
S O V I E T  P H Y S I C S  J E T P  V O L U M E  3 6 ,  N U M B E R  2 F E B R U A R Y ,  1 9 7 3  

ON THE KINETIC COEFFICIENTS 0 F A SUPER F L  UID FERMI LIQ UID 

Khar'kov State University 

Submitted December 24, 1971 

Zh. Eksp. Teor. Fiz. 63, 621-633 (August, 1972) 

The transport coefficieilts appearing in the equations of two-fluid hydrodynamics a r e  calculated for a 
superfluid Fermi liquid in Gor'kov's model. 

IN the study of a number of kinetic phenomena in 
superfluid Fermi systems, i t  i s  necessary to take into 
account those deviations of the distribution of quasi- 
particles from equilibrium whose characteristic relaxa- 
tion frequencies a r e  of the order of the frequency of 
collisions between the quasi-particles. An important 
example of kinetic characteristics associated with dis- 
tributions of this type a r e  the transport coefficients ap- 
pearing in the hydrodynamic equations of the theory of 
s ~ ~ e r f l u i d i t ~ ~ ' ~ .  These equations, which generalize 
Landau's phenomenological equations of an ideal super- 
fluid liquidC2] and which were derived (also on a 
phenomenological basis) to be applied to liquid helium, 
also turn out to be valid for superfluid Fermi systems. 
In the case of Landau's equations, this was shown 
inCs743, where they were obtained from the exact micro- 
scopic equations, with, in the case of a Fermi system, 
the role of the superfluid component being played by 
the condensate and that of the normal component by the 
gas of Fermi quasi-particle excitations. The dissipa- 
tive corrections to Landau's equations can be found 
when the residual interaction (after elimination of the 
self-consistent field) of the quasi-particles, which en- 
sures  the relaxation to equilibrium, is taken into ac- 
count. In this paper, these corrections, together with 
the kinetic coefficients occurring in them, a r e  calcula- 
ted for a neutral Fermi liquid with direct effective 
particle-particle interaction, described by Gorkov's 
~ a m i l t o n i a n ~ ~ ~ .  External fields a re  assumed absent. 
We succeed in obtaining expressions for the kinetic 
coefficients of this system in explicit form, and at the 
same time the specific features of the calculation of, 
e.g., the coefficients of second viscosity can be clearly 

where 

p. (r) = mv. (r) = 'I2mVx(r). 

To find the solution of the kinetic equation, we shall 
make use of the Chapman-Enskog scheme and shall 
seek the solution in the form of a se r i es  in gradients of 
the macroscopic quantities. As is well known, the 
starting point of this expansion is the assumption of 
local equilibrium in the zeroth approximation, which 
corresponds to small microscopic relaxation times 
compared with the "hydrodynamic" times under con- 
sideration. To construct the expansion, we must take 
into account that Eq. (1) contains two "kinetic" relaxa- 
tion times, and the form of y depends essentially on the 
relation between these timesCB3. These a r e  the time 
of formation of the quasi-particle condensate and the 
relaxation time T~ of the quasi-particles with respect to 
the momenta. Near zero temperature - T:, and 7 2  

is exponentially large; a s  the critical temperature is 
approached, increases like (Tc - T)-', whereas r2, 
while remaining finite, tends to i t s  value in the normal 
state. We shall confine ourselves to studying the region 
in which the condition << 7 2  is fulfilled, i.e., almost 
the whole range of temperature except a small  region 
about Tc; i t s  upper bound is determined by the condition 

A / T c S  IglmpF(T,Ier)%. (4) 

With this assumption, t imes long compared with a r e  
characterized in the zeroth approximation by a diagonal 
y in the representation of the locally uniform matrix ?. 
In mixed-representation variables, i t  has the form 

;(P, R) = o. 
( P + ~ Z P . ( ~ ) ) '  ~ ( ~ ) - I g l ~ ( ~ ) , + ~ , ~ ( ~ ) ,  ' 

2m 2 
seen. By introducing the p r o j e c t o r s A ~ ~ ( p ,  R) on to the 

We shall start  from the kinetic equation for super- proper subspaces of the matrix E ,  corresponding to the 
conductors derived inCB3, which is formulated for the eigenvalues 
matrix distribution function y (r, r') and has  the follow- 

& = o e + p v , ( R ) ,  e = l S ' + A z ,  E = p 2 1 2 m - - p ,  
ing form: 

p(R) = --'I~;(R) - i12mu.Z(R) + i/21gln(R), o = rt l ,  
(r, r') 1 at = (r)Y (r, r') - 1 (r, r') e (r') + iL"' {Y} (1) We can repre  sent in the form 

(here and below, we use the notation ofCB1). This equa- 
tion is supplemented by two self- consistency equations: r = z &fo. (5) 

A (r) = ' 1 2  1 g 1 Tr ( ~ y  (r, r) 1, (2) The two-component vector &(R, p) has the meaning of 
the quasi-particle distribution function and is deter- 

0 = Tr (ovy (r, r) ). (3) mined from the solubility conditions for the equation 
for the correction to the distribution function (5) that is 

The matrix ;(r) is given by the formula non-diagonal in the ;-representation. These conditions, 

E P + U . P . ( ~ ) ) ~  X(4-  Igln(r) +o=A(r) ,  in which terms linear in the gradients a r e  retained, 
u, 

2m 2 have the form of a pair  of standard kinetic equations: 
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af. ae, a f .  ae,  a f .  - + - - - - -  - I J f ) ,  
at a p  aR 8 ~  ap 

where 
L{f]  = Tr (BL") {D:i..fos 1). 

Complete local equilibrium is defined by the condi- 
tion 

and the corresponding distribution function is of the 
form 

( 0 )  f .  = I - n o ( ( e . - p v , ) / T ) ,  (7) 

where no(x) = (1 + ex)-', and vn(R) and T(R) a r e  the 
average velocity and temperature of the quasi-parti- 
cle s. 

We shall seek the nonequilibrium correction to fg '  
in the form 

f d " =  f,'" ( I  - f?' ~ c . , ( P ) .  (8) 

The equations determining qo(p) must again satisfy 
the solubility conditions, which, a s  is well known, a r e  
the hydrodynamic equations of the zeroth approximation 
and have the form of conservation laws. Corresponding 
with the dependence of the distribution (7) on four 
parameters, the solubility conditions form four con- 
servation laws: for the flux density j and the energy 
E C ~ ' .  

When the condition (5) is fulfilled to second order in 
the gradients, these quantities can be written in the 
form 

j = nv. + joy 

Since, to calculate the kinetic coefficients, we must 
know the fluxes occurring in the first-approximation 
hydrodynamic equations to second order in the grad- 
ients, we immediately write down the equations exact to 
this order. Without dwelling on the calculation, which 
can be carried out conveniently in matrix form in the 
coordinate representation, we remark only that the 
equations obtained preserve the form of the zeroth- 
approximation equations derived inC3741 : 

It is easily seen that corrections to the conservation 
, laws associated with the non-diagonal nature of y a r e  

of order r1/72 compared with the corrections associated 
with the nonequilibrium nature of the quasi-particle 
distribution function, and, because of the condition (4), 
a r e  not taken into account. In the approximation (5), the 
self-consistency condition (2) has the form 

a s  regards condition (3), in  this approximation i t  is 
satisfied identically, and this leads to an indeterminacy 
in the problem (we need an equation determining the 
phase x(R) of the order parameter). This difficulty is 
connected with the well known fact that the approxima- 
tion (5) is not sufficiently accurate for the continuity 
equation 

to be fulfilled for  the particle density n(R) defined by 
the relation 

n ( R ) =  j $ [ l  - ~ r ( o , y ( ~ . ~ ) )  I .  (15) 

Indeed, i t  is not difficult to see  that Eq. (14) does not 
follow from the kinetic equation (6), although in general 
form it  is a consequence of Eqs. (1)-(3). This makes it 
possible to t reat  the continuity equation, which, in the 
approximation (5), is independent, a s  the missing equa- 
tion for the phase of the order parameter. In local 
equilibrium, the fulfilment of (14) means that the quan- 
tity p ,  occurring in  the formula for yo and connected 
with the phase by the relation 

is the chemical potential of the true particles. Equa- 
tions (9)-(16), with f, given by the expression (7), a re  
a complete system of zeroth-order hydrodynamic equa- 
tions. 

To perform the subsequent calculations, we shall 
introduce a limitation on the velocities of the normal 
and superfluid components: namely, we shall assume 
that their difference v = vn - vs is small compared with 
the critical velocity vcr - In this approximation, 
the problem has spherical symmetry, and as a result 
the structure of the dissipative t e r m s  is simplified, 
leading to agreement with the equations ofC1'. 

The nonequilibrium correction to  Eq. (16) i s  found 
from the following arguments. We fix the four arbitrary 
constants on which the solution of the kinetic equation 
depends by the conditions j;'' = 0 and E:" = 0 where jA1' 
and E:' a r e  the non-equilibrium corrections to jo and Eo 
respectively. Then, by virtue of Eq. (14), the correc- 
tion n"' to the particle density must also be equal to 
zero. This equation, together with the self-consistency 
equation (13), determines the correction 6 A  to the 
equilibrium value A and the correction to Eq. (16), 
which we denote by bp. 

We write this system in explicit form: 

where F denotes the right-hand side of Eq. (13) with fo 
from the equality (7), and 

d~ I a& U E  
n1 = - n o ( )  no ( - 1  P (18a) (h) 

lgl d p  F ' - ~ J  (2n) ~ ~ ~ ( ~ ) n o ( - $ ) v o ( ~ ) .  (18b) 

The linearized kinetic equation for the nonequilibrium 
correction to the distribution function, after certain 
transformations of the left-hand side using Eqs. (9)-(16) 
and also the thermodynamic relations in local equili- 
b r i ~ m ~ " ~ ] ,  i s  brought to the form 



au,, av,, 2 ' ' l P h  - + - - - 6,. div v,, 
d d n .  3 

+,~&l(-!?\ d - v i f  
? 

the general case. We shall therefore seek the solution 
in two limiting cases: a t  temperatures close to zero, 
and at temperatures close to Tc. Correspondingly, the 
kinetic coefficients will also be calculated in these two 
regions. 

+ ($) ,i$) ) ] .)]iv u 1 = 1.r~ The coefficient of f i rs t  viscosity 77 is determined by 
the tensor par t  of the general solution of Eq. (19); we 

where s is the entropy density; the linearized collision represent this part in the form: 
integral F, has the formC6' : 

x b(ue + u,e: - ole1 - u ~ E ~ )  In view of the fact that the nonequilibrium correction to 
the momentum-flux tensor n;ik is connected with q by 

E 5 + A 2  I - u , o 3 - ) n o ( - ~ ) n 0 ( - ~ )  ELEJ the relation 

u ( 0;) (20) av,, 2 
x n o  - no - [ cpo(p)+cpq(~z ) -cpO, (~~) -cp , (~s )~ .  n:,:' = -q (3 + - dR, - - 3 6,. diu v,, 

. - .  
To transform the-collision integral, we note that i t s  
kernel i s  symmetric with respect to  interchange of the 
indices 1 and 3. This makes i t  possible to integrate 
both the 6-functions occurring in the kernel: 

j j j d p I  dp2 dps 6(p + pe - PI - p3) b(ue + UrEz - U,E, - ~ 3 ~ 3 )  

dq, dq sin 0 dB ' I U E  + UZEZ - U I E I I  
= ma j 

cos 012 I [ (or + U,E; - E )  - 4'1'" ' 

where 6' and cpz a r e  the angles defining the direction of 
the vector pz in the spherical coordinate system as- 
sociated with the vector p; cp is the angle between the 
planes formed by the vectors p, pz and p,, pC81; the 
prime on the integral over the energies l imits the 
range of integration by the condition 

Equation (19) is a system of two integral equations 
determining the two-component function cpa(p). Certain 
simplifications of this system a r e  associated with the 
symmetry properties of the solution. From the expres- 
sions (lo),  (12) and (18) determining the fluxes, i t  can 
be seen that in them a part  of the solution that i s  either 
even o r  odd in the index a appears. For such functions, 
a s  follows from (20), Eq. (19) is decoupled into two in- 
dependent equations, which pass  over into each other on 
replacing a - -a. Below, in all the energy integrals 
encountered, we shall go over to dimensionless varia- 
bles, and then the lower limit, equal to - p / ~ c  in order 
of magnitude, can be extended to -.o because of the 
rapid convergence of these integrals, thereby establish- 
ing a symmetric range of integration. Taking this into 
account, i t  i s  not difficult to see  that the fluxes a r e  de- 
termined by solutions of definite parity in the variable 
5 ,  which makes it possible to simplify the kernel of the 
operator (20) and, confining ourselves to the region 
5 > 0, to go over to integration over the more conven- 
ient variable E.  We note also that the integral operator 
(20) carr ies  over to the solution, without change, the 
symmetry of the inhomogeneous term in the variables 
a and 5 ,  thereby realizing a selection rule which supple- 
ments the selection rule in the tensor dimensionalities. 
Even with these simplifications, Eq. (19) remains s o  
complicated that it is impossible to find i t s  solution in 

the f i rs t  viscosity coefficient is expressed in terms of 
qa(5) a s  follows: 

Firs t  we shall consider temperatures close to zero,  
when the parameter u = A/T  i s  great: u >> 1. 

We go over to the dimensionless variable €/A - E 

and introduce the function connected with cp,(5) 
for 5 > 0 by the relation 

Then the equation for JIB(€) takes the form 

For large u, the integrand of the matrix K,, u7 contains, 
in the principal approximation, exponentials which de- 
crease  rapidly on moving away from the boundaries of 
the integration. The number of these exponentials, 
which i s  different for different matrix elements, deter- 
mines their order of smallness in the parameter e-U. 
It is easily verified that the element K+- with the range 
of integration 1 s  el 5 E - cz-  1 has the maximum 
(zeroth) order. Since EZ 2 1, i t  follows from the form 
of the range of integration that this element gives no 
contribution to the equation for c < 3. At the same time, 
i t  can be seen from (21), rewritten for the function 

that the region close to E = 1 gives the important 
contribution to the integral. Therefore, the principal 
contribution to the solution is made by elements Kalaz 
of f i rs t  order, i.e., the kernel of the collision integral 
is effectively exponentially small. The subsequent 
transformations reduce to taking the slowly varying 
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factors multiplying the truncating exponentials outside 
the integrals, after which, by the replacement 

the integral operator of Eq. (22) is brought to  a sum of 
operators decreasing according to a power law (in the 
parameter 6'). Retaining the principal term in this 
sum, we obtain for ua(7) the following simple equation: 

Substituting (23) into (21) and putting A equal to i t s  value 
A, a t  T = 0, we obtain 

e4 

4nv4 Ca = j dr e-' vn (r) . rl = T S o z  (25) 
0 

At temperatures close to Tc, the parameter u is con- 
fined within the limits A ( T ~ / E ~ ) ~ "  << u << 1. It i s  clear 
that, a s  Tc is approached, the coefficient 17 tends to i t s  
value g o  in the normal state and interest  centers on the 
nature of the dependence on A of the first  correction to 
qo at temperatures below Tc. 

It is convenient to introduce a function of the 
dimensionless variable E/T --t E ,  connected with %(E) 
by the relation 

The function satisfies the equation 

-no (e) no (-e) = f(u) @., fiu) @. =. - dez R(U; e, olez) 

For u = 0, the equation is simplified: 
-no (e) no(-e) = lo@., 

O 

It can be shownr8' that the solution @: of this equation 
is positive and tends to a constant a s  E - 0: +:(0) 
= 5/2n2. 

Substituting (26) into (21), we have 

For  T = Tc, we have 

To find the correction, we differentiate (30) with 
respect to u and, making u tend to zero, obtain 

C, = - de no (e) no (-8) @: (6) , (32) 
0 

where @i(~) is the u = 0 limit of the derivative with 

respect to u of the solution of Eq. (27). This function i s  
determined from the equation obtained by differentiating 
(27) with respect to u and then making u tend to zero. 
The equation obtained has  a cumbersome inhomogeneous 
par t  

in which, however, there is only one term 

that does not go to zero for u = 0 (the remaining terms 
a re  linear in  u). Keeping only this term, we obtain 

- - 
It is not difficult to convince oneself that the numer- 

ical function @g(c) that is the solution of this equation 
has no singularities and is negative. 

Integrating (32) and combining i t  with (31), we finally 
obtain 

In the calculation of the thermal conductivity coeffi- 
cient K occurring in  the nonequilibrium correction to 
the energy flux (12) 

only the term odd in 5 and proportional to VI in the 
left-hand side of (19) plays a part. The even term along- 
side i t  appears in the supplementary condition j!," = 0 
and determines the vector constant of the general solu- 
tion. In analogy with the preceding discussion, we in- 
troduce the function (p,(<) by the relation 

The calculation of (p,(5) at temperatures close to 
zero is completely analogous to the calculation per- 
formed in the determination of 7 ,  and gives finally 

Unlike 11, which is finite a t  T = 0 (formula (25)), the 
thermal conductivity is inversely proportional to the 
temperature, just a s  in 'a normal Fermi  liquid[']. 

Near Tc, the equation for the function as(€) ,  connec- 
ted with (p,(() by the relation 

is analogous to (27): 

fiu) Q, = - j de2 K (u; E ,  u2e2) 

. . 

For u = 0, this equation has the solution @L(E), which 
tends linearly to zero for  small  E: @;(E) = 9d4n2.  This 
behavior of @L(E~ leads to the result  that, a s  investiga- 
tion shows, the inhomogeneous part  of the equation for 
a;(€) does not contain divergent integrals reducing i ts  
order in u, and therefore @ $ ( E )  i s  proportional to  the 



f i rs t  power of u. We shall not write out the explicit 
form of the equation for @;, in view of i ts  unwieldiness; 
we point out only that &$ has no non-integrable singu- 
larities. The thermal conductivity coefficient is ex- 
pressed in terms of @,(€): 

and in the case u = 0 is equal to 

Denoting @; = ugs, where gs is a numerical function, 
we obtain the f i rs t  correction to K~ associated with the 
deviation of A from zero in the form 

x = ? c O ( l -  PA2/TC2), 

1 - ( 4  fl = - [JdE no(E) no (-E); - dE no (E) no (-P) E m .  (E) . (35) 2cs 0 - 1 
2. THE SECOND- VISCOSITY COE FFIClENTS 

To determine the second-viscosity coefficients, i t  i s  
necessary to calculate the quantities defined by the 
equalities (18). These expressions depend on the scalar  
part  of the general solution of Eq. (19). We f i rs t  con- 
sider the case of zero temperature. 

The function odd in 5 appearing in nl is determined 
by an equation whose inhomogeneous part, after the 
thermodynamic derivatives appearin in the left-hand 
side of Eq. (19) have been calculatedgg1 and the small 
quantities (- TE; exp (- A/T)) have been discarded, 
takes the form 

The right-hand side contains a collision integral, 
which, being written for a function 

of the dimensionless variable €/A - E, has the same 
form a s  the right-hand side of Eq. (22), apart  from the 
factor 1/5 multiplying #a(~2) ,  which originates from the 
angular part. Substituting the solution of this equation 

$. (E) = ue-"v, (T) 

into the expression (18a), we obtain 
8nZCspF5 

n,=- div ( j  - nv,) . 
3k2nmA2 

It is found that the second viscosity, in the approxi- 
mation used, i s  determined entirely by the expression 
(36). To convince ourselves of this, we estimate the 
order of F1. The function occurring in F1 that is sym- 
metric in 5 is determined from an equation whose left- 
hand side, after the appropriate transformations of the 
expression (19), i s ,  to within a numerical factor (small 
terms - A  and smaller a re  also omitted), equal to 

The above-mentioned equation is reduced, by means of 
transformations analogous to those which led to Eq. 
(24), to an integral equation that does not contain any 
parameters and whose solution is smooth and deter- 
mines the numerical constant, unimportant for us, in F1. 
Omitting it, we obtain for F1 the estimate: 

where C is a certain dimensional constant associated 
with the existence of the solution o r  of the homogeneous 
equation corresponding to Eq. (19). To eliminate i t ,  we 
make use of the condition EP' = 0: 

We can represent the quantity El in the form 

It i s  easy to convince oneself that E; goes to zero a t  
T = 0. Substituting the expression for  E l  into (37) and 
solving this equation consistently with Eqs. (18), we ob- 
tain 

Thus, only one second-viscosity coefficient 5 ,  defined 
by the relation 

6p / m = -5 div ( j  - nv,) 

is non-zero (the relative order of the other second- 
viscosity coefficients is T A ~ / A ~ ~ ) .  If (36) and (38) a r e  
taken into account, i t  is equal to 

We now find the par t  of the solution of Eq. (19) close 
to Tc that i s  odd in 5.  We introduce the function q (5)  of 
the dimensionless variable [/Tc - 5 ,  related to cpu(() 
by: ~ ( 5 )  = o ( p , ( 5 ) -  

Omitting the unimportant t e rms  in the collision in- 
tegral (20), we write i t  in the form: 

uZ ff. 
x [ ( f  -ou2-)rp(t)- - -m(lZ)]. (40) 

E E z  Y t2 + uVIlg2 + u2 

where K(u; x, y) is given by expression (28). The behav- 
ior of the solution for s_mall u can be understood quali- 
tatively if we note that I: is made to vanish by the 
function qo = const. In fact, this means that the resolv- 
ent of the operator (40) a s  a function of u has a pole a t  the 
the point u = 0 and, consequently, the solution of Eq. 
(19) obtained by the action of the resolvent on the in- 
homogeneous par t  increases as a function of u a s  u ap- 
proaches zero, if the inhomogeneous term has a non- 
zero projection on qo. For  u # 0, the inhomogeneous 
term is not orthogonal to cpo, this being connected with 
the non-conservation of particle number by the collision 
integral and with the fact, noted above, that the con- 
tinuity equation is independent of the kinetic equation 
(6). By calculating the thermodynamic derivatives in 
(19) and retaining the principal par t  in the inhomogene- 
ous term, we write the equation for q({) in the form 

prZ no(oE)no(-u~)- div(j - nv,) = 7 . 0 ~  + ti?.(u) rp, (41) 
3mnT, 

where 6f,(u) = f,(u) - fg. Introducing the scalar  prod- 
uct by the formula - 

( f , g ) =  ~ ~ ~ f o ( E ) g a ( E ! ,  
0 0 

we expand q ( 5 )  in the eigenfunctions cpk of the operator 
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ii. Then it i s  clear from what has been said that the 
dominant contribution to the solution for u -- 0 will be 
given by the term with cpo, which is easily found by ex- 
panding both sides of the equation in the se t  of functions 
pk, and in the principal approximation we obtain 

where a,, is the projection of the inhomogeneous term 
on cpo. Taking into account that cpo = const, after a sim- 
ple calculation of the integrals occurring in  (42), we 
find 

1 6pp1 
CP(S)= - div ( j  - nv.) . 

31ZnmTT,"u 

Substituting the solution found into (18a), we obtain 

n, = 8p"S div ( j  - nv,) . 
3k2nmT,A 

We shall show that the second viscosity i s  deter- 
mined entirely by the expression (43), a s  for T = 0. To 
within numerical factors, the inhomogeneous term of 
the equation for the part  of the solution even in 5 is 

at the critical point. But, a s  a whole, the term describ- 
ing the second viscosity goes to zero in proportion to A 
at the critical point (like the correction to the first- 
viscosity coefficient also), since i t  contains the factor 
div(j - nvn), which decreases in proportion to A' near 

In conclusion, we write out the complete system of 
first-  order hydrodynamic equations, denoting the equili- 
brium fluxes by the index "zero": 

an/at + div j = 0, 

dE 
-+divQ'O'= div [ x V T ] ,  

d t 

The transport coefficients occurring in this system a r e  
determined by the formulas (25), (33)-(35), (39) and (46). 
(46). 

The author is indebted to V. P. Galaiko for raising 
the problem and for much valuable advice. 

and is singular at zero. Analysis of the equation shows 
that i t s  solution is also singular at  zero: (p(5) - 5-' a s  
( - 0, and this leads to divergence of the integral in 
(18b) a s  u - 0. When the contribution of the homogene- 
ous solution is taken into account, the estimate for F1 
has the form 

IT 
divj+.~. 

Fi - h2nmT,A 2 (44) 

The constant appearing here i s  again eliminated with the 
help of Eq. (37), in which E: is given by the estimate: 

E,' - pa3 div j - mp, T2C. 
13n 

As a result, Eq. (18b) acquires the form 

a~ I ~ I P  an - 6 P - - - 6 A  - - 
d p  2 T , Z a A  

div j. 
iZnmT,A 

Solving it consistently with Eq. (18a), we obtain 
paZ paPTc 6 p = - - n r ,  6 A - -  div j .  

3mn hZnm AZ 
(45) 

In the expression for t i p ,  we have omitted terms of 
order % / A A ~ '  relative to the term describing the first  
viscosity, which a r e  small by virtue of the inequality 
(4). From (45), the same estimate also follows for the 
second-viscosity coefficients occurring in the flux con- 
servation law (9) and contained in  the term ~ b ~ / m l g l .  
Substituting (43) into (45), we obtain the coefficient t in 
the form 

Attention is drawn to the singularity of this coefficient 
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