp + NK) are the changes 
of the configuration part of the TP following redistribu- 
tion of the ions and electrons in the entire system, 
~ N ~ T E ,  is the electrostatic energy, and No is  the total 
number of cells (or molecules). The last term in (1) is 
determined by the configuration contribution connected 
with the possible permutations of the particles. The fac- 
tor a, - 1 under the logarithm sign takes into account 
the fluctuations of the internal parameters in the parti- 
cles and of their shape. 

We assume for simplicity that the densities of the 
positions in which the ions can be located are the same 
in the particles and in the medium, that the concentra- 
tion of the ions in these positions is low (even in the 
region of decreased potential), and that the electron gas 
in the medium is not degenerate. Then the expressions 
for 6@', b*, K, N, and Ee take the form 

Here n(r) and n'(r) a r e  the electron and ion densities, 
V(r) = - eV (r) , V (r) is the potential, - e is the electron 

P P 
charge, ml and m2 are the effective masses of the elec- 
tron in the particle and in the semiconductor, and kTp 
is the chemical potential of the electrons measured 

from the potential energy at the center of the particle 
( r  = 0). The formulas for n and n' depend on whether r 
lies in 52, o r  in 5 2 ~ .  For r in $2, we have 

1 2m,kT " 
nr ( r )  = noD' eY+v' n ( r )  = - - 3n2 ( h :  ) * (" yo - 

for r in $22 

n r ( r )  = n P e Y ,  n ( r )  = nae-Y. (3") 
Here 

The distribution of the potential is  determined by 
Poisson's equation and by the boundary conditions on 
the particle surface (at r = rs) 

Here c1 and €2 a re  the dielectric constants inside and 
outside the particle. Inside the particle, except for a 
small region near the center, it follows from the results 
given below that n' << n and N' << N. Therefore, as fol- 
lows from (2) and (4), 

The potential distribution inside the particle in the reg- 
ion of the degenerate electron gas is  determined by the 
Thomas- Fermi equation 

and outside the particle by the equation 

The equilibrium characteristics of the disperse sys- 
tem (dimension and shape of particles, distribution of 
electrons and ions) a r e  determined from the condition 
that the T P  of the system (1) be a minimum. It is na- 
tural to assume that the particles a r e  shaped as flat 
layers of thickness 2R or spheres of radius R (the in- 
termediate, cylindrical shape will not be considered for 
the sake of brevity). To simplify the determination of 
the potential, we assume that the particles form a per- 
iodic (one- or three-dimensional) structure. The sys- 
tem breaks up in this case into identical cells with the 
particles at the center. In the case of spherical parti- 
cles, in accordance with the cell method, we replace the 
cell with a sphere of equivalent volume of radius 1, as- 
suming that the field on its surface vanishes: 

and thus making the problem spherically symmetrical. 
In the case of flat particles, distance between their cen- 
ters  is 2 1, and the condition (8) is also satisfied. Since 
1 greatly exceeds the screening radius in the cases con- 
sidered below, the assumption that the particle struc- 
ture is periodic and the replacement of the cells by 
spheres has little' effect on the determined characteris- 
tics of the individual particles. 

For a flat layer, Eq. (6) can be solved in quadratures. 
This enables us to find y(x), express the number of elec- 
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trons N in terms of the potential drop Y = yo - yo in the 
layer (yo E y(R)), and obtain explicit expressions for K 
and for the electrostatic energy inside the layer FIEel: 

e1kTB 5',, no-Y 
a=--- el dt  

ne" -"no-B. E? x ( Y ) = ~ $ J  0 [ ( p + t ) 3 1 z - p 6 1 , 1 ~ , , *  

(2s is the area of two flat surface layers). These ex- 
pressions simplify in the limiting case  p >> Y: 

I and also in the opposite case p << Y: 
? 1  S 1  
i ~ v = - a ( Y + p ) ~ + ( i - v ) - -  K = - ( Y + ~ ) ( ~ +  v ) ,  (11) 2 5'" B"' 3  

For  spherical particles, the solution of Eq. (6) can be 
obtained in the general case by putting 

I 
1 p  + yo - y  = pW / p, r = p - ' i 4 $ ~  
i 

and by solving numerically the equation 

a It is easy to find an analytic solution in the limiting 
cases considered above. For  p >> Y (n w const) we have 

To investigate the case p << Y it is necessary to 
recognize that the solution of (12) tends to infinity a s  
p - PO fi: 6 (this value of po was obtained numerically). 
The region p x po, where W is large,  is narrow enough 
to  regard the problem a s  planar and to put in (12) 
p = const = po. We have therefore in the significant 
region of large W, in first approximation, 

At p < 1, the electron gas a t  the center of the particle 
is not degenerate and formulas (11) and (14) for R no 
longer hold. We shall  henceforth consider the case 
p >l .  

It is easy to verify in the usual manner that the 
Fermi-Thomas equation is valid if 

i.e., if E:'~ >> (m1/mO)1/4 at T = 300°K (mo is the mass  
of the free electron). If p + Y is comparable with the 
width AE of the conduction band in the particle, then the 
effective- mass approximation cannot be used and the 
right-hand part  of (6) increases more slowly than 
( p  + - y)3'2. At p + Y < AE, this can be taken into 
account qualitatively, by introducing in place of ml a 
quantity much smaller than the effective mass. 

3. CHARACTERISTICS OF ION AND E LECTRON IN 
THE MEDIUM 

We now consider the external problem. The formulas 
for the distribution of the potential outside the particle 
become much simpler if we recognized that from now 
on we a re  interested only in the limiting case of a large 
potential drop in the semiconductor, when yo >> 1. The 
results turn out to be essentially different, depending 
on the fraction of cell electrons transferred to the par- 
ticle. If the heterogeneous system in question is pro- 
duced a s  a result of the transfer of the electrons to the 
particles of matter that is  not dissolved in the semi- 
conductor, and the amount of this matter is small ,  then 
I >> rot R,  and only a smal l  fraction of the electrons is 
transferred to the particles. We consider f i rs t  this 
case for the planar problem. The main potential drop, 
a s  follows from (7), is across a thin la e r  of thickness 

-1 '1,~ & - roexp(-yt/2), where y' c -ro D e and where the 
main charge of the ions screening the charge of the par- 
ticles is concentrated (N- N' - N). In the region 
x >> ro, the particle potential is screened almost com- 
pletely (y << I) ,  and the electron and ion concentrations 
n, a r e  equal, but differ somewhat from the initial con- 
centration no prior to the charge redistribution: n, = n, 
- NAS. In this case D' ~ z .  1. Integrating separately in a 
boundary region of thickness - ro and in the remaining 
par t  of the layer, where the concentration is constant 
and the potential is negligibly small ,  and taking into ac- 
count the expression presented for y', we obtain from 
formulas (2), (3), (5), and (7) an expression for the 
changes 6G' and 6 of the TP ,  for the electrostatic 
energy of the charges outside the layer me,, and also 
for N (yo >> 1): 

W' = 2.,5-';$,;" WI., W" = ,,,'b ~ 1 % .  64,' = N ( y o  - 3 ) ,  6 4 ,  = - N  In B, E,? = --'/,(yo - 2), N = 2Sron,e"@. 

In the next approximation, (15) 
Comparing this expression for N with the total number 
nolS of electrons in the cell we find that a small  frac- 

~ ~ ~ l ~ ~ t i ~ ~  the higher terms in we obtain with the tion of the electrons is transferred to the particle, and 

aid of these expressions formulas (15) a r e  valid if 

1 2  5 In the interior of the cell, where y - 0,  the medium 
E . , = - y o + - ( Y + p ) - - Y e ,  R = p o ( l - e ) p - % B ,  

2 9 81 is neutral, i.e., n' = n. Together with (3) this equation 
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determines the condition relating the total potential drop y' = -  rile^^ rile^^^ and D' = '/4(l/r0)'e It follows 
yo with p and no: then from (2), (3), and (5) that 

In addition, yo, p ,  and no a r e  connected by an inequality 
that follows from the requirement that n' not exceed n 
a t  the center of the particle. According t o  (3) this in- 
equality is 

yo < In (p'/'/ B') - U', B' = 'Irn* (mz / ml)'12B. (18) 

By assumption, the electron gas in the semiconductor is 
not degenerate, i.e., B - B' < 1. Since p > 0, the in- 
equality (18) (with allowance for (17)) is always satisfied 
if U' < - U - 1n(BB1). Formulas (17) and (18) then de- 
termine only the sum of and p .  Since nf(0) < n(O), we 
have N' << N. If, however, U + U' > 0, then, starting 
with a certain concentration no, the condition (18) turns 
into an equality, which determines together with (17) 
fixed values of yo and p : 

Although n'(0) = n(0) here, i t  follows that since n' de- 
creases rapidly (like eY) with increasing distance from 
the center of the particle, i t  is easy to verify from (6) 
supplemented by the t e rm p2p3hexp(y - yo) that in this 
case, too, N' << N if 

Formulas (17)-(19) a r e  valid for both flat and spher- 
ical particles. In the case  of spheres with a sufficiently 
large radius, when the thin surface layer is almost flat, 
we can also use formulas (15). It is necessary for this 
purpose that the surface curvature have no effect in a 
layer of thickness - 1 y' 1-' in which y changes by - 1. 
This condition, and also the condition that replaces the 
criterion (16) for the smallness of the fraction of elec- 
trons per particle, is given by1) 

With increasing amount of undissolved matter forming 
the particles, 1 decreases, condition (16) or  (21) no 
longer holds, and an increasing number of electrons is 
transferred to the particles, until they contain the bulk 
of the electrons. The same  situation will be realized if 
a sufficiently high particle density results from local 
changes in the composition or in the internal parameter. 
It is then necessary to retain in the right- hand side of 
(7) only the f i rs t  term,  and now D' # 1. For  a flat layer, 
according to (7), y' = - ( ~ ' ) ' ~ r i ' ( e ~  - eY1)lh, where 
yl = y(1). It is easy to s e e  that the following condition 
is satisfied when 1 >> ro:  

and in the region of high ion concentration we have 

')At small R and yo (yo < 1) the condition satisfied in place of (2 1) 
is (yo + 1) R 9 ro exp(-yo/2). It can be verified that in this case the so- 
lution of (7) (with D = D' = l )  takes the form y = yo(R/r)exp(-r/ro), 
and from (5) we get N = 8rmoyoRrt. Taking into account formulas (6) ,  
(7), (14) and (13) for ro, R, and 0 we find that N < lo-'€, 1/e2(m0/ 
m,)3/4yo(at T=  300°K) and N - 1 at not too large e. Thus, the effects 
in question do not arise in this case, which will no longer be considered. 

where 520 = S1 is the volume of the cell. Comparing ex- 
pressions (lo), (11) and (22) for N and recognizing, as 
follows from (7), and (9) that ro >> @ (the electron gas 
in the semiconductor is not degenerate, i.e., @nth 
(mzk~) - '  << I), and p and Y a r e  large, i t  can be verified 
that the condition 1 >> ro > R for the applicability of 
formula (22) is indeed satisfied. 

A similar analysis for spherical particles shows that 
in this case an analogous condition is satisfied, l3 
>> r s ,  and makes it possible to regard a surface layer 
of thickness - ly'(-' as flat, containing a large fraction 
of the ions. We can therefore use formula (22) for ions, 
too, putting in i t  520 = %n13, S = 477~'. 

The presented expressions for N, together with 
formulas (9)-(13), determine the values of p (or Y). In 
order for the major part  of the electrons to be actually 
transferred to  the particles, it is necessary to satisfy 
the condition n(1) << no, i.e., a s  follows from (3), 

p - U + y O -  y,<lnB. (23) 

It is necessary to satisfy simultaneously the condition 
n'(0) 5 n(0) o r  

At not too smal l  values of U', the inequality (24) becomes 
an equality that determines X (together with the afore- 
mentioned formulas for p )  the value of Y. 

4. DISPERSE SYSTEMS CONTAINING PARTICLES 
O F  INSOLUBLE MATTER 

To investigate the equilibrium characteristics of the 
heterogeneous system it  is necessary to  substitute the 
obtained expressions for K, d*', 6@, and Ee in (1) and 
determine the values of R,  NO and N corresponding to  
the minimum thermodynamic potential cp of the system. 
If the particles consist of matter that is not dissolved 
(in the form of individual atoms), then the minimum 
must be determined subject to the additional condition 

NoQ = a ,  = const. (25) 
If most electrons of the system a r e  in the particles, it 
is necessary to satisfy also the condition 

We consider f i rs t  the case of a smal l  amount of un- 
dissolved matter,  when the cr i ter ia  (16) and (21) a r e  
satisfied and it is necessary to  take into account condi- 
tion (25), but not (26). As follows from (I) ,  ( lo) ,  ( l l ) ,  
(13), (15), and (25), the problem consists of determining 
the minimum of the expression 

@-ao -Q1kTq S 
I = = p [ ~ - 2 r o n o e ~ ~ z ( r f  y X + 2 + - l o -  

QlkT N N o  
(27) 

We have taken into account here the relation (17) and the 
fact that N' << N. The quantity x = K + Eel + yo/2 in 
(27) takes on the values x = Y5p + 715~ at  + >> Y and 
x = Yg(Y + +) + l / l sY at << Y, while for  a sphere we 
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have x = "/& + l Y 2 5 ~  a t  p >> Y and x = %(Y + p)  + Ya1YE 
at  p << Y. The last  logarithmic term in the brackets of 
(27) is of the order of (10-20)~-', and can be neglected 
except in the case of very small  N and a (N - 1, okT 
< 1 erg/cmi) (the case of such smal l  a was considered 
inC7'). Instead of determining the minimum of (27) with 
respect to R and N, i t  is more convenient to choose a s  
the variables yo, Y, and p , and then determine R and N 
from formulas (9)-(15). It must be borne in mind here  
that the three indicated variables a r e  connected by two 
relations that follow from (17) and from the equality of 
expressions (9)-(14) for N, on the one hand, and (15), 
on the other: 

where N is determined by formulas (9)-(14). The effect 
under consideration occurs only when Y + p >> 1, and 
we shall assume henceforth that U + 1nB is large enough, 
a n d t h a t Y  + p  >>I, p > l , a n d y o  >> 1. 

If U' < - U - 1n(BBf) and the inequality (18) is satis- 
fied automatically, then, taking (28) into account, Eq. 
(27) depends on one independent variables. Eliminating 

from (27) with the aid of the second condition 
of (28), we can easily determine the minimum of I with 
respect to p and Y, with allowance for the f i rs t  condi- 
tion of (28): p + Y = U + lnB- yo = const. At large o ,  
the smallest value of I (I = 0) corresponds to R = m, i.e., 
to  a mixture of to massive phases (we consider for 
simplicity the case when the neutral electron-ion pairs 
have a very low solubility in phase 11, and disregard the 
corresponding contribution to the TP). At not too large 
o ,  however, when the following condition is satisfied 

the minimum I < 0 corresponds to finite particle dimen- 
sions. In such a case a flat (plate-like) particle shape is 
thermodynamically favored rather than a spherical one. 

Near the heterogenization limit, when oc  - o << a ,  
the minimum lies at Y >> p ,  and R can be determined 
from formula ( l l ) ,  in which v = Y ~ ( ~ / Y ) ~ ~  is determined 
by the equation 

At o - oc, when Y - p , the minimum of I, R, and ~ / 5 2  
can be obtained numerically. On the other hand, if 
o << oc ,  then the minimum is at  p >> Y and corresponds 
to  

If U' >-U-1n(BB1) andif y o =  y o +  Y a n d a r e d e -  
termined by formulas (17) and (19), then, taking (28) 
into account, a l l  the quantities yo, Y, and p in formula 
(27) a r e  fixed. If condition (29) is satisfied, then I is 
also negative and the heterogeneous system is stable. 
By way of example we put T = 300°K, el = 10, EZ = 30, 
no = 1017 ~ m - ~ ,  ml = 0.25mo, and U + 1nB = 49". Then, 
according to (7), (6) aad (28) we have ro = 150 A,  
/3 = 2.8 t:h ( m o / m l ) 3 h ~  = 25 A,  yo = 10, Y + p = 39, and 

the condition (29) is satisfied a t  okT < 35 erg/cm2. In 
this case,  a t  c/oc = 0.904 the minimum of a corresponds 
to the values 2% = 65 A and N/S2 = 2 x loz0 cm". 

At the parameter values given in this example, the 
thickness of the layer a t  the particle boundary, over 
whicb y changes by unity, is of the order of roe-(-yo/2) - 1 A, therefore the employed macroscopic approxima- 
tion is not rigorous. The qualitative conclusions and 
order-of-magnitude estimates remain valid also in a 
microscopic theory that takes into account the discrete- 
ness of the semiconductor. We choose, for example, 
the simplest model, in which the screening charge of 
the ions lies mainly in a single atomic plane a t  a dis- 
tance d from the boundary and has a density edz' - 
= ednoeY ( -k~y/e  is the potential of the plane; y = yo 
- 5 ;  1 = '/2(d/ro)2eY). It is easy to verify that in this 
case formulas (27) and (28) remain valid if we replace 
in them exp(yo/2) by (d/2ro)exp(yo- 5 )  and x by x + 1 
- 1/2. Then the characteristics of the disperse system 
remain unchanged in the given example if we put d = 3 A 
and choose a somewhat larger  value U + 1nB = 52 (in 
this case yo = 13 and 1 = 3). 

At a sufficiently high concentration of the undissolved 
matter S21/S20 (521 << no) in the heterogeneous system, 
the bulk of the electrons become concentrated in the 
particles. In this case  it is necessary to satisfy in addi- 
tion to condition (25) also the condition (26), i.e., the 
average density N/Q = Ne/a1 of the electrons in the par- 
ticles will be fixed, and the quantities ti*', ti*, Eez,. and 
N a r e  determined by formulas (22). Therefore, taking 
(I) ,  (9)-(14), and (22) into account, we find that I is de- 
termined by the formula 

and the conditions that the values of N determined by 
formulas (9)-(14) and by formula (22) be equal takes the 
form 

where 52/S - R a r e  determined by formulas (9)-(14), 
and $ is defined in (28). In accordance with (23), the ex- 
pression in the parentheses of (30) is positive. 

At not very small  U' , the equal sign should be used 
in (24) and then this relation, together with formula (31), 
defines p and Y uniquely. If the values of the parameters 
a r e  such that p >> Y, flat particles with thickness 
2R 23'2~1kp-3/4p and electron density N/S2 

Z 312 
~ ( E ~ / E ~ ) ( ~ ~ / P )  p no a r e  thermodynamically favored 

(see formula (10). If U is large enough and U' is smal l  
enough, s o  that the inequalities (23) and (24) a r e  satis- 
fied automatically, then p and Y a re  determined from 
the condition that (30) be a minimum, subject to (31). 
At sufficiently small  o and smal l  a1/Q0, this minimum 

2)~ ince  we are considering systems in the state of complete thermo- 
dynamic equilibrium, we assume that at the given temperature the dif- 
fusion redistribution of the atoms over distances -1 occurs within a 
reasonable time. If there is practically no diffusion at T = 300°K (for 
concreteness, we make the estimates for room temperature), then it is 
necessary to choose in the estimates a higher temperature. At a given 
no this merely increases somewhat the values of r, and U at which the 
condition (29) is satisfied. 
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is reached at p >> U and corresponds to flat particles 
in thermodynamic equilibrium with parameters (at 
5 << H3l4) 

At 5 - H"~ the minimum corresponds to  p - Y - H and 
R - and at  5 >> H"* we have Y >> p and the 
system parameters can be easily determined numeric- 
ally. 

It follows from the foregoing examples that the mat- 
t e r  that is not dissolved, in the form of individual atoms, 
can produce under definite conditions particles of ap- 
preciable dimensions in a semiconductor. The solubility 
in the form of particles, however, should also be limited 
and, starting with a certain concentration ale, a decom- 
position should se t  in, whereby the excess matter is 
precipitated in the form of massive phase 11. The quan- 
tity a,, is determined from the equality of the chemical 
potentials of the atoms and particles also in the massive 
phase. It reduces to the condition that S2,I be extremal 
with respect to 52,. For  p >> Y, according to  (30)-(32), 
we have 

x - p - ~ ; ' ;  s /Q-R-I -Q; ' /~ ,  

i.e., Q,I is extremal a t  5,  = 3 .6(0 .4 ) ' "~~/~ .  Since p - Y 
for such 5 ,  only the orders  of magnitude of 5, and Ole 
can be determined: 

The region of existence of the heterogeneous system 
can also have a left-hand boundary, if the heterogeneous 
system is not favored when conditions (16) and (21) a r e  
satisfied. If, for example, T = 300°K, el = c2 = 10, 
ml = 0.25mo, okT = 30 erg/cm2, and no = 1017 cmJ, then 
521c/520 - lo". At 52, /52O = 3 x and 2R = 30 A we 
have N/! = 3 x cm-'. 

5. SPONTANEOUS DISPERSION IN SYSTEMS WITH 
EASILY VARIED INTERNAL PARAMETERS 

If the change of the solution concentration c o r  of the 
internal parameter 7 (for example, the magnetization 
in a magnetic semiconductor, the ordering parameter 
near the phase-transition point, the change of density 
in the critical region) leads to  a small  change (o of the 
specific T P  and to a noticeable electron energy U, then 
the formation of regions with altered c or  7 ,  in which 
large groups of electrons a r e  localized, may become 
thermodynamically favored. Such heterogeneous states 
correspond to a minimum TP in a definite interval of 
temperatures and electron concentrations, and the tran- 
sition into these states,  just a s  the transition of an indi- 
vidual electron to a fluctuon stateC14], is a first-order 
phase transition (somewhat smeared out because of the 
finite dimensions of the regions). The volumes of the 
electron localization regions a re  not specified, and the 
additional condition (25) need not be satisfied, but when 
most electrons become localized, the condition (26) is 
fulfilled. The problem reduces therefore to the deter- 
mination of the minimum of the expression 

I' = (@ - + o ) ( k ~ ~ e ) - l  a t  Ne = const. Taking formulas 
(10)-(14) and (22) into account, we obtain 

Q0 N 
+x-0 ,  U = U + l n B - 2 l n  -- 

i Noes 
(2r.S N.1' 

+-ln- 
N N " '  (34) 

where X ,  $, $1 and E have the same meaning as in 
formulas (27)-(29) and (31). The condition (31) now 
determines the volume 52, of the particles. 

If U' is not very smal l  and the equality sign is in the 
condition (24), then this condition fixes in fact the (small) 
quantity Y ( p  enters in (24) under the logarithm sign), 
and i t  is necessary to determine the minimum of I' only 
with respect to p .  When Y << (u/E)~/ '  o r  Y <<  of?/^)^/^, 
the minimum occurs at p >> Y, and in the case of 
qP/E << (~ /Y '~E) '~ ' "  it corresponds to flat particles, 

while R and N/S2 a r e  determined by formula (10). When 
qP/E >> ( u / Y ' ~ E ) ' o ~ ,  the values of p and It ,  neglecting 
higher terms,  a r e  the same for flat and for spherical 
particles : 

Allowance for the higher-order terms in I' shows that 
flat particles a r e  thermodynamically favored when 
Y << ( U / E ) ~ ~ ( E / ~ B ) " ~ ,  and spherical ones when the op- 
posite inequality holds. 

Thus, depending on the parameters,  a heterogeneous 
system can consist of either oblate ("flat") o r  spherical 
particles. The difference between the T P  of the two 
types of particles is small. Therefore by varying the 
system parameters,  say Q,, T ,  o r  the concentration of 
the surface-active substance that changes o ,  i t  is possi- 
ble to cause a particle-shape change that proceeds like 
a smeared- out (owing to  the finite particle dimension) 
first-order phase transition. 

At sufficiently small  U', thermodynamic equilibrium 
corresponds to the minimum of I' with respect to the 
two variables p and Y, and the inequality (24) is satis- 
fied automatically. It is easy to  s e e  that, in order of 
magnitude, 

The particle shape can be determined in this case only 
by making a more detailed calculation. When using 
formulas (34)-(37) i t  must be borne in mind that U, o ,  
and cp a r e  functions of the composition or  of the internal 
parameter. They must therefore be regarded a s  quanti- 
ties corresponding to  the values of c and I ]  a t  which the 
expressions for I' a r e  minimal. 

In the derivation of the formulas of the present sec- 
tion i t  was assumed that c and 7 7 ,  and consequently also 
U and cp, a r e  independent of the coordinates. Strictly 
speaking, this assumption is satisfied approximately 
only for p >> Y, and also in systems where after a 
large variation of c or  7 in the particle, producing prac- 
tically no change in cp, further change of 7 and c be- 
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comes hindered by a strong growth of cp (the region near 
a first-order transition point o r  near the decay curve 
far  from the critical point). If the external values 
(35)-(37) of I' a r e  negative, then the heterogeneous sys- 
tem will be thermodynamically favored over the two- 
phase system. For  example, a t  T = 300°K, €1 = €2 = 10, 
ml  = 0.25 mo, no = 1017 cmJ, and U = 40, the heterogene- 
ous system is stable at pkT < 10' erg/cm3 and very 
small o, o r  at okT < 20 erg/cm2 and very small cp. At a 
sufficiently high electron concentration, such a system 
is more favored also over a homogeneous electron-ion 
plasma. With decreasing no and increasing tempera- 
ture, the electrons "evaporate" and more of them go 
over into the state of isolated carr iers .  

The homogeneous distribution assumed here for the 
degenerate electron gas corresponds to only one possi- 
ble particle model. If fluctuons (or polarons) a r e  pro- 
duced in the system under consideration, then the par- 
ticles can consist of aggregates of several  distorted 
fluctuon (polaron) potential wells, in which collectivized 
electrons a r e  present to one degree or another. Such a 
structure corresponds to a somewhat higher average 
electron energy then in the case of homogeneous varia- 
tion of c o r  17, but on the other hand the value of cp is 
smaller. The question of the relative stability of this 
structure calls for a special study. 

6. CONC LUDING REMARKS 

It follows from our analysis the Coulomb interaction 
can lead to the formation of an equilibrium heterogene- 
ous system. Such a system is not two-phase but single- 
phase, and corresponds essentially to a unique short- 
range order in which clusters of relatively smal l  size 
(- 10-100 A) a r e  bound by an indirect interaction 
through electrons localized near them. Systems favor- 
ing thermodynamic stability of the heterogeneous phase 
a r e  those with small  o or  cp and large E .  Although the 
results presented were formulated for impurity semi- 
conductors with nondegenerate electron gas, they can 
be literally applied also to a gaseous electron-ion 
plasma containing dispersed solid or  liquid particles. 
The results obtained when condition (26) is satisfied a r e  
valid also for semiconductors with degenerate electron 
gas (with another explicit expression for B), and the re- 
sults of Sec. 4, which correspond to a small  fraction of 
the localized electrons, can be easily generalized to in- 
clude such semiconductors (and poor metals). We note 

that the considered effect of dispersal of the undissolved 
phase can take place not only in impurity semiconduc- 
tors but also in intrinsic semiconductors if U exceeds 
the width of the forbidden band. Then the electrons go 
over to the particles, and screening holes remain in the 
semiconductor. 

The theory developed dealt with individual particles, 
the interaction between which was disregarded. If the 
particle concentration is appreciable, such an interac- 
tion can lead to  the formation of secondary structures 
(a  certain ordering of the particles) and, like other re- 
finements of the model, can influence their shapes (the 
differences between the T P  of flat, spherical, and a lso  
cylindrical particles a r e  frequently very small). 

The investigated disperse systems can be observed 
experimentally, for example by x-ray diffraction. They 
may possess a number of distinctive properties. For  
example at high particle concentrations, when they a r e  
in contact (or almost in contact), the system may have 
metallic conductivity, and interesting superconducting 
properties. In metal- ammonia solutions a t  concentra- 
tions of 0.1-3 mol.% of metal, many experimental data 
indicate that clusters made up of - l o2  polarons a r e  
formedC8]. They a r e  possibly connected with the effects 
discussed in Sec. 5. 
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