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The mean square frequency shift bo2 for spontaneous light scattering in a perfect gas is calculated. 
It is shown that the value of bw2 remains constant for variation in the pressure at a fixed value of 
1 q 1, where q is the change in the photon wave vector in the scattering process. The value of bw2 
for spontaneous scattering on anisotropic molecules and for spontaneous scattering on electrons in 
plasma is also calculated. 

AS is well known, the spectrum of light scattering in 
a gas undergoes very significant changes upon change 
in the density. So far as the scalar  part of the scatter-  
ing is concerned, a t  low gas densities (such that ql 
>> 1 )  the spectrum of the scattered light is determined 
by the Doppler shift on moving molecules that have a 
Maxwellian velocity distribution. Here 1 is the free 
path length of the molecules, q = I q 1 = 1 kl - kz I is the 
change in the photon wave vector in the scattering 
process. At high pressures (such that ql - 1 )  the spec- 
trum of the scalar  part of the scattering contains in 
place of the Doppler curve components of the Mandel' 
shtam-Brillouin doublet and a central entropy peak. In 
the intermediate case q1 >> 1 the spectrum has a 
rather complicated shape and should be calculated by 
solution of the Boltzmam equation-see, for exam- 
ple[1,2J. 

In the present paper, we call attention to the fact 
that the second moment of the spectral  distribution 
802, expressed in units of q,  remains constant over the 
entire range of pressures  from ql >> 1 to q1 << 1. The 
quantity 6wg also possesses certain invariance proper- 
t ies,  even in light scattering in a plasma. 

We denote the normalized spectrum of light scat-  
tered through a given angle by g(w - wo), where 
j g(w - wo)dw = 1, and introduce the mean square 
frequency shift 6o2: 

- +- 
60' = g(o - 00) (o - 00)' do. 

-m 

(1) 

We get the following expression for this quantity in the 
present work: 

Here N(l)t Q ( l ) t  m(1) a r e  respectively the concentration, 
polarizability and mass  of the molecules of the I-th 
component of a gas mixture; kT is the temperature in 
energy units. 

For  proof of formula (2), we introduce the normalized 
correlation function 

here 

In scattering in the classical  region (for 
h (w> w) << kt), the spectrum g(6w) is symmetric 
and 6w = 0. The normalized correlation function (7) 
for  scattering on molecules with a scalar  polarizability 
a is equal to  

where the random function r s ( t )  gives the location of 
the s-th scattering molecule a t  the instant of time t ;  
the as ter isk  denotes the complex conjugate. Double 
differentiation of (5) gives 

It is important that the quantities under the averaging 
sign in (6) refer  to the same  instant of time. With ac-  
count of this, we have the following equations for  an 
ideal gas (i.e., with neglect of t e rms  - ~ a ~ ,  where a 
is the dimension of the molecule): 

substitution of which in (6) also gives Eq. (2), pertain- 
ing to scattering of the scalar  type. We note the 
peculiar role of molecular collisions in the problem 
under study: they have little effect on the total light 
scattering c ross  section and on the value of (cor- 
rections - ~ a ~ ,  which we neglect), but strongly affect 
the shape of the spectrum (corrections ~ ( ~ l ) - '  = +:a2q-' 
if we go in the direction of low density; these correc- 
tions a r e  taken into account exactly in Eq. (2). 

In the case q1 >> 1 ,  the scattering spectrum is 
given by the superposition of the Doppler curves from 
the different components of the mixture and Eq. (2) be- 
comes trivial. 

In the case  q1 << 1, the spectrum contains the 
Mandel'shtam-Brillouin doublet and the central entropy- 
concentration part. If we assume the gas to be a 
single-component one, the lines of the doublet and the 
entropy part a r e  infinitely narrow (i.e., we neglect 
their  broadening) having the ratio of intensities accord- 
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ing to  the Landau-Placzek formula, while for the sound 
velocity, we have the usual expression vs 
= (cpk~/cvm)'/2; for such a model spectrum, the mean 
square width 6w2 is also given by Eq. (2). Thus, Eq. 
(2) is in i ts  way a generalization of the Landau-Placzek 
formula for the ideal gas to the case of arbitrari ly 
large damping of hypersound and of a multicomponent 
mixture. 

In the case of rotational Raman scattering of light 
the polarization structure of which in an ideal gas per- 
tains to the symmetric trace-free type) one can expect 
a frequency shift 6w - nrOt - where J - ma2 
is the moment of inertia of the molecule; here we again 
consider the quasiclassical case when fiQrot << hT. In 
the general case of arbitrary anisotropy of the polari- 
zability tensor ffik and the inertial tensor Jik, an 
explicit expression for the shape of the spectrum (even 
in the quasiclassical case) is lacking in the literature; 
there a r e  only comparatively complicated formulas for 
the case of a molecule of the gyroscopic type (with 
coinciding axes for ffik and Jik), seers1. It is seen that 
for the quantity bw2, i t  is possible even in the general 
case,  to obtain an explicit formula (in the quasiclassi- 
ca l  limit Finrot << kT): 

Here we have introduced the tensor 

a, = a, - ' / ,birSp a, (9 ) 
by the same token, we have eliminated from considera- 
tion the scalar part of the scattering. At the same time, 
the total intensity of the trace-free part of the scatter-  
ing that has been considered (the denominator in Eq. 
(8)) itself includes the contribution from the 'anisotropy 
fluctuation. The latter, in contrast to the rotational 
combination scattering, gives a very small  shift of the 
frequency (seer4], Sec. 96). The derivation of Eq. (8), 
as also Eq. (2), is based on the double differentiation of 
the corresponding normalized correlation function and 
use of the following equality: 

where IR is the angular velocity vector of molecular 
rotation. The applicability of Eq. (8) is also limited by 
the condition ~ a '  << 1. Here the discrete lines of the 
rotational combination scattering can be shown to  over- 
lap because of collisions, and Eq. (8) will be valid a s  
before. 

In light scattering in a plasma, the scattering cross  
section dR/do of a unit volume integrated over the fre- 
quency also depends on q: 

dR do, (qr,)" z 
-- - N.- 
do d ~ ( ~ r , ) ' + z + l '  

(11) 

where d o ~ / d o  is the Thomson cross  section, rD the 
Debye radius, and z the ion charge; here the shape of 
the spectrum depends in complicated fashion on qrD 
(seersJ). However, even in this case,  it is possible to 
obtain an integrated expressionu similar to Eq. (2): 

') Equations (1 1) and (1 2) are valid only under the assumption that 
the frequency of the incident light is much greater than the value of  the 
plasma frequency. 

here we have neglected those compone~ts  on the right 
side of (12) which a r e  proportional to mi', where mi  
is the ion mass.  We note that the dependence on the 
parameter qrD drops out.of Eq. (12). In a plasma, in 
contrast with a neutral gas, the scattering c ross  sec-  
tion, integrated over the frequency and referred to a 
single particle, changes materially with change in the 
pressure. In spite of this fact, the value of (12) re-  
mains invariant with an accuracy up to t e r m s  -mc/mi. 

The quantity 6o2 enters into the expression for the 
amplification coefficient in stimulated light scattering 
with broadband exciting radiation in the approximation 
of completely random phase. In fact, in the specified 
approximation, the intensity amplification coefficient 
p[cm-'1 a t  a frequency is given by the convolution in 
frequency of the intensity distribution of the exciting 
radiation, and the amplification coefficient for mono- 
chromatic excitation. The latter quantity is connected 
with the frequency derivative of the c ross  section of 
spontaneous scattering (see, for example,rel). As a 
result. we obtain 

where P( w) [erg-cm-2-sec-'. (rad/sec)-'1 is the spec- 
t r a l  density of the power of the exciting radiation and 
dR/do [ern-' sr-'1 is the angular derivative of the scat-  
tering cross  section per unit volume. For  scalar  scat-  
tering, 

where e l  and e, a r e  the polarization unit vectors of 
exciting and scattered radiation. Assuming that P (  w) 
changes slowly over the entire range of the spectrum 
of spontaneous scattering, s o  that one can set  

and taking it into account that fi(w' = w) << kT, we ob- 
tain 

It is interesting to  note that the amplification coef- 
ficient from (14), after substitution of the expression - 
(2)  for 6u2, turns out to  be independent both of the 
temperature and of the f ree  path length, and is propor- 
tional to q2. 

In certain cases,  calculation of the energy put into 
the material in stimulated light scattering is of interest 
(see, for example, the problem of plasma heating due 
to  the induced Compton effectr7]). In the random phase 
approximation, and for a broadband exciting radiation, 
the energy supplied to the material can also be ex- 
pressed in terms of the mean square frequency shift 
for  the case of spontaneous light scattering. 

In conclusion, we note that measurement of the 
second derivative of the time correlation function of 
scattered radiation can be shown to be more attainable, 
due to the application of l a se r  sources and methods of 
photostatistics in the recording process (see, for  ex- 
ample,r81). 
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