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It is shown that the potential and electron density distribution inside an atom o r  ion placed in a uni- 
form electric field satisfy the equation obtained by linearizing the Thomas-Fermi equation. A univer- 
sal  dependence of the polarizability of atoms and ions on their radius i s  constructed with the aid of 
the numerical solution of this equation. The results of the computation i s  in good agreement with the 
available experimental data on the polarizability of atoms and ions with closed shells. 

T H ~  statistical Thomas-Fermi model has been used to 
compute the dipole and quadrupole polarizabilities of 
atoms and ions inL1-31. However, the authors of these 
papers made a number of assumptions not related to the 
basic theses of the statistical model. The object of the 
present paper is to determine the polarizing potential 
and the polarizability of an atom, remaining within the 
framework of statistical theory and without recourse to 
further approximations. The equation for the statistical 
polarizing potential i s  derived in Sec. 1. In Sec. 2 an 
analytical expression is obtained for the polarizability 
of highly charged ions. In Sec. 3 the results of numer- 
ical computations of the polarizability of atoms and ions 
a re  compared with the available experimental data. 

1. EQUATION FOR THE POLARIZING POTENTIAL 

In the statistical Thomas-Fermi model atomic elec- 
trons a re  considered a s  a degenerate Fermi gas in the 
Coulomb field of the atomic nucleus (see, for exam- 
ple,L43). The potential of the electric field inside the 
atom satisfies the Poisson equation1) 

where p(r) is the Fermi momentum, which is deter- 
mined from the condition of constancy of the Fermi en- 
ergy 8 inside the atom 

Equations (1) and (2) describe both an isolated atom and 
an atom in an external field. 

To the isolated atom corresponds the spherically 
symmetric solution cp(r) of Eqs. (1) and (2). The Fermi 
energy is then equal to the potential of the atom at the 
boundary: 8 = - ( Z - ~ ) / r ~ ,  and q ( r )  satisfies the follow- 
ing boundary conditions: 

Z Z - N  Z - N  
I -  p(r)1.-rC.-. 1 --- 

r . ro I-Io r? (3) 

where Z is the charge of the nucleus, N is the number 
of electrons, and ro is the radius of the atom2'. 

Let the atom be now placed in a uniform external 

' )~ tomic  units are used in the paper. 

2 ) ~ h e  term "atom" will be used for both neutral atoms, Z = N, and 
positive ions, Z > N. 

electric field E.  If the field is sufficiently weak, then 
the potential of the isolated atom cpo(r) changes by a 
small amount cpl(r). It is clear that the electron Fermi 
energy does not change to within quantities of the order 
of E" mere fore ,  setting q ( r )  = cpo(r) + ql ( r )  and linear- 
izing (1) and (2) with respect to cpl(r), we obtain for 
cpl(r) the equation 

Outside the atom the potential cpl(r) is equal to the sum 
of the potentials of the external field and the atomic 
dipole induced by the field: 

where CY is the polarizability of the atom. To find ql( r )  
and @, we must match a t  the boundary of the atom 
(at r = ro) the solution of Eq. (4) which is finite a t  the 
origin with the potential (5) outside the atom. Perform- 
ing the matching and taking account of the fact that 
q l ( r )  = cpl(r) cos 8 (where 0 i s  the angle between the 
vectors E and r ) ,  we obtain 

It is convenient for what follows to  introduce the re- 
duced length x and the functions ~ ( x )  and u(x) ['] : 

r = zbZ-"5, b = 'I2 (3n / 4)'/3 = 0.8853, 

Z - N  Z 
q0(r)--- - - ~ ( 4 ,  

70 r 

Substituting (7) in (1)-(4), we easily obtain the equa- 
tions for ~ ( x )  and u(x): 

Knowing the Thomas- Fermi  potential ~ ( x ) ,  we can find 
from Eq. (9) the change in the intratomic potential u(x) 
for an atom placed in an external field. The polarizabil- 
ity cu is, according to (6) and (7), equal to 
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2. POLARIZABILITY OF HIGHLY CHARGED IONS 

If the charge of an atom is sufficiently high (Z >> N), 
then the intratomic potential is close to the Coulomb 
field of the nucleus. Under these conditions the radius 
ro of the ion can be determined by substituting vo(r) 
w Z/r into the expression for the total number of elec- 
trons: 

where no(r) is the electron density: 

After simple rearrangements we find from (11) 

In a highly charged ion, the electrons attracted by the 
strong Coulomb field of the nucleus screen off slightly 
the external uniform field. Therefore, perturbation 
theory can be used to compute the polarizability. The 
change in the electron density nl(r) due to the field is, 
according to (2) and (12), equal to 

n, (r) = n-2p2(r)pi (r) = r Z p o  (r)cp, (r). (14) 

Setting in the f i rs t  approximation 

we calculate with the aid of (14) the dipole moment 
d = (YE = - nl(r)rdr of the atom induced by the field. k Whence, t ing account of (13) and (15), we easily de- 
termine the polarizability 

Thus, when Z >> N the polarizability of an ion in the 
Thomas- Fermi model decreases a s  zW4. The same de- 
pendence follows from quantum theory for ions with 
closed electron shells. If, however, the outer shell i s  
not filled, then the main contribution to the polarizability 
(- z - ~ )  i s  made by the excitation of a transition in which 
the principal quantum number is not changed[51. 

The approximation (15) was also used ini2' to com- 
pute the quadrupole polarizability of atoms. Practically, 
this means that in the determination of the potential act- 
ing on an atomic electron in an external field, the polar- 
izing influence of the res t  of the electrons is neglected. 
In the general case, cpl(r) in (14) should be understood to 
be not the potential of the external field, but the solution 
of the self-consistent Eq. (4). This remark i s  especially 
important for neutral atoms and ions of low ionization 
multiplicity, when the radius ro is large and the inter- 
electronic and electron- nucleus interactions a r e  of the 
same order of magnitude. In the case of highly charged 
ions, on the other hand, the electrons a re  tightly bound 
to the atomic nucleus, their polarization distorts slightly 
the potential of the external field, and the approximation 
(15) can be used. 

A somewhat different approximation was used inC1], 
where the change in the electron density in the external 
field was sought in the form nl(r) = X(E . r ) d h ,  and the 
parameter h was found from a variational principle. 
For a more consistent and a more exact computation of 
the polarizability, Eq. (4) must be solved numerically. 

3. NUMERICAL COMPUTATIONS AND COMPARISON 
WITH EXPERIMENT 

The ratio q = (Z - N)/Z is the only quantity that de- 
termines the properties of an atom in the statistical 
Thomas- Fermi model. By assigning q and solving Eqs. 
(8)-(lo), we can determine in the framework of the 
Thomas- Fermi model the radius ro and the polarizabil- 
ity (Y for any atom o r  ion. However, such calculations 
yield a value for (Y that i s  5-6 times higher than the ex- 
perimental values. Such a discrepancy i s  not surprising. 
It is well known that the statistical theory describes 
satisfactorily the electron density distribution within 
the atom only when the exchange and quantum correc- 
tions a r e  taken into a c c o ~ n t ~ ' ~ ~ ~ .  The corrections a r e  
especially important a t  large distances from the nucleus 
and, consequently, for the value of the radius ro of the 
ion. Since the polarizability is proportional to r:, the 
effect of the corrections on the polarizability will obvi- 
ously also be quite substantial. 

The dependence of a/r; on x0, constructed a s  a result 
of the numerical integration of Eq. (9), i s  shown in the 
figure. Knowing the reduced boundary radius xo, we can 
determine the polarizability of any atom o r  ion with the 
aid of this curve. As the boundary radius x,, we must 
use in such a calculation the values obtained in  the 
Thomas- Fermi-Dirac model with allowance for the ex- 
change correction (see, for example,c11). Such a method 
allows us  to phenomenologically take into account the 
change in the radius xo of the ion connected with the ex- 
change effects. The results of the computation a re  com- 
pared in the table with available experimental data and 
the results of other theoretical investigations. 1nC8] the 
measurements of the polarizabilities were carried out 
in gases and aqueous salt  solutions; inCg1, in crystals. 
The results of the quantum-mechanical computations 
were taken from the review paperc73. In the third col- 
umn of the table a r e  values obtained by a variational- 
statistical method inC13 (see Sec. 2). As can be seen 
in the table, the values of the polarizabilities computed 
in the present paper a r e  in good agreement with the ex- 
perimental data for all atoms and ions heavier than 
argon. In the case of the lighter, neon-like atoms and 
ions, the conditions of applicability of the Thomas- 
Fermi model a r e  violated, and the best results a r e  given 
by the quantum- mechanical calculations. 

Besides the usual. applications- the determination of 
the refractive index of gases  and the constant of interac- 
tion of atoms with neutral and charged particles-knowl- 
edge of the polarizability i s  necessary for the computa- 
tion of a number of other atomic characteristics. Thus, 
for example, i t  has been shown inc"-*' that, generally 

Dependence of the quantity 
ol/ri on the reduced radius xo of 
an atom or ion. 
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Polarizabilities a in units of As for atoms Kirzhnits, I. I. Sobellman and S. A. Solodchenkova for 
and ions with closed shells useful comments. 

*The values of a for Rb+ and Cs* were taken from the more 
recent paper ['''I. 

speaking, the polarization of an atomic core under the 
action of a photoelectron affects the transition probabili- 
ties in the discrete and continuous spectra. This effect 
is especially important for the principal se r i es  of the 
alkali atoms and alkali-like ions. In this connection 
future measurement of the polarizabilities of different 
atoms and ions and the comparison of them with the re- 
sults of the statistical model will be of interest. 
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