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A string located in a periodic pdential  relief and acted on by a constant external force is considered. 
The probabilities of transition of the string from one potential relief valley to a neighboring one a r e  
computed. At low temperatures such transitions a r e  of the quantum tunneling type. The results ob- 
tained a r e  used to estimate the velocities of the dislocations. 

1 .  INTRODUCTION , uo 'olyl 

AS is well known, the motion of dislocations in crys- 
tals with high Peier ls  barr iers  takes place through the 
formation and subsequent expansion of double kinks. 
At high temperatures this phenomenon is due to  thermal 
fluctuations. It is clear that, in principle, at sufficiently 
low temperatures the thermal fluctuations a r e  replaced 
by quantum fluctuations, the probability of which is 
temperature-independent. This circumstance was first  
pointed out apparently by ~ e e r t r n a n l ' l .  The model he 
adopted had, however, little in common with the original 
formulation of the problem. 

The simplest model of a dislocation is the so-called 
string model. Although the properties of this model 
have been discussed for quite a long time, no systematic 
computations of the probability of an elementary event 
of formation of a double kink have thus far  been done in 
the framework of this model The difficulty of this 
problem lies in the fact that it is necessary to consider 
the motion of a system with an infinite number of de- 
grees of freedom. We carry  out in the present paper 
such a systematic computation in the framework of the 
string model, a t  least in certain limiting cases. 

We consider an elastic string in a two-dimensional 
potential relief u ( ~ ) \ ( F ~ ~ .  l a )  made up of a periodic 
potential (Peierls potential) and a linear term,  Fy, due 
to an external s t r ess  F. It is assumed that the string 
is initially at res t  at the bottom of one of the relief 
valleys (y  = 0) in an equilibrium configuration for 
F = 0. The inclusion of the external force makes this 
equilibrium configuration metastable. Owing to  thermal 
o r  quantum fluctuations, the string makes a transition 
to a neighboring valley y = b. The problem i s  to com- 
pute the transition probability per unit time, o r  the in- 
verse quantity-the transition time. The configuration 
of the string is described by the function y(x, t), 
where x is the coordinate along the bottom of the 
valley, y is the transverse coordinate, and t is the 
time. The Hamiltonian of the string is written in the 
usual form: 

If = T + V ,  

Here p is the linear density and K is the rigidity of 
the string. Since we a r e  interested in only the transi-  
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tion between two valleys, we can forget about the 
existence of a l l  other minima, and consider, instead of 
the original periodic potential, the potential Uo(y) with 
two minima shown in Fig. lb .  

The problem consists, in principle, in finding the 
most probable route of transition from the metastable 
equilibrium configuration y = 0 to the stable equili- 
brium configuration y = b. We have in mind a trajectory 
in a multidimensional space whose points (vectors) 
represent the configurations of the string y = y(x). 

The problem admits of an explicit solution in two 
limiting cases:  low s t resses  and those close to the 
Peierls s t r ess .  The Peier ls  s t r ess  Fp is defined as 
the maximum of the derivative UL(y). At s t r esses  
higher than Fp, the maxima and minima in the poten- 
tial U( y)  disappear. In the first  case F << Fp, a s  is 
shown in Sec. 2, a narrow steep-walled trough leading 
from the "point" y (x )  = 0 through a saddle point to the 
"point" y(x) = b exists in the potential relief V in the 
multidimensional space of y(x).  Therefore, in both the 
classical and quantum cases ,  the transition trajectories 
of interest lie almost along the bottom of the trough. 
This makes i t  possible to reduce the problem to a one- 
dimensional problem. 

Thus, this is yet another case,  when the problem of 
subbarrier tunneling in a multidimensional system ad- 
mits of an asymptotically exact solution. Our paper is 
closest in spirit to the paper by Iordanskii and Finkel' 
shteinrZ1. Its success was due to the fact that the line 
of steepest descent turned out in the adopted model to 
be a straight line (in the multidimensional space). 
Therefore, the "classical" trajectory coincides in this 
case with the line of steepest descent. In our case,  the 
"classical" trajectory is close, but not coincident with 
the line of steepest descent, and it is not a straight 
line. The situation here is similar to the classical 
problem with almost separable variables, when the 
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motion can be considered a s  slow along one of the co- 
ordinates (along the bottom of the trough), and fast 
along the transverse coordinates. The solution of the 
quantum problem is analogous in result to I. Lifshitz 
and Yu. Kagan's workrs1 on the quantum production of 
of the nucleus of a new phase. In our case the role of 
different phases is played by the sections of the string 
which a r e  in different valleys. Such an approach to the 
problem of thermal transition of dislocations was de- 
veloped 

At s t resses  close to Fp, the determination of the 
classical trajectory reduces to the solution of a stand- 
ard  problem, and this makes it possible to find the de- 
pendence on the parameters and estimate the numerical 
constants. This problem is analogous to the problem of 
tunneling in a quantum liquid near the lability 

We also solve in the present paper the classical 
problem of diffusion of the string for small  F and for 
F close to Fp. A short report on the results of the 
work described here was published somewhat earlierrs1. 

2. THE POTENTIAL RELIEF FOR SMALL STRESSES 

Let us consider the potential energy V in the space 
whose points a r e  the functions y(x) describing the 
configuration of the string. We already know that the 
potential .V has two minima a t  the points y (x )  = 0 and 
y(x) = b. Between these two minima is the saddle point 
yo(x) defined by the equation 

Using the expression (1) for V, we reduce the equa- 
tion for the saddle point to the following form: 

Equation (3) admits of a simple mechanical analogy in 
which U plays the role of a potential and x plays the 
role of time in Newton's equation. The "particle" 
leaves the top of the potential hump ( a t  x - - a ) ,  is 
reflected a t  the point of closest approach to the second 
hump, and returns to the initial position a t  x - + a .  
To such mechanical motion corresponds the form of 
the kink shown in Fig. 2. At small  s t r esses  the heights 
of the potential humps differ from each other by a 
small amount Fb. Therefore the "particle" approaches 
the turning point with a smal l  "velocity" and spends a 
long "time" there. This corresponds to a large length 
lc of the critical double kink which is equal to 

- 
1, = 1% / U," In (bU," / 2F). (4 

The formula (4) is valid with a logarithmic accuracy 
and U; is computed a t  the point y = 0. 

Of special interest is the case F = 0. In this case 
Eq. (3) determines the point of relative minimum of 
yl(x), which satisfies the conditions yl(x) - 0 for 
X -  -a ,  and yl(x) - b for x - +a. Clearly, yl(x) 
depends only on the specific form of the Peier ls  bar-  
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r i e r  uo(y). We shall henceforth assume that Uo(y) is 
symmetric about the point b/2. Then yl(x) is anti- 
symmetric about this point. Evidently, a t  small  F and, 
consequently, large lc, the double kink yo(x) can be- 
have as if i t  consisted of two isolated kinks 

Naturally, Eq. (3) is invariant with respect to an 
arbitrary displacement along the x axis. The magni- 
tude of the potential energy a t  the saddle point Vo is 
equal to  

where V1 is the energy of an isolated kink. The quan- 
tity Vl has been computed by Guyot and ~ o r n [ ' ]  for 
some concrete forms of the potential. 

From the saddle point to  the minima runs the trough, 
which i t  is natural to define in the following manner. 
Let y(x,  s )  be a one-parameter family of vectors that 
define the bottom of the trough ( s  is a parameter de- 
noting a point on the bottom of the trough). Then when 
y changes in the direction perpendicular to  the bottom 
of the trough the potential energy should increase. Let 
the change in y(x)  be equal to 6y(x). The vector 
tangential to the bottom of the trough is collinear to 
by (x ,  s)/a s. The condition of orthogonality of by ( x )  to 
the tangent vector has the form 

j a y ( z ) e d x = o .  os (7) 

Let us  now write down the condition for minimum of 
the potential energy V{Y) a t  the point y(x, s )  for dis- 
placements satisfying the additional condition (7): 

This is an equation defining the bottom of the trough. 
For our concrete choice of V (formula (1)) Eq. (8) 
takes the form 

Here, A is an arbitrary function of the perpendicular s, 
which is connected with the possibility of an arbitrary 
choice of the parameter s itself. We shall assume that 
a t  the saddle point s = 0 and ~ ( 0 )  = 0, and, moreover, 
A vanishes a t  the minimum points. 

In the vicinity of the bottom of the trough ~ { y }  has 
the following form : 

1 
V{y(s,s)+6y} v ( s ) + - j  6'V 6y (x) by (st) dx dx'. (1 0) 

2 BY (x) 6~ (x') 

It is assumed in formula (10) that the displacements 
6y(x) a r e  perpendicular to  the bottom of the trough. 
The separation into coordinates along and perpendicu- 
l a r  to the bottom of the trough carried out here makes 
sense in that one of the motions-along the bottom of 
the trough-turns out to be slow, whereas the motions 
perpendicular to  the bottom of the trough turn out to be 
fast. To verify that, let us f i rs t  consider the vicinity of 
the saddle point. We have for smal l  s 

dy ay(x,O)s~ 
y,(s)+-s. ~ ( x , s ) = , ~ ( x , O ) + ~  as (11) 

Substituting (11) into (9) and taking Eq. (3) for 
yo(x) into account, we obtain correct to linear t e rms  
in s 
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Thus, it turned out that ay/a s is the solution of the 
Schrodinger equation with the potential u$(yo(x)), and 
8 ~ / a  s is the eigenvalue . 

Differentiating Eq. (3) with respect to x, we easily 
verify that ayo/ax also satisfies the Schrodinger equa- 
tion with zero eigenvalue 

This is a different expression of the fact that the 
Hamiltonian in Eq. (3) is invariant with respect to dis- 
placement along the x axis. This remains t rue  in the 
absence of s t resses ,  and the function ayl/ax also 
satisfies the Schrodinger equation 

a= a y 1  a y  I 
-x--+ Uf'(yl)-= 0. 

dx' d x  d z  

Let us now consider an arbitrary small  displacement 
6y(x) relative to  the saddle point. The potential energy 
V near the saddle point can be represented in the 
quadratic form 

v =  Yo+- ' I  6'V 
6y ( x )  6 y  (2') d x  dx'. 

2 6~ (XI 6~ (x') 

The quadratic form can be reduced to the diagonal 
form by some orthogonal transformation. Its eigen- 
values Fn  and eigenvectors qn  a r e  determined by the 
equation 

o r  for our concrete choice of V: 

We already know that this equation has a zero eigen- 
value with a y o/ax a s  the corresponding eigenfunction 
(see formula (13)). We show that this equation has a 
negative eigenvalue p o  - -F,  while all  the other eigen- 
values a r e  positive and weakly dependent on F. 

By comparing Figs. l b  and 2, we can verify that the 
potential U" ( yo(x)) represents two wells separated by 
the distance lc,  as shown in Fig. 3. At infinity and in 
the space between the wells the potential is equal to the 
positive quantity U:(O). For  small  F the wells have 
almost the standard form, which is the form obtained 
for the single kink U: ( y l). It is known that in each of 
such wells, the lowest level is the p = 0 level. This 
level splits into two; to one of them corresponds, as 
before, p = 0. We can, however, verify that this level 
is not the ground level since the wave function corre- 
sponding to it i s  odd and has a node. Whence it follows 
that to the ground state corresponds the negative level 
p o ,  whose value i s  determined by the usual overlap 
integral: 

Po - - exp {- j" ~ x - l  U., ( y . ( x ) )  d x  - - const - F .  1 (18) 

All the other eigenvalues a r e  obtained by means of 
, uAy0 IZJ) 
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a weak splitting of the discrete and continuous eigen- 
values pertaining to one well and, therefore, separated 
from the ground level by a finite interval -Ui. 

Only the negative eigenvalue p o  can correspond to 
the direction of steepest descent. Indeed, according to 
Eq. (8), 

1 d V ( s )  
h ( s )  = a~ ' N = d x .  

N d s  ' 

The normalization integral N can be made equal to 
unity by a proper choice of the parameter s. Then 
~ ( s )  = pas, and 

Let us  now consider the nonzero values of s. For  
s > 0 it is clear from physical considerations that 
y(x, s )  has the same form as yo(x), but the distance 
l ( s )  between the single kinks is greater than lc. For  
s < 0 the distance between the kinks decreases.  We 
shall, however, consider only that region in which 1 is 
sti l l  much larger  than the length l l  of a single kink. 
We can introduce in the whole of this space the parame- 
t e r  1-the distance between the kinks-instead of the 
parameter s. The solution of Eq. (8) can be approxi- 
mately written in the form 

The tangent to  the bottom of the trough is in this ap- 
proximation 

The diagonalization of the quadratic form (10) a t  an 
arbitrary point of the trough leads to the Schrodinger 
equation of the form (17) in which, however, u U ( y ( x ,  I)) 
serves  a s  the potential. Considerations similar to 
those presented above show that this equation has the 
eigenvalue p = 0, to which corresponds the eigenfunc- 
tion a y(x, l)/ax, which is orthogonal to a y/al. This 
solution corresponds, however, to the cyclic coordinate 
denoting displacement of the double kink a s  a whole 
along the x axis. The remaining solutions of the 
Schrodinger equation correspond to the split nonzero 
levels of the problem with one well ( F  = 0). Therefore, 
they a r e  orthogonal to a y/al in that approximation in 
which the formula (22) is true.  Thus, we have shown 
that for s ;t 0 the frequencies of the transverse motions 
do not depend on F and a r e  equal to 4- in order  
of magnitude. 

The assertion that the eigenvalues corresponding to 
the transverse and longitudinal motions a r e  different 
becomes incorrect for 2 of the order of the width of 
a single kink. 

Let us compute V( 1 ). To do this we substitute in 
the expression for v ( ~ )  (formula (1)) y(x, 1) in the 
form (21). We obtain 

V ( 1 )  = ZV, - Fbl - 1 / 2 b Z 1 / m e x p  { - l m l ) .  (23) 

The graph of V(l ) is shown in Fig. 4. 
The first  two te rms  of Eq. (23) correspond to the 

macroscopic approach. The first  one corresponds to 
the energy of the boundaries between the phases; the 
second, to the linear energy of the new phase. In the 
one-dimensional case a purely macroscopic approach 
leads to the absurd conclusion that the curve V(1) has 
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FIG. 4 

no maximum, i.e., that no crit ical  dimension exists for 
a nucleus. The third t e rm in (23) corresponds to a 
long-range attraction between the single kinks. We can 
likewise take into account other forms of interaction, 
e.g., a Coulomb-type attraction between the kinks, an 
interaction which follows from the theory of elasticity. 
It leads to  the addition of the t e rm d l  to V(1). Such 
an interaction has been considered inr4951. 

Expression (23) loses meaning a t  small  1. If we 
formally introduce the parameter 1, for example, a s  

then, a s  1 -- 0, V(1) vanishes as well. 
Let us note the following circumstance. The equation 

(9) of the bottom of the trough is a modified time- 
dependent Ginzburg-Landau equation. The similarity 
becomes even more striking if we choose Uo(y) in the 
form of a polynomial of the fourth degree in y and 
introduce the variable T connected with s by the rela- 
tion dr = d s / ~ ( s ) .  In contrast to the usual Ginzburg- 
Landau equation, if we discard the time derivative, the 
equation contains a coordinate-independent t e r m  F. 
The analysis of the equation of the bottom of the trough 
may also be regarded a s  proof of the fact that the real  
solution to the modified Ginzburg-Landau equation is 
of the nature of a double kink. 

3.  TUNNELING PROBABILITY 

The transition probability is given by the well-known 
Feynman formular8]: 

where S is the action computed along the trajectories 
originating from the point y = 0 and ending a t  the point 
y = b. The summation is over a l l  the trajectories. In 
the quasi-classical limit we select from the sum the 
trajectories along which the action is stationary: 

In this sense the trajectories can be called classical, 
although no real  trajectory of a classical "particle" 
satisfies the imposed boundary conditions (the law of 
conservation of energy is violated). In the stationary 
formulation of the problem we a r e  forced to deal with 
an imaginary action. We must choose from al l  the 
classical trajectories originating from the point y = 0 
only that trajectory which gives a minimum imaginary 
part of the action. Furthermore, instead of the condi- 
tion y = b at  the end point, i t  is sufficient to require 
that the energy a t  the end point of the trajectory be 
equal to the initial value. After the transition the string 
will tend to slide down to  the position y = b of minimum 
energy. We shall not consider the energy-transfer 
mechanism, assuming that the string spends the major 
part of the time in overcoming the barr ier .  

Let us consider the classical  trajectories in the 
vicinity of the bottom of the trough. The Hamilton- 
Jacobi equation has the form 

We can locally separate the coordinate I along the 
bottom from the transverse coordinates qn. 

Going over to  the coordinates I and q ,  we obtain 

Here, m is the mass  of the "atom" ( m  = pa). The 
mass  M corresponding to the longitudinal motion can 
be determined from the expression (1) for the kinetic 
energy for the longitudinal motion : 

We find from (28) 

Substituting (21) into (29), we obtain 

The mass  M corresponding to  the longitudinal motion 
is equal in order of magnitude to 

where l I  is the length of a single kink. 
The variables a r e  approximately separable, s o  that 

we can write 

we obtain from this in the usual manner the conserved 
adiabatic invariants In for the transverse motions and 
the equation of the one-dimensional longitudinal motion 

The location of the minimum y = 0 corresponds to 
V(1) = 0 and dso/dl = 0. Therefore in equation (32) 
E, = 0 and 

So = i J V ~ M V ( Z )  dl.  (33) 

Formula (23) may be used in the integration over 1. 
The situation, however, becomes simplified if we take 
into account the fact that V(1) increases from zero to 
2V1 in the interval 

and then decreases linearly to  zero in the interval 

A1 - 2V,  / Fb. 

The important contribution to the integration is given 
by only the second interval in which we can replace 
V(1) by the linear function 2V1 - Fbl. Whence 

The transition probability, apart  from a pre-exponen- 
t ial  factor, is equal to 
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It is characteristic of tunneling that the entire V(1) 
curve, and not only the vicinity of the saddle point I,, 
is important for the computation of the probability. 

Clearly, quantum tunneling begins to  play a signifi- 
cant role below that temperature a t  which the proba- 
bility of quantum tunneling is equal to the probability of 
thermal activation WT - exp{-vo/~}.  There exists, 
however, some temperature range in which a complex 
process is most probable: f i rs t  thermal activation 
occurs with a change E in the energy, followed by 
tunneling. The probability of such a process is propor- 
tional to the product of exponential functions 

The most probable value of E is 

E ( T )  = 2V,  - '/,F2b'h' / MTZ. (37) 

It is clear from the expression (37) that tunneling with 
preliminary activation is realized only a t  temperatures 

In this temperature range the transition probability is 
expressible in the following manner : 

Formula (35) is valid a t  temperatures T < To, and 
the transition probability is temperature-independent 
(with exponential accuracy). 

Let us estimate the order of magnitude of In w 1 .  
To do this we use Guyot and Dorn's calculationr7] for 
the quantity V1 and determine the orders  of magnitude 
of K - ~a~ and p - m/a ( G  is the shear modulus): 

The factor standing before the ratio F p / F  character- 
izes the magnitude of the zero-point oscillations. It is 
clear from this that the quantum effects should be 
searched for in substances in which the amplitude of 
the zero-point oscillations is not too small. We must 
in the first  place point out crystals of the inert ele- 
ments, a s  well a s  of hydrogen, deuterium, and methane. 

4. TUNNELING AT STRESSES CLOSE TO THE 
PEIERLS STRESS 

At s t resses  F close to Fp, the potential relief does 
not have a pronounce trough, and the classical prob- 
lem cannot be solved by the method developed in Secs. 
2 and 3 .  In this case we can use the fact that the maxi- 
mum and minimum of the potential ~ ( y )  converge (see 
Fig. 5), and in the region of y of interest to u s  the 
Peierls potential U(y) can be approximated by a cubic 
polynomial 

U ( Y )  = a y  - ByS, (41) 

where CY = Fp - F,  f i  = Y61 Um(0) 1 (the derivative is 
evaluated a t  the saddle point of Uo(y)). 

The Hamilton-Jacobi equation has the following form: 

In the case under consideration E = 0. 
Let us  go over to the variables a ,  17 ,  and 5 con- 

nected with S, y, and x by the relations 

In t e rms  of these variables the Hamilton-Jacobi equa- 
tion (42) takes the standard form: 

To the optimal classical trajectory corresponds a 
certain value uo which does not depend on the parame- 
t e r s .  The transition probability is expressed in t e rms  
of uo and the parameters of the problem by the 
formula 

w - exp {-200a)'xp/ h p ) .  (45) 

The order of magnitude of 1 In w 1 can be estimated 
after finding a. from the solution of the variational 
problem. It turns out that a ,  5 5. Whence 

Let us  ascertain how w varies a t  nonzero tempera- 
tures.  As in the preceding section, we shall assume 
that the tunneling is preceded by thermal fluctuation 
which imparts an energy E to the string. Then the 
tunneling takes place along the trajectory defined by 
the Hamilton-Jacobi equation (46) with E * 0. We may 
go over to a dimensionless variable E connected with 
E by the relation 

Equation (42) goes over to (44) with one alteration: 
on the right hand side of (44) will appear e .  

Let us  define, as before, the saddle point q o  by the 
condition 

We denote the corresponding value v o / E 0  = Ys x 27'2 
x 3lI4 by 60. 

A schematic plot of the function a ( € )  is shown in 
Fig. 6. As before, the transition probability is defined 
as the product of the activation and tunneling probabil- 
ities 

w - exp ( - E E ~  I T - S S ~ U ( E )  / t i } .  (49) 

Minimization of the exponent leads to the equation 

Clearly, the solution of Eq. (50) exists in the tempera- 
ture  range 

In computing a ( € )  for 6 - 6, we can res t r ic t  our- 
selves to the quadratic neighborhood of the saddle point. 
The variables in the classical  problem a r e  in this case 
separable, and the motion along the direction of 
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steepest descent qo, which has an imaginary action, is 
real. a(€) is easily computed 

Whence 

At temperatures T > T, formula (49) goes over to the 
usual activation function 

w - exp (-eaEo I T);  (51 

5. TRANSITION PROBABILITY AT HIGH 
TEMPERATURES 

We shall investigate here in greater detail the high- 
temperature region. In particular, we shall determine 
the dependence on the s t r e s s  F of the pre-exponential 
factor in w for the two limiting cases  considered 
above. 

The transition is realized a t  high temperatures ow- 
ing to thermal fluctuations of the atoms, which lead to 
diffusion in the configuration space of the string. If in 
this case the dimension of the thermal fluctuations 
(e.g., the phonon wavelength) is much smaller than the 
characteristic dimensions of the configurations (e.g., 
the length 1 ,  of a single kink), then we can use the 
concept of diffusion of a chain of connected atoms. 

Let us write down the continuity equation for the 
distribution function f(yi) 

where the yi's a r e  the coordinates of the atoms of the 
chain, and the components Ji of the current density a r e  
equal to 

( D  is the diffusion coefficient). 
To determine the transition probability a t  small  F ,  

we use the data obtained in Sec. 2 on the potential 
relief. In the vicinity of the bottom of the trough, ~ ( y }  
is made up of V ( s )  and a quadratic form in the trans- 
verse coordinates qn: 

The variables in Eq. (52) a r e  separable, and the 
solution can be obtained in the form 

cp ( s ,  t )  satisfying the one-dimensional diffusion equa- 
tion 

We shall assume that f ( s ,  77 , t )  goes over to the equili- 
brium function zil exp{ -E( s ,  q )/TI a t  sufficiently 
large negative s ( Zo is a normalization factor). 

It is easy in the quasistationary approximation to  
solve Eq. (56) and find the current density Js: 

In order  to determine the total current,  we should 
integrate over a l l  the transverse coordinates. The 
integration over qn yields the factor 

The ratio z1/Zo can be computed if a specific model 
of the potential uo(y) is assumed. The order of magni- 
tude of the ratio can be estimated without recourse to 
a model: z1/Z0 - au:/T. It is also  necessary to inte- 
grate over the coordinate 77 corresponding to  the 
translation of the double kink as a whole along the x 
axis. It is convenient to change simultaneously to inte- 
gration over x instead of ql ,  and I instead of s in the 
denominator of (57). Integration over x amounts to  
multiplication by L, the length of the string. Then the 
current I is equal to 

Evaluating the integral with V(L ) from (23), we obtain 

The probability of production of a double kink is, 
for small  y ,  directly proportional to the s t ress ,  as has 
already been establishedr4p5], 

At large y 
Da31s (tio") ' 1 4  

I -  I'"2x'" F " * L ~ - v ~ T .  (61 

It is sufficient for the derivation of the last  result 
and the computation of the transition probability a t  even 
higher s t r esses  to know only the vicinity of the saddle 
point in the potential relief. The problem of the growth 
of a nucleating center has been considered by many 
authors in such a formulation, and the corresponding 
methods of computation have been well developed (see, 
for example, ~angerr ' ] ) .  

The expression for the current is obtained in the 
same way as (53): 

The factor 9 appeared as a result of the integration 
over the coordinate corresponding to  the displacements 
of the configuration a t  the saddle point yo(x) along the 
x axis. A small  shift 6x in functional space produces 
a displacement by = (a yo/ax) 6x of absolute magnitude 
( 6y 1 = (%/L)bx. Integration over x gives the total 
length L of the string. 

At s t r esses  close to Fp, Eq. (17) for the eigenvalues 
p n  can be solved exactly, and this makes it possible to 
completely determine the pre-exponential factor: 

6. CONCLUSIONS 

The principal results of the paper a r e  as follows. 
At sufficiently low temperatures the probability for 
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tunneling of a dislocation to a neighboring valley of the 
Peier ls  relief under the action of a s t r ess  F << Fp 

w - exp {-is/3~~l~1/Z/ f i ~ b ) .  (C.1) 

Here, V1 is the energy of a single kink, M is the ef- 
fective mass,  connected with the linear density p of 
the string and the shape of the single kink yl(x) by the 
relation 

the transition probabilities a t  high temperatures have 
also been found. 

The results obtained can be used to compute the 
velocity of dislocations in the following manner. The 
quantity which we calculated is actually the probability 
of formation of a double kink per unit time per unit 
length. Let u s  denote it by R. Let v be the velocity of 
the lateral  recession of the kinks. Then, the time t the 
whole dislocation takes to  tunnel to  the neighboring 
valley of the potential relief is equal to 

The indicated dependence is valid a t  T < To t - 1/1/7. (c.5) 
= ~ b f i / 4  m. Notice that the logarithm of the dislocation velocity 

J At T > To the tunneling is preceded by thermal is half a s  large as In w, a very important result in the 
i fluctuation, and the probability for such a complex estimation of exponentially small  effects. 
I process is The authors thank S. I. Anisimov, S. V. Iordanskii, 

(c.3) and A. P .  Kazantsev for useful discussions. 
i + 

For  T >> To the formula (C.3) goes over into the well- 
known activation function. 

Another limiting case for which an explicit expres- 
sion for the tunneling probability has been obtained is 
for a s t ress  F close to the Peierls s t r ess  Fp. In this 
case 

where uo is a number for which an upper bound has 
been obtained, o, < 5. Formula (C.4) is valid for tem- 
peratures 
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