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The structure-sensitive par t  of lattice sums, in which the main role is played by the t e rms  corre- 
sponding to the f i rs t  coordination spheres, is investigated. By means of a universal pseudo-potential 
containing no adjustable parameters,  the binding energies of non-transition metals a r e  calculated, 
for five symmetric lattices, in  the second approximation of perturbation theory. The results make 
i t  possible to exclude from each group the structures which do not occur in nature, but the prediction 
of the details of the polymorphism of simple metals requires considerable refinements. 

1. Pseudo-potential theory has turned out to be ex- 
tremely fruitful for understanding the properties of 
non-transition metals, the valence electrons of which 
a re  in s- and p-statesC'l. It is fundamental to the theory 
that the dimensions of the region in which the effective 
self-consistent interaction potential of a conduction 
electron with the force centers of the lattice is great 
be small compared with the distances between the cen- 
ters. In this case, in a large par t  of the volume of the 
metal, the electron moves as a free electron, and the 
effect of the potential is manifested here only through 
i t s  scattering amplitude, s o  that one can introduce a 
comparatively small effective pseudo-potential and apply 
perturbation theory (Vq 5 cF). 

In principle, perturbation theory makes i t  possible to 
carry  out a complete calculation of all the characteris- 
tics of the metal, including the electron spectrum, the 
total energy of the crystal and the phonon spectra. The 
expression for the energy of the metal i s  a sum over all 
the reciprocal-lattice vectors of expressions containing 
matrix elements of the pseudo-potential between these 
vectors, i.e., we require a knowledge of the behavior of 
the matrix element in  the whole range of variation of 
i t s  argument. 

In practice, in the most successful of the pseudo- 
potential calculations that have been carried out, the 
semi-empirical expressions for the pseudo-potential 
have used one o r  several  parameters,  which have been 
adjusted individually for each metalC2]. It has been 
found that the influence of non-local effectsL3] and of 
the third perturbation-theory approximationC41 a re  im- 
portant. 

1nC5', a universal estimate-formula was obtained for 
the matrix elements of all the non-transition metals: 

ous introduction of a pseudo-potential is impossible. 
The idea a r i ses  of using a model pseudo-potential, 
having selected i t s  parameters  s o  that i t  coincides with 
formula (1) close to the universal value qo. 

However, one can convince oneself that the model 
potentials usually used, which have in coordinate space 
the form of the Coulomb potential with a short-range 
potential (e.g., the Heine-Abarenkov potential), always 
give a slope at the point qo that is smaller than i t  should 
be from formula (1). This i s  connected with the fact 
that the matrix element (1) arose not a s  the result of 
some weak potential but a s  the result  of cancellation of 
the effects of extremely strong resonance scattering of 
s- and p-waves. 

Because of this, i t  is interesting to investigate the 
information about the energy of lattices that i s  given by 
the potential (1) without any adjustments. In this paper, 
values of the energies for five symmetric lattices 
(three cubic, the diamond and the hexagonal close- 
packed) a re  compared for all the non-transition metals 
of the periodic system. The calculational formulas a r e  
simplified and approximated s o  a s  to use  only the reg- 
ion where the pseudo-potential is well defined. 

2. We shall consider the expression for the band- 
structure (BS) ener  y in the second approximation of 

kll perturbation theory : 

where F(q) i s  the characteristic function 

and Nc is a so r t  of weighting factor, equal to the num- 
ber of reciprocal-lattice s i tes  on a sphere of radius g. 
It is convenient to consider the function 

with the universal slope avq/aq2 = l/nZ. The experi- N , ( ~ ) = C  ~ ~ ( g ) ,  

mental values of the matrix elements for simple metals, Iel<q 

found from Fermi-surface measurementsC6' and optical which is equal to the total number of reciprocal-lattice 
measurementsL7', a re  satisfactorily described by the s i tes  falling inside the sphere Ig( = q. For large q in 
estimate-formula fromLs1. In effect, formula (1) defines the sum ( Z ) ,  the kontribution that is sensitive to specific 
the position of the zero of the potential curve and i t s  features of the lattice structure is relatively small and 
slope close to the zero. Outside the region about qo in the limit the function Nt is simply an integral corre- - m k F ,  the modulus of Vq is not small and a rigor- sponding to the volume of the sphere: 
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where 4nq3,/3 is the volume of a unit cell of the recipro- 
cal lattice. 

Calculation of the principal volume part  of the energy 
and of the bulk modulus by the perturbation-theory 
method is very unreliable and requires that the higher 
approximations be taken into account. Calculations by 
the Wigner-Seitz would be the most consis- 
tent. In the present paper, we shall take the values of 
the equilibrium specific volume no from experiment. 

The positions of the atoms in the lattice a r e  smeared 
out because of the zero-point o r  thermal vibrations of 
the atoms. The structure factor is then simply multi- 
plied by a damping factor 

D(A, q) = e-W is the Debye- Waller f a ~ t o r " ~ ' ,  which 
multiplies the structure factor when the lattice vibra- 
tions a r e  taken into account and is of the order of mag- 
nitude of the mean amplitude of the atomic vibrations. 
The Debye-Waller factor eFW can be calculated rigor- 
ously for each specific lattice, if we know i t s  vibration 
spectrum. One often uses the isotropic Debye model, 
for which, for high temperatures, W = 3q2~/2M02,  where 
M is the ionic mass and @ is the Debye temperature. 

For  orientation, we estimate the magnitude of W at  
the melting temperature b applying the rather crude 
"Lindemann criterionW~l0ji, which states that symme- 
tric lattices begin to melt when the ratio x m  of the 
amplitude of the thermal vibrations to the radius rs of 
the cell associated with one atom becomes approxi- 
mately equal to y4. Then the melting temperature i s  

Using this Tm, we obtain for W an estimate from which 
we find the dependence on the lattice structure: 
W = (qrS)'x&/6. 

It i s  convenient to introduce and estimate the effec- 
tive number of s i tes  N* making an important contribu- 
tion to the sum (2) (and to relate A and N; at the same 
time) : 

Finally, taking into account that (4nr3,/3) x (4nq3,/3) 
= (2n)', we obtain for x = l/, the value Nz - 1/2X3, - 30. This value is unexpectedly small and shows that 
the most important role in the structure- sensitive part  
of the sum (2) is played only by the f i rs t  three o r  four 
coordination spheres. 

At low temperatures, the coefficient of q2 in wClol is 
approximately a factor of four smaller (W = 3 q 2 / 8 ~ o )  
and the range of g contributing effectively to the struc- 
ture-sensitive par t  of the sum (2) is correspondingly 
somewhat broadened (since Nt - w - ~ "  , we have 
Ni(T = 0) - 250). 

From a formal point of view, the combination of 
wO(q) with the damping factor D(A, q) generates a class 
of pseudo-potentials w*(q, A) = w(q)e- W, depending on 
the smearing parameter A. Usually, the model pseudo- 
potential is chosen such that the contribution to the sum 
from the region q 2 5 k ~  is negligibly small. 

To solve the question of which structure is stable 

under given conditions, we may expect the best results 
by applying the method of successive approximations. 
Given an estimate of the Debye-Waller factor, instead 
of the energy (2) we, must calculate for a given tempera- 
ture the free energy and phonon spectrum, and then re- 
peat the calculations with a more accurate Debye-Waller 
factor, which can be calculated for an arbitrary phonon 
spectrum. 

Since in the calculations we a r e  oing to use the 
rough-estimate pseudo-potential ofA1, we can lower 
the requirements for the accuracy of the calculational 
formulas and reject  the method of successive approxi- 
mations. Actually, the matrix element of the pseudo- 
potential is uniquely defined only in the vicinity of qo, 
where cancellation of the s- and p-scatterings occurs. 
Outside this region, perturbation theory i s  inapplicable; 
moreover, since the scattering amplitude becomes 
essentially complex, effects associated with the non- 
local nature of the pseudo-potential become important. 
By artificially increasing the "smearing" in such a way 
that the main contribution to the integral is onl from 
the range about qo within which the potential ofe1 is de- 
fined, we eliminate these complicated effects a t  the 
same time. 

N: - 10 corresponds to this condition. In calcula- 
tionai respects, the method described i s  an application 
of the Ewald method to the calculation of lattice sums 
with arbi t rary  functions. Usually, the Ewald method 
has been applied to the calculation of the lattice-struc- 
ture dependence of the Madelung constant in the electro- 
static energy 

A calculation of the dependence of (YM on the damping 
factor (the same factor as for EBS) served as a check 
on the accuracy of the calculations. In order to ensure 
accuracy in the energy of the order of atomic units 
(the order of magnitude of the melting temperature), i t  
i s  sufficient to take N; > 10. 

Clearly, such calculations can no longer hope to ex- 
plain effects connected with the influence of tempera- 
ture and of small pressures  p s Tm/Ct0, since the 
corresponding "Debye- Waller factor" formally corre- 
sponds to temperatures higher than the melting tem- 
perature Tm. 

3. Thus, we arr ive  a t  the following calculational 
scheme. Assuming the value of the equilibrium density 
to be known from experiment, we calculate the BS en- 
ergy from formula (2), but replace Nc everywhere by 
N,* = ~ ~ e - ~ ~ .  In the calculations for w(q) we have 
used the two expressions given int5] : 

1) a pseudo-potential estimated from f i rs t  princi- 
ples: 

2) Harrison's model pseudo-potential with the 
parameter B determined from the condition w(qo) = 0: 

Q0 is the volume of the unit cell and Z is the valency 
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FIG. 1. Dependence of k~ of the energy difference between the 
diamond and hexagonal structures (0) and between the simple cubic 
and hexagonal structures (a) for the potential ( la) and N f =  13. 

It is sufficient to perform the calculations of the sums 
for fixed volume only in the second perturbation-theory 
approximation, since, because of the effect of the damp- 
ing factor, w*(q) = we-W and w P * ( ~ )  = wB e- a re  
everywhere small compared with ~ f ,  for  the non-tran- 
sition metals. In Fig. 1 a r e  given the results of the 
calculations of the total energy E = Ee + EBS of differ- 
ent symmetric lattices a s  functions of k~ (i.e., in effect, 
of the specific volume) for the valency values 
Z = 1,  2, 3, 4 and 5 for the pseudo-potential estimated 
from first  principles and with the damping-function 
parameter Nr = 13. 

The values of k~ were chosen to correspond to the 
non-transition metals of each group. The symbols for 
the metals a re  shown in Fig. 1. The interpolation be- 
tween the points corresponds to variation of the specific 
volume. For convenience, we have plotted the differen- 
ces between the calculated energies of the structures 
and the energy of the close-packed hexagonal structure. 

As can be seen from the Figure, for all the elements 
the diamond and simple cubic lattices can be eliminated 
as energetically unfavored. The same results were ob- 
tained in calculations with Harrison's model potential 
and with the damping-function parameters = 13 and 
Nf = 35. The differences between the energies of the 
close-packed lattices (see Fig. 2) were found to be 
much smaller than the upper bound of the e r r o r  of the 
calculations (which is of order lo-' eV). These small 
differences a r e  more sensitive to the parameters  N; 
and to the choice of expression for the pseudo-potential. 
Nevertheless, unexpectedly good general agreement 
with the available experimental information on the poly- 
morphism of metals, collected in the survey by 
~ v d o k i m o v a ~ ' ~ ~ ,  is obtained. Thus, for the second 
group, all the variants of the calculation predict the 
hexagonal close-packed structure in agreement with ex- 
periment. 

0 - 1.1 1.2 
As kp, at. un. 

FIG. 2. Dependence of k~ of the energy difference between the 
BCC and HCP structures (0) and between the FCC and HCP structures 
(0) for the potential ( la)  and N r =  13. 

For  the metals of the first ,  third and fourth groups, 
by varying the parameters  and choosing an appropri- 
ate form of the pseudo-potential, we can always select 
the correct alternation of close-packed phases for each 
metal. In this sense, the statement by Heine and 
weaireCZ1 that the preferred close-packed structure i s  
determined entirely by the positions of the node of the 
pseudo-potential is too categorical. 

The light group-four elements C ,  Si and Ge a r e  
dielectrics and form a lattice of the diamond type with 
strong covalent bonds. Carbon in the metallic phase 
forms the graphite lattice, which has not been studied 
in this work. P b  and Sn give close-packed lattices. 

Of the group-five elements, Sb displays a hexagonal 
close-packed lattice under pressures  greater than 
90 kbar. In general, however, for metals of this group, 
different forms of distortion of a lattice of the simple 
cubic type a r e  characteristic. Allowance for the distor- 
tions of the lattice for arbi t rary  deformations is inti- 
mately connected with the analysis of the phonon spec- 
t r a  and has not been made here. It is possible that the 
discrepancy of the order  of 0.1 eV per atom between the 
calculated values and the experimental data i s  due not 
only to the presence of distortions, but also to the pres- 
ence of covalent bonds. 

4. The purpose of the present work was to investi- 
gate the information given about the most favored struc- 
ture of metals by the "ab initio estimate" pseudo- 
potential obtained inC5'. The separation of the struc- 
ture-sensitive par t  of the total energy by means of a 
crude "smear ing '  procedure made i t  possible for suffi- 
ciently large "smearings" (small  values of Nf of order 
10) to use the pseudo-potential ( la) obtained from f i rs t  
principles, and to establish that, among the symmetric 
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structures, the close-packed structures (BCC, FCC 
and HCP) a re  indeed energetically more favored than 
the diamond and simple cubic structures. 

Harrison's model potential gives the same alterna- 
tion of phases, but, possessing better convergence than 
potential (la), is less  sensitive to the choice of the quan- 
tity $. 

There is no doubt that adjustment of the parameters 
w* for  each individual element can make i t  possible to 
achieve complete agreement with experiment. On the 
other hand, i t  i s  unlikely that any single pseudo-poten- 
tial for all  the metals could improve the general agree- 
ment with the experimental data for the whole periodic 
system. We should like to emphasize that, from the 
point of view of the method of successive approxima- 
tions, referred to above, the effective potential should 
include a Debye-Waller factor calculated using the ac- 
tual phonon spectrum of the given lattice. The effective 
pseudo-potential i s  thus found to depend on the specific 
lattice structure, and an improvement of the results of 
the calculations of the present work should contain not 
only a replacement of the estimate-formula (1) by a 
more accurate formula taking into account the deviation 
f rom exact resonance in the expressions for the scat- 
tering amplitude, but also a consistent calculation of the 
phonon spectra. 

We express our gratitude to G. L. Krasko for useful 
discussion of the initial stages of the work. 
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