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Acceleration of impurity ions of various masses and charges upon expansion of a rarefied plasma into 
vacuum is investigated. Acceleration of the ions is produced by a self-consistent electric field arising 
during expansion of the plasma. It is shown that as a result of acceleration a considerable part of the 
impurity ions may acquire energies of the order of l ~ ~ - l ~ ~  Te, where Te is the plasma electron tem- 
perature. Excitation of self-similar and ion-sound waves is investigated. Results of numerical calcula- 
tions are presented. 

1. INTRODUCTION 

WHEN a rarefied (collisionless) plasma expands in 
vacuum, the electrons strive to overtake the ions. This 
results in an uncompensated space charge and in an 
electric field that decelerates the electrons and acceler- 
ates the ions. The plasma expansion process was con- 
sidered by u s  earlierC1], and we have shown that it is 
scale-invariant (self-similar) and is described by a non- 
linear equation for the ion distribution function: 

Here ul = V , ( ~ T ~ Z , / M ~ ) - ~ ~  is the dimensionless velocity, 
(vl = v,J, T = X ( ~ T ~ Z ~ / M ~ ) - " / ~ ,  Te is the electron tem- 
perature, Mi is the ion mass, eZl is the ion charge, and 
x is the direction in which the plasma expands. Further, 
gl = F(x, vx, t), where F is the distribution function 
of the ions with respect to the velocity v,. By virtue of 
the scale invariance of the problem, the function g de- 
pends only on the ratio x/t - T. In the derivation of (1) 
and (2) it is also assumed that the characteristic dimen- 
sion of the inhomogeneity is much larger than the Debye 
radius in the plasma, 

shows that part of the ions in the strongly rarefied reg- 
ion is noticeably accelerated by the action of the elec- 
tric field. It is obvious, however, that the acceleration 
of the ions by the electric field depends strongly on 
their mass and charge. One can expect, for example, 
multiply charged impurity ions to acquire the highest 
energy when the plasma expands. The present paper i s  
devoted to an analysis of the problem of impurity-ion 
acceleration in a plasma. 

2. ACCELERATION OF IMPURITY I O N  

We assume that in addition to the main ions, of mass 
M1 and charge Z,, the plasma contains also a small ad- 
mixture of ions of mass & and charge &. The 
impurity- ion distribution function g2(uz, T) is described 
by the equation 

Here uz = V ~ ( ~ T ~ Z ~ / M ~ ) - " ,  and v2 = vzx is  the velocity 
of the impurity ions. The dimensionless potential @ ( T )  

of the electric field is determined by relations (1) and 
(2). The boundary conditions for Eq. (7), in the case of 
expansion of a half-space in vacuum, a r e  

g, + a exp (-,$zum2M2 I MI) 
as  z-+-W, g t + 0  as T+W. (8) 

RO S- D, (3) Here 02 = T e / ~ i 2 ,  and o is a normalization constant 
and the ion velocity considered a r e  small in comparison proportional to the concentration of the impurity ions. 
with the electron thermal velocity: Equation (7) is linear. Its solution can be easily ob- 

tained by integrating the equation of the characteristics 
1ul-S ( M 1 m ) B  (4) u2(7) 

When these conditions a re  satisfied, the potential cp of 
the electric field in the plasma is connected with the ion 
concentration by the simple relation (2); here 

The boundary conditions of (1) and (2), corresponding 
to expansion in vacuum of a half-space filled with a 
plasma, are  

g, -+ exp(--p,ul.l) as z- -00, 

g1+0 as z + + w ,  (6) 

where B1 = Te/Til, and Ti, is the ion temperature in the 
unperturbed plasma (T - - m). 

The previously solution of (1) and (2) 

The values of the distribution function gz are conserved 
on the characteristics; they are  determined by formula 
(8). Equations (9) were integrated numerically for 300 
characteristics. The characteristics in the (u, T) plane 
for M ~ Z Z / M Z Z ~  = 16 are  shown by way of example in 
Fig. 1. The same figure shows the characteristics of 
(1). We see that the impurity ions a r e  much more ener- 
getically accelerated than the ions of the main gas. The 
distribution functions of the impurity ions a re  shown in 
Fig. 2, while Fig. 3 shows their concentration Nz, the 
flux j z  = NzUZ, and the mean energy E = T ~ Z , ~ M ~ / M ~ .  
The impurity-ion concentration decreases quite slowly 
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with increasing T, while the changes of the flux jz a r e  
very small. This means that the greater part of the flux 
of impurity ions is captured by the field and is accelera- 
ted to high energies. For example, the flux at  E - 500 
TeZl is jz - 0.4jzo, where jzo = jz (T = 0). 

At large values of 7, the translational velocity of the 
ions is high. The thermal spread of the velocities is 
then of little importance, since it is convenient to 
analyze the behavior of the solution by using the hydro- 
dynamic equations. Assuming in (7) a distribution func- 
tion in the form 

gz = Nz( t )b(u , -  u 2 ( t ) ) n s ,  

we obtain 
dN, du, 

(US-?) -+N2- -o ,  
d t  dr 

We recognize, in addition, that in the hydrodynamic ap- 
proximation 

It follows therefore that the plasma is unperturbed at 
T <-2-l". The boundary conditions for (10) and (11) 
a r e  therefore .specified a t  T = - 2-'I2: 

N(T = -2-s) = Nzo, u z ( t  = -2-5) = 0. (13) 

Integrating (11) and (12), we have 

u z = t + z - - a l ( t ) ,  z=Z,Ml/2%,Mz,  (I4) 

where ( ~ ~ ( 7 )  is defined by 

Using the boundary condition (13), we determine the 
constant C : 

It is assumed here that z > 2-'Iz, i.e., & M ~ / z , M ~  > 1. 
Substituting equations (14) and (15) for uz(7) in (10) and 
integrating the latter, we get 

The same expressions hold also when z < 2-'I2 but in 
this case cul < 0 and therefore In al and In (z - 2-") a re  
replaced by In(-al) and ln(2-I" - z), respectively. A 
plot of Q,(T, z) determined from formulas (15) and (16) 
is shown in Fig. 4. Here 

As x - 1 we have 

and at x >> 1, 

Knowing al, we can obtain from formulas (14) and (17) 
the average velocity, the concentration, the flux j2 
= Nzuz, and the average energy c = M ~ Z ~ T ~ U ~ / M ~  of the 
impurity ions. At large values of T we have cul -- 0. It 
then follows from (17) that 
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It is easy to obtain the energy distribution of the ac- 
celerated impurity ions. Indeed, let n be the total num- 
ber of impurity ions passing through a unit surface at 
the point XO, namely, n =  Jj2dt. Then 

Recognizing that 

and expressing N2 and 7 in terms of c with the aid of 
formulas (14)-(17), we find a t  E r ck 

and a t  E 5 ek 

Here p and ck a r e  defined by the relations 

At E = ck the density dn/dc becomes infinite. This is 
not surprising, since the energy E = ~k corresponds to 
T = 0, i.e., particles with such an energy appear a t  the 
point x,, only if t -- to. For any finite value of t we always 
have E > ek. 

It is seen from (19) that the energy distribution of 
the accelerated impurity ions does not depend on the 
observation point &. At sufficiently high energies, 
E / ~ T ,  >> 1, it turns out to be, furthermore, similar 
for ions with different charges and masses : 

dn ~Nno  Zi2M2 
-=-- 
de T. 2ZZ3M,' e x ~ [  - (s) 'I' I [ (2) ' I s -  I 1 -' 

The scaling parameter is p = M ~ z : / ~ M ~ z ~ ,  where Mz 
and Z2 a re  the mass  and charge of the impurity ions, 
and M1 and Z1 a re  the mass and charge of the main ions 
of the plasma. If p >> 1, then the impurity ions a re  ac- 
celerated much more energetically than the main ions. 
It i s  also important that the dn/dc distribution decrea- 
s e s  relatively slowly with increasing particle energy c. 
The total number of ions n(c) that acquire an energy 
higher than E O  during the acceleration, is given at 
EO >> pTe by the expression 

It follows therefore, for example, that 0.1% of the total 
number of impurity ions Nzo& acquires an energy 
E 2 50pTe. 

Acceleration of multiply-charged ions in expansion 
of a rarefied plasma was observed by Bykovskir e t  al.C31 
Theoretical estimates based on formula (2) agree with 
the results of these experiments1). 

')~cceleration of the ions of the main plasma was observed by 
Plyutto et al. L41 

We note that the ion-acceleration mechanism consid- 
ered here can be realized under cosmic conditions in 
flares on the sun, and in flares and explosions of 
stars[". The main component of the plasma is in this 
case ionized hydrogen (MI = 1, Z1 = 1). The accelera- 
tion of the heavy nuclei i s  determined by the scaling 
factor p = z ; / ~ M .  At sufficiently large Z2 we have 
p >> 1. For example, p = 4 for fully ionized oxy en B nuclei, p = 6 for F e  nuclei, and o = 16.3 for Pb nuclei. 
It follows from (20) that in free expansion of a hydrogen 
plasma 0.1% of the total number of oxygen nuclei ac- 
quires an energy E > 200T,, 0.1% of the F e  nuclei an 
energy E > 300 Te, and 0.1% of the Pb nuclei an energy 
E > 800 Te. 

It i s  also seen from (19) and (20) that it is the light 
impurity ions that a r e  predominantly accelerated in a 
singly-ionized plasma. We emphasize that the accelera- 
tion of the impurity ions is determined by the tempera- 
ture of the plasma electrons. The ion temperature at 
Te r Ti does not play a significant role. Therefore, by 
rapidly heating the electrons in the freely expanding 
plasma (with the aid of electron beams or  radiation), i t  
is possible to accelerate appreciably the multiply- 
charged impurity ions (up to E - l0~-10~ Te). We note 
also that the acceleration depends on the mass  M1 of the 
main plasma ions. For  example, it is higher in deuter- 
ium and tritium than in hydrogen. 

Concluding this section, we note the limitations of 
the considered acceleration mechanism. The maximum 
ion energy is limited primarily by condition (4), i.e., 

We see  that the maximum energy depends only on the 
mass ,  but not on the charge of the impurity ions. Condi- 
tion (3) also limits the maximum value of E. Indeed, 
since D - K'" and the concentration of the main ions 
N1 is given by formula (18) at z = 2-lh, we obtain from 
(3) 

where T~ - 2l" ln(~, /D,) ,  Ro is the characteristic 
dimension, and Do is the Debye radius in the unper- 
turbed plasma. Relation (22) is connected with the limi- 
tation on the region into which the plasma flows. We 
note that a rigorous analysis of the expansion of a 
plasma in a bounded region shows that the ion distribu- 
tion is close to self-similar, up to a value 

The distribution then terminates sharply, and there a r e  
no ions2' at 7 > rm (q1 is the value of the potential on 
the boundary, eqol > ~ ~ [ 2 1 n  ( R ~ / D ~ ) ] * ~ ) .  

One more limitation is connected with the amount of 
impurity ions. If p >> 1, when the impurity ions a r e  ac- 

 his agrees with the results of a numerical calculation [61. We note 
that the maximum velocity of the main ions, um = T,, increases with 
increasing ratio Ro/Do. In the calculation of Widner et al. i6] this ratio 
was assumed to be small (Ro/Do - lo2). This was apparently the cause 
of the relatively low value of the maximum ion velocity. Under real 
conditions Ro/Do can equal lo5-lo7. In the foregoing estimates of the 
impurity-ion acceleration it was assumed that Tm = 5; this holds true if 
Ro/Do > 10. 
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FIG. 6 

celerated most energetically, their concentration Nz 
decreases with increasing T much more slowly than the 
concentration of the main ions Nl. At a certain value of 
T, the concentrations Nz and N1 become comparable. 
Then the entire plasma motion is significantly altered 
by the impurity ions. These phenomena will be analyzed 
in the next section. 

3. E XPA I'S ION OF AN IMPURITY- ION- C ONTAINING 
PLASMA IN VACUUM 

It was assumed above that the concentration of the 
impurity ions is low in comparison with the concentra- 
tion of the main ions of the plasma, s o  that the influence 
of the impurity ions on the motion of the main ions was 
neglected. We assume now that these concentrations 
a r e  comparable, i.e., the plasma contains a mixture of 
ions of two kinds. The expansion, in vacuum, of a plasma 
containing a mixture of ions with MI, Z1 and Mz, Zz is 
described as before by the kinetic equations (1) and (7) 
with boundary conditions (6) and (8). All that changes is 
the expression for the dimensionless potential 

This formula follows from the quasineutrality condition 
Ne = ZINil + ZzNiz. If the impurity-ion concentration 
Niz is negligibly small, then (23) goes over into (2). 
Owing to the dependence of z) on Nil and Niz, Eqs. (1) 
and (7) a r e  coupled. 

FIG. 7 

The result  of the numerical integration of ( I ) ,  (7), 
and (23) is shown in Figs. 5-7. Figure 5 gives the char- 
acterist ics of Eqs. (1) and (7) in the (u, T) plane for 
ZZ/ Z1 = 16 and Ml = Mz. Figures 6 and 7 show the dis- 
tribution functions and the concentrations N1(r) and 
NZ(r). Figures 5-7 represent in fact the same case a s  
Figs. 1-3 in the preceding section, except that in Sec. 1 
i t  was assumed that Nz << N1 and here we assume a fin- 
ite value of Nz. We assume also that in the unperturbed 
plasma N Z O Z ~ / N ~ ~ Z ~  = 0.1. Comparing Figs. 1-3 with 
Figs. 5-7 we see  that in the region T 2 3.5, where NZZZ 
becomes comparable with NIZl and then exceeds i t ,  the 
characteristics and the distributions N(T) differ signifi- 
cantly in the different cases. We see  f i rs t  that the con- 
centration N1(r) of the main ions decreases sharply, 
practically to zero, a t  values of T exceeding a certain 
rk. The concentration of the impurity ions, to the con- 
t r a ry  decreases slowly a t  T > rk, and the function Nz(T) 
even has an appreciable plateau a t  7 2 5. At the same 
values of 7, all the characteristics of the impurity ions 
also flatten out (see Fig. 5). The distribution function 
hardly varies with changing T in the plateau region. A 
characteristic plateau region occurs also in other cases 
in which a plasma containing a mixture of ions is ex- 
panded in vacuum. 

To analyze the character of these features and their 
dependence on the parameters it is natural to use, as 
before, the hydrodynamic equations, which in the case 
of a mixture of two sor t s  of ions have the following 

: 

Here N1 and Nz a r e  the concentrations and ul and uz the 
mean velocities of the ions. The equations (24) and (25) 
possess an integral 

We consider the case of low impurity-ion concentra- 
tion in the unperturbed plasma: ZzNzo << ZINlo. In the 
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f i rs t  approximation, the concentration Nz can be neglec- 
ted in the expression for the force, and the solution of 
(24) and (25) coincides with that considered in the pre- 
ceding section. Then, as is clear from (18), if 
M ~ Z ~ / M ~ Z ~  < 1, then the concentration of the impurity 
ion decreases more rapidly than that of the main ions 
with increasing 7, SO that the condition ZzNz << ZIN1 i s  
always satisfied. If, to the contrary, 

then the concentration of the impurity ions decreases 
with increasing r more slowly than that of the main 
ions. Their relative concentration then increases, and 
a t  a certain value of r the quantity ZZNZ becomes com- 
parable with ZINl. The character of the motion then 
changes strongly. To examine the solution in the region 
where ZzNz - ZIN1, we use the integral (26). We recog- 
nize that, according to (18), 

It follows then from (26) that 

Substituting this expression in the first  equation of (24), 
we get 

dn, nl + 2 n z [ l -  ( 2 ' " ~ )  -'I + , - [ I  - (2%~)- '1  n,"' dn,/dr 
-=- 

dr (2n,)"[n,  + n, ( l  - 2 - " r 1 )  ]"r 2 ' / ~ [ ~ ,  + %(I - 2-"2-1) I", 1, 

If the concentration of the impurity ions is negligibly 
small  (nz - 0), then the solution of (29) coincides with 
that obtained ear l ier  : 

We recognize that, according to  (18) a t  z >> 1 the 
concentration nz changes much more slowly than ni. 
Neglecting therefore the variation of nz in (29) and inte- 
grating the latter, we obtain 

At nz << nl the solution of (31) coincides with (30). In 
the region of r where n1 <, nz(1- 2-"z-I), the course of 
the solution becomes distorted, and the concentration 
begins to decrease much more rapidly. 

At 7 = rk, where 

the concentration n1(7) vanishes. In other words, a t  
7 > r k  there a r e  no ions of the main gas (Nl = 0). 
Equations (25) for the impurity ions assume at  7 > rk 
the form 

dN, du, 
( U Z - r ) - + N 2 - =  

d t  dr 0, 

:AYA a n d  P I T A E V S K I ~  

According to (18), the boundary conditions at r = rk a r e  

Nz = Nza = N2,,2%~-' exp (- [ 1 $ ?r I z l ) ,  
u2 = U l k  = T k  + Z .  (34) 

The solution of (33) with the boundary condition (34) is 
Nz = NZa, uz = uzk a s  t a  < t < rai; 

N, = N,, exp[-2' /1z- ' ( t  - T ~ , )  1, u = z + 2-'/az'/z (35) 
a s  T 2 rk, ,  

where 

We see  therefore that a t  rk < 7 < rkl a plateau region 
is indeed produced. The width of this region is 

By virtue of condition (27) we always have A ?  > 0; at 
z >> 1, the width of the plateau region A r  is much lar- 
ger than unity. The concentration and velocity of the 
particles a r e  constant in the plateau region, and there 
is no electric field. At the points rk and rb, the ob- 
tained solution has weak discontinuities (discontinuities 
of the derivatives dN/dr and du/dr) ['I. 

The presented solution of the problem of expansion, 
in vacuum of a plasma containing an ion mixture can be 
used, in particular, in the analysis of the structure of 
the perturbed zone in the vicinity of bodies moving in 
the ionosphere, such as rockets and satellites. The 
point is that at altitudes h - 500-1200 km the iono- 
sphere plasma contains a mixture of ions, mainly of 
atomic oxygen (Mz = 16) and hydrogen (Ml = 1). The 
relative hydrogen content nH+ = NH+ / ( N ~ +  + No+) ranges 

from 1-2% at h - 500 km to 100% at  h - 1200-1500 
km. As shown earlier,c83 the structure of the perturbed 
zone near the moving body is determined to  a consider- 
able degree by the self- similar solution considered 
here. A plot of N(T) = NH+ + Ng* for different values of 

nH+, obtained by numerically integrating Eqs. ( I ) ,  (7), 
and (23) for Z1 = Zz = 1, Mz = 16, M1 = 1, B =  T , / T ~ =  1, 
is shown in Fig. 8. 

Using the formulas obtained inC8] we can now com- 
pare the results of the calculations and measurements 
in the ionosphere. Figure 9 shows by way of example the 
variation of N behind the body (0 = 180") a s  a function of 
the relative hydrogen content n ~ + .  The points on the fig- 
ure  a r e  the results of measurements made in the iono- 
sphere by Samir and ~ r e n n ~ ~ '  with the satellite 
Explorer-31, and the solid curve is the result of the 
calculation. A detailed discussion of the results and a 
comparison with theory is contained inCa3. We note that 
in that reference they used an approximate expression 
for the summary ion concentration: 

in which the influence of the electric field on the ion 
motion was neglected. The result of the calculation with 
the approximate formula (37) is shown dashed in Fig. 9. 
We note that the hydrogen ions exert  a definite influence 
on the structure of the perturbed zone behind the moving 
body, near i ts  surface, even if their relative concentra- 
tion in the plasma is very small. They a r e  appreciably 
accelerated by the electric field: the average energy of 
the H+ ions on the boundary of the quasineutral zone be- 
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hind the body, a t  n ~ +  s 0.1, is (5-8)Te, i.e., of the order 
of 1-1.5 eV. The hydrogen-ion acceleration becomes 
stronger when their relative concentration is decreased. 

4. SCALE-INVARIANT WAVES. ION-SOUND 
INSTABILITY 

Figure 8b shows the concentration N(T) for an ex- 
panding plasma containing a mixture of oxygen and 
hydrogen ions. It is seen from the figure that behind the 
plateau region the plot of N against T shows character- 
istic oscillations. These oscillations become more 
clearly pronounced if one considers the dimensionless 
force F(T) = % N - ' ~ N / ~ T  (see Fig. 10, the force F(T) is 
proportional to the electric field intensity E 
= F ( Z T , M ) ' ~ / ~ ~ ) .  The amplitude of the oscillations, as 
seen from Fig. 10, increases with increasing initial 
concentration of the heavy oxygen ions (No+ = 1 - NH+). 
At the s tar t  of the plateau region, the heavy ions vanish 
almost completely. Consequently, the oscillations in 
question propagate already in a pure hydrogen plasma. 
The onset of these oscillations is the result  of excita- 
tion of unique scale-invariant waves in the expanding 
plasma. 

Let us consider a weak perturbation of the scale- 
invariant distribution function 

Substituting (38) in (1) and (2) and linearizing the latter,  
we arrive a t  the following equation for 6g: 

FIG. 9 

If the dimension of the perturbations in (u, 7) space is 
smal l  in comparison with the characteristic dimension 
of the variation of the main quantities N a ( ~ )  and ga(u, 7), 
then the solution of (39) can be sought in the quasiclass- 
ical approximation by expanding in a Fourier integral 

Substituting (40) in (39) we obtain a dispersion equation 
that defines the parameter p: 

a ag* n-'h - ag. fi-ln- rl(q)=-J-e-'qudu. 
a t  aa '  N ,  _ au 

We see therefore that a t  sufficiently large values of q 
the rea l  part  of p becomes predominant, meaning the 
presence of oscillatory solutions. Formula (41) is the 
dispersion relation for the scale-invariant waves. 

It is quite important that there a r e  no scale- invariant 
waves in hydrodynamics. This can be easily verified by 
considering small  perturbations of the hydrodynamic 
equations (33). These a r e  specifically kinetic waves, 
due to the presence of a particle-velocity distribution, 
as can be seen also directly from the relations (40) and 
(41). The profile of such a wave depends on the ratio 
x/t, i.e., different points of the wave move with different 
velocities. The wavelength increases with time, and the 
frequency decreases. It is easy to understand the mech- 
anism whereby scale- invariant waves a r e  excited in the 
case  of expansion, in vacuum of a plasma containing an 
admixture of heavy ions (no+ = 1 - nH+ << 1). Indeed, 
the heavy ions have a smal l  thermal velocity spread; 
they vanish rapidly a t  values T - 0. Therefore the 
change of N(T) a t  T - 0 becomes noticeably accelerated, 
and an additional force, Fo+ - d ~ ~ + / d r ,  appears and 
perturbs the distribution of the hydrogen ions. It i s  this 
perturbation which propagates further in the form of 
scale-invariant waves traveling in an expanding hydro- 
gen plasma. 

We have confined ourselves above to an analysis of 
self-similar perturbations. Let us consider now arbi- 
t rary  ion-sound waves. The dispersion equation for ion- 
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4 FIG. 10 

4 sound waves in a plasma containing two sor t s  of ions is 

Here fl and f2 a re  the distribution functions of the ions 
with masses MI and M2, respectively; N = NIZI + NzZz; 
vph = u/k is the phase velocity of the wave; y is its 

damping; k is the wave vector; D = ( ~ ~ / 4 1 r e ~ N ) " ~  is the 
Debye radius. 

The plasma stability limit with respect to ion-sound 
waves is given by the condition y = 0. In our case the 
functions fl and f2 a r e  scale-invariant. Condition (42) 
with y = 0 is then rewritten in terms of the dimension- 
l e ss  variables u and g in the form 

The function g(u) is shown in Fig. 11 for different 
values of T (at Z, = Z2 = 1, M~ /M, = 16, n ~ +  = 0.2). We 
see  that a t  large negative values of T the function g(u) 
has a single hump. Equation (43) is then satisfied only 
a t  k - 0 for vph = T. This is the undamped ion-sound 
branch that appears in all  scale- invariant solutions [lo'. 

Near the point u = 7, the distribution function g(u) van- 
ishes identically. There a re  no unstable waves in the 
vicinity of this root, just a s  in the usual problem of 
plasma expansion in v a c ~ u m ~ ' ~ ' ~ ~ .  At T = TO = - 0.263 
there appears, however, a point of horizontal inflection 
(uo = 0.014) for the function g(u). At 7 > TO, the function 
g(y) already has two humps. The reason is that the func- 
tion g(u) is made up of the distribution functions gl and 
g2 of the light and heavy ions. The light ions accelerated 
by the electric field acquire an appreciable translational 
velocity. They overtake the heavy ions and form, a s  it 
were, a second rapid stream among the heavy ions. 
This is seen from Fig. 11. It is important that the scale- 
invariant functions (u decrease extremely rapidly near 
the separatrix (seeRr!). The function gl(u) has near the 
separatrix a front close to a step function3'. Conse- 
quently, Eq. (43) is satisfied a t  T = 70 = -0.263 not only 
a t  v = TO, but also directly at the inflection point at 
vph%o = 0.014. A new branch of undamped ion sound 
with a large wave vector ko (koD 2 lo4) appears in this 
case. When T > 70 there appears a double-hump distri- 
bution function, and simultaneously also unstable (grow- 
ing) ion-sound waves for  k 4 ko. At 7 = r1 = - 0.251, the 

3 ) ~ o r  example, at 7, = -0.263 the distribution g, (u) is discontinuous 
at the point u, = 0.014: accurate to nine significant figures, it changes 
at u = u, from g, = 0 to g, = 0.170. 

FIG. 1 I 

integral in the right-hand side of (43) is  equal to unity 
for the point um = 0.043 a t  which the function g(u) has a 
minimum. This means that already at 7 = r1 all the 
waves with wave vector ko r k r 0 a r e  unstable. The 
width of the unstable region, in terms of the phase 
velocities of the waves, is 

Aph = (urn - ~ o )  (2212'. 1 = 00,029(2T. l M,)'". 

We note that the ion-sound instability considered 
here, in a plasma containing a mixture of ions, can be 
the cause of oscillations in an ionosphere erturbed by 
a moving body, as observed by Boyd et with the 
satellite Ariel-1. It must also be emphasized that this 
instability apparently limits the possibilities of the ac- 
celeration mechanism considered here a t  appreciable 
concentrations of the impurity ions. 
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