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The effect of a strong, high-frequency electric field of frequency 61, directed along a quantized mag- 
netic field, on ultrasonic propagation in a degenerate Fermi  system is considered. Pronounced reso- 
nance singularities a r e  found in the sound absorption coefficient a t  low temperatures under the con- 
dition that qvo, - s61 ( q  is the wave number of sound directed along the magnetic field, vov is the 
Fermi velocity in the v-th Landau sub-band, s = 1, 2, 3, . . . ). Near each positive peak corresponding 
to absorption, there is a negative peak corresponding to sound amplification. 

1. The singularities of ultrasonic propagation in de- 
generate Fermi systems (metals, semimetals, semi- 
conductors) in the presence of a magnetic field have 
been widely studied in recent years. A number of in- 
teresting physical effects have been discovered- 
acoustic cyclotron resonance,['] giant geometric reso- 
nan~e,[~- ' ]  and giant quantum oscillations of the sound 
a b ~ o r p t i o n . ~ ~ ]  On the other hand, important singulari- 
t ies have recently been predicted, for sound propaga- 
tion in electron-phonon systems, in the effect on the 
electrons of the field of a strong electromagnetic 
wave . r 5 y 6 1  

Here we consider the effect of the combined action 
of the field of a strong electromagnetic wave and the 
quantized magnetic field on ultrasonic propagation. It 
will be shown that, for parallel orientation of the elec- 
t r i c  field of the wave, the static magnetic field and the 
wave vector q of the longitudinal sound wave in the 
neighborhood of values of q satisfying the condition 
qvw - sS1 (vw is the Fermi  velocity of the electrons 
in the v-th Landau sub-band, 51 the frequency of the 
electromagnetic wave, s = 1, 2, 3, .  . . ), upon satisfac- 
tion of certain conditions, strong resonance singulari- 
t ies appear in the damping and dispersion of the sound. 
The sound absorption coefficient can change sign, which 
corresponds to sound amplification by the high-fre- 
quency field. Such amplification can be very effective. 
We shall make c lear  the physical reason for the origin 
of these singularities. 

Electrons take part in the interaction with sound 
traveling along a quantized magnetic field; these elec- 
trons execute one-dimensional f ree  motion in this same 
direction. In such a situation, real  absorption (emission) 
of phonons is virtually absent at low temperatures, 
since it is impossible to satisfy one dimensionally the 
conservation laws of energy and nlomentum in such 
processes near the Fermi  surface. In the presence of 
the field of an electromagnetic wave of frequency 51, 
which a r i ses  in the scattering of an electron by a pho- 
non with wave number q, the transfer energy can be 
compensated by the energy of the photon 61. If 5 qvo, 
then absorption of a phonon uo(q) and a photon 61 is 
possible such that wo + n = qvo. In the case 61 ,> qvo, 
the possibility opens up for a process of emission of a 

phonon in the absorption of a photon, such that 61 = wo 
= qvo. 

Without a magnetic field, electrons in their  interac- 
tion with phonons can be scattered a t  different angles, 
and the transfer energy takes on arbitrary values 
qvo cos e ( e is the angle between the initial momentum 
of the electron and the momentum of the phonon). 
Therefore, strong phonon-photon resonance is absent. 
All that has been said re fe r s  to the many-photon case, 
when sS1 - qvo. 

2. Thus, let there be a degenerate electron-phonon 
system in a magnetic field. For  definiteness, we shall 
assume that the magnetic field H is applied parallel to  
the surface of the sample along the z axis,  and a plane 
electromagnetic wave with electric field intensity E 
and frequency is incident perpendicular to the s u r -  
face, such that E II H. We shall  assume the sound wave 
vector q to be arbitrari ly oriented initially. Satisfac- 
tion of the following conditions is assumed: 

B c  B c  a -  a -  q v 0 > r .  r UO W. vo 
(1 1 

Here r is the relaxation frequency of electrons in 
their momenta, wp the electron plasma frequency, c 
the speed of light, and vo the speed of electrons on the 
Fermi surface. In conjunction with the condition 

the conditions (1) guarantee penetration of the electro- 
magnetic wave into the depth of the sample and mean 
that the wavelength is much greater than the electron 
mean f ree  path, the screening radius, the phonon wave- 
length. Moreover, this wavelength is assumed to be 
large in comparison with the amplitude of oscillations 
of the electron in the field of the wave (for this, it is 
sufficient that the motion of the electron be nonrelativ- 
istic). It then follows that we can limit ourselves to 
consideration of the electron-phonon system in a 
spatially homogeneous, high-frequency wave, and also 
neglect the effect of the magnetic field of the wave. 

If the in~erse~condi t ion  61 < u p  is satisfied instead 
of (2), we can then assume the field of the wave to be 
homogeneous when the thickness of the sample is less  
than the penetration depth. 



We assume the magnetic field to be quantized; i.e., 
we assume 

where o c  is the cyclotron frequency, T the tempera- 
ture of the electrons. We shall neglect spin splitting of 
the levels of the electrons, assuming that it is smaller 
than I? o r  T. 

3.  The Hamiltonian of a system of magnetically 
quantized electrons interacting with a high-frequency 
electric field and with sound can be written in the form 

where cV(p)  = aC(v  + y2) + p2/2m; v = 0, 1, 2 , .  . .; p 
and q a r e  the z components of the quasimomentum of 
the electron and of the phonon; CvV1(q) is the matrix 
element of electron-phonon interaction in the magnetic 
field; a+ and a ,  b+ and b a r e  respectively the electron 
and phonon creation and annihilation operators; wo(q) 
= uq, u is the sound speed. We choose the electric 
field E ( t )  in the form 

Eo( t )  = En sin Pt = -dA / cdt. 

We have used a quadratic dispersion law for electrons 
in (4), keeping in mind the application of the results in 
what follows primarily to semiconductors o r  semi- 
metals. 

Using the canonical transformation, with the help of 
the unitary operator, 

we shift the aependence on the electromagnetic field 
from the first  t e rm of the Hamiltonian (4) to the second: 

Expanding exp{ifl(t, q)) in a se r i es  in the Bessel 
functions Js,  and assuming an adiabatically slow con- 
nection of the field for t = - m, we reduce the Hamil- 
tonian to the form 

where a = e ~ ~ / m f i '  is the amplitude of the oscillations 

of the electron in the field of the wave. 
By means of the Hamiltonian (8), and using the as- 

sumption on the smallness of the electron-phonon in- 
teraction, we write down the equation of motion for the 
averaged phonon operator ( b  ( q ) )  and the functions 
connected with it: 

i ------ d ( b ( q ) )  = o p ( q ) ( b ( q ) )  
at 

Here we use the notation ( X )  = Sp Xp(t) ,  where p ( t )  
is the matrix density of the system, defined by the rela- 
tion - 

iap ta t  = [a, PI ,  

nv(p) is the population number of states with a given 
quasimomentum in the different Landau sub-bands. 

The smallness of the electron-phonon interaction 
allows us  to produce a splitting of the form 

<av+ (p  - q ) ~ .  ( p )  b ( q ) )  = <&+(p - q)av. ( P )  )<b (q ) )  

in obtaining (9).f7981 Of al l  the quantities ( a;( p - q) av, 
( p)), only the diagonal averages ( a;( p) a,( p)) remain, 
which, for f i r 1  >> 1, can be assumed not to depend 
explicitly on the time. In the approximation considered, 
the dependence of the population numbers nv(p) on the 
electromagnetic field is manifest, for example, through 
the electron temperature, which can differ materially 
from the lattice temperature in strong fields. 

Transforming from the functions ( b ( q ) )  to their 
Fourier transforms B(q, w), we get the following from 
the se t  of equations (9), using the explicit form of the 
matrix elements Cvvr(q),  

?no. 
[ w  - un(q )  IB(+ u )  = - 2 Laun(q)--;J.(aO 

6,1,--m 
2n 

x J , ~ ( a q ) n ( v , ~ ' , q ~ , q , o + s P ) B ( q , o + ( s - s t ) P ) ,  (10) 

(ql is the component of the phonon momentum perpen- 
dicular to the magnetic field, A the constant of the 
electron-phonon interaction. 

The polarization operator r ( v ,  v ' ,  q, w) was inves- 
tigated in detail by ~ k h i e z e r . ~ ' ]  In particular, the func- 
tion ~ , , l ( x )  is expressed in the form of an integral 

(Lv(s )  is the Laguerre polynomial); for  small  values 
of the argument x << 1 it  has  the form 

A,,,(x) 1: 6,.'+ i { ( v  + l )bv+l v. - (2v + l )8vv ,  + ~ 8 , - ~ ,  ".). (12) 

It is not difficult to  establish the fact that the t e rms  
on the right side of Eq. (10) with s # st give a contribu- 
tion that is small  in the parameter [wc~o(q)/522 
<< 1 ( t = ~ ~ m ~ ~ / 2 n ~  << 1 is the dimensionless constant 
of electron-phonon interaction, po is the Fermi  mo- 



E F F E C T  O F  AN I N T E N S E  E L E C T R O M A G N E T I C  WAVE 351 

mentum in the absence of a magnetic field). Thus we 
obtain the following dispersion equation for the phonons: 

The electric field appears in this equation only as a 
parameter. 

4. We consider in more detail the case of sound 
propagation in a direction close to the direction of the 
magnetic field. Then, leaving only t e rms  of zero order 
in the parameter ql/(2mwc)'12, we have 

Separating out the imaginary part Im w, we find the 
sound absorption coefficient: 

After integration over p, using the parity of the func- 
tions nv(p), we find 

Using the inequalities q, mu << POV, m~l /q ,  m, we 
reduce a ( q )  to the form 

1 
= - - m s u . ( ~  w. iz  k : ( a q j  C nvW(o)  

A 

The first  term in a ( q )  gives an exponentially small  
contribution, since n,"(O) = ( m ~ ) - '  exp ( -p;v/2m~) and 
we assume that for a l l  v we have, T << ptv/2m. This 
term is always present, even if the high-frequency 
electric field vanishes. Near the values q - smn/vw,  
t e rms  which contain n L ( s m ~ / q ) ,  under the condition 
T << qwc/pov, give strong singularities of a resonance 
type with the resonance width of the order of T,  since 
a t  low temperatures the Fermi  functions nv(p)  a r e  
close to step functions and have very well known in- 
flection points. It is characteristic that each resonance 
with indices v and s ,  proportional to the second deriva- 
tive of the function nv(p),  contains a pair of peaks, one 
of which is always negative, which corresponds to 
sound amplification. The sharpness of the resonance 
increases with decrease in temperature. At the ex- 
tremal points, which a r e  given by qe = sm51(pEv 
+ 2m~z)-'/', where z = In ( 2 & = *1.3, the absorp- 
tion (amplification) coefficient a (qo)  is equal to  (if it is 

( E F  is the Fermi  energy). For not too large field 
strengths, when aqe << 1, the Bessel function can be 
expanded in a se r i es ,  and then the value of each peak 
is proportional to ( aqe)2s. 

Resonance singularities in the sound dispersion 
ought also to  be observed in the region of the absorp- 
tion anomalies. 

5. We proceed to  numerical estimates. From the 
viewpoint of sound amplification, the use of a semi- 
metal o r  of a degenerate semiconductor with small  ef- 
fective ca r r i e r  mass  and electron concentration 
n - 1017-10'8 cm-' is most common, since here one 
can, on the one hand satisfy the condition C2 > up, 
which guarantees the penetration of the electromagnetic 
wave into the bulk of the sample,  and on the other ob- 
tain a comparatively large amplification coefficient of 
the sound wave for attainable intensities of the electro- 
magnetic radiation. 

Let n - 10" cm-', m - lo-' m, (m, is the mass  of 
the free electron), wp - 1013 sec-', 51 - loL4 sec-' 
(CO' laser),  V, - lo8 cm/sec, wc - 10" sec-', 
T - 1°K, - lo-' - lo-', s = 1, Eo - lo4 ~ / c m .  Then 
the resonant values a r e  q - n/vo - 10' cm-' and the 
sound should be amplified with w - 10" sec-'. For the 
given values of the parameters,  we obtain crvs(qe) - 10'- lo4 cm-'. Then high-frequency sound amplifica- 
tion by means of an electromagnetic wave can be very 
effective under the described conditions. For  the given 
value of 51, absorption and amplification have an oscil- 
latory character with sharp spikes in the change of the 
magnetic field intensity. 

If the electromagnetic field penetrates to a finite 
depth in the sample, amplification of the sound will 
take place in the region of penetration. In such a case,  
i t  is convenient to strengthen the surface sound waves, 
for which the same picture ought to be observed as for 
bulk waves. 

The authors a r e  deeply grateful to V. 0. Bonch- 
Bruevich and M. I. Kagan for discussion of the work 
and useful cri t ical  remarks .  
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