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Asymptotic expressions for the total and differential charge exchange c ross  sections for fast pro- 
tons in molecular hydrogen and helium a r e  found. The second Born approximation is employed for  
the amplitude of each of the processes considered. The formulas for the total capture cross  sections 
a r e  compared with the experimental data. 

1. INTRODUCTION 

RECENT report the results of experimental 
investigations of the cross  sections for the capture of 
an electron by a fast proton with energy higher than 
1 MeV (lab) for a beam passing through hydrogen, 
helium, nitrogen, o r  argon targetsr1-']. In the present 
paper we calculate the asymptotic nonrelativistic 
quantum-mechanical amplitudes and cross  sections 
for electron capture in the processes 

in the limit a s  vo/v - 0, where v, is the "orbital" 
velocity of the captured electron and v is the relative 
velocity of the incident proton; the results of the calcu- 
lation a r e  also compared with the indicated experi- 
mental data. 

There have been many theoretical studies[*'], within 
the framework of the first  Born approximation, of the 
processes (1) and (2) in the limit in question. However, 
an earlier analysis of the charge-exchange reaction 

- 

a s  vo/v - o[" has shown that the first  Born approxi- 
mation does not suffice for the amplitude, and it is 
necessary to take into account terms of second order 
in the interaction. Since this result is essentially due 
to  kinematic factors, it is natural to expect the first  
approximation to  be insufficient also in the more com- 
plicated cases of processes (1) and (2). 

Indeed, as shown by our calculation, in the most 
important region of small  scattering angles (forward 
scattering) it is necessary to take into account not only 
the first  but also the second Born approximation. It is 
seen at the same time that the principal asymptotic 
amplitudes in first' and second order decrease equally 
rapidly with increasing velocity, and their interference, 
just as in the case of the process (3), leads to the fol- 
lowing consequences. Firs t ,  the contribution of the sum 
of the terms of the first  and second orders,  which con- 
tain the interaction of the incoming proton with an He 
nucleus (or with Hz nuclei) turns out to be smaller by 
a factor mp/me than their individual contributions. At 
small  scattering angles, a s  a result the first-order 
t e rm containing the interaction of the incoming proton 

with the captured electron, and the second-order t e rm 
containing the interaction of the captured electron with 
the proton and with the He nucleus (Hz nuclei for (I)) ,  
become the principal terms.  Second, interference of 
these principal t e rms  causes the total c ross  section Q 
for  each of the processes (I), (2), and (3), a t  not too 
large v, takes on to  the value Q - 0.3 QBK, i.e., it 
becomes smal ler  by an approximate factor 3.3 than the 
Brinkman-Kramers cross  section QBK obtained using 
only one first-order term,  which contains the interac- 
tion of the incoming proton with a captured electron. 
The indicated interference phenomenon thus turns out 
to  be common to the processes (I) ,  (2), and (3). 

Section 2 contains a definition of the symbols and 
the initial asymptotic expressions. Sections 3 and 4 
give the results of a calculation of the asymptotic forms 
of the first  and second order t e rms  for (1) and (2) in 
parallel. We note that when the contributions from the 
different integration regions to  the corresponding inte- 
grals a r e  estimated, no model representations a r e  
used a t  a l l  for the electron wave functions of He and 
Hz, owing to the presence of the asymptotic expres- 
sions (18) and (18') for the wave functions of the ground 
states in the momentum representation. A similar 
asymptotic form was used ear l ier  for the helium wave 
function by Kabir and ~alpeter['O'. As a result of the 
calculation, a linear relation is established in Sec. 5 
between the asymptotic c ross  sections of the reactions 
(1) and (3), the proportionality coefficient being con- 
nected with the electron density a t  the nucleus in the 
ground state of Hz. 

2. INITLAL EQUATIONS 

Let r l  and rz be the laboratory coordinates of the 
electrons with masses ml = mz = me and let r3 and r4 
be the coordinates of protons with masses  m3 = m4 
7 mp in the Hz molecule; r5 is the coordinate of the 
incoming proton. In the expression for the total Hamil- 
tonian of the p + Hz system 

where Vfflj(r) = zazpeZ/r  and Z,e is the charge of the 
particle 0 ,  we go over from r, to the Jacobi coordinates 
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and in the center-of-mass system we omit the higher 
order terms in me/mp. Then, using the Coulomb 
system of measurement units, we obtain 

where 
V(si, st, p, R) =VPe(ls1-R/21)  + V m ( I s , + R 1 2 1 )  + V p e ( l s , - R / 2 1 )  +f',.(Isz+R/21) +V=.(Is,  - s , l )  

+vvp(R) + V p - ( l ~ - s , I )  +VPe(Ip -szI) 
+ V p P ( l p - R 1 2 1 )  + P P p ( I p + R / 2 1 ) ;  

V,P = '/2mp, K P  = z/Jmp, SI --; r13 - R 12, s2 = ~ Z I  + R / 2 

We represent the total interaction in the form 

where 

(p'slrs,'R' / i, 1 pslszR) = 6" p' - p)d3 (s,' - s l )dS(s ,  - s / )  
x b 3 ( R -  R')[Vp.(lp -811) + v p c ( / p  -811) 

+ V p p ( / p - R / 2 1 )  + ~ p P ( I p + R 1 2 1 ) 1  

is an interaction that vanishes when the subsystems 
a r e  asymptotically separated in the initial channel and 

is an interaction that vanishes in the final channel. 
It should be noted that although (5) is indeed the 

principal asymptotic term of the expansion (4) in 
powers of l/mp, the possibility of using (5) to find the 
asymptotic solution as l / v  -- 0 in a sufficiently wide 
range of scattering angle calls for a special analysis. 
We have in mind here the three-body problem. Thus, 
for the process (3) the solution obtained from the cor- 
responding expansion of the exact Hamiltonian in 
powers of l / m  agrees,  as l / v  -- 0, with the solution 
expanded in l /mp only in the region of small  scatter-  
ing angles 6 < l/m;. At larger  angles e there is an 
appreciable discrepancy between these solutions. It is 
important to  note, however, that in practice the entire 
contribution to the total c ross  section comes precisely 
from the indicated region of small  scattering angles. 
We assume therefore that a s  l /v  - 0 the asymptotic 
expression for the amplitude of the charge-exchange 
processes (1) and (2), obtained on the basis of the 
Hamiltonian (5), is valid in the region of the small  
scattering angles actually measured in the experiment. 

The wave functions I I ) and ( F I of the initial and 
final states a r e  eigenfunctions of the simplified Hamil- 
tonians HI = Ho + PI and HF = Ho + vF (Ho is the 
kinetic-energy operator in (5)): 

and have the following form in the coordinate repre- 
sentation 

1 
( R s I ~ ~ P  I 0  = m, ~ X P  Iiktp} x,,, (R) $t ( ~ 1 ,  Sn, R), 

~, 
1 

(Rs,$p I F) = Izny!, - exp ( ik, mpP rn,+l] + " 9' " (P - L! (R) i:* (s2. R). (6) 

The complete wave functions of Hz and Hi have been 
written out here in the approximation of the theory of 
diatomic molecules, which makes it possible to  sepa- 

ra te  the electronic and nuclear motions. Here Si and - 
@(") a r e  the electronic wave functions of the 'z; state 
o j  Hz and of the stationary state of Hi, characterized 
by the required set  of quantum numbers {n}; Xni(R) 
and Xnf ( R) a r e  the corresponding nuclear functions. 
Finally, ?F;(,-J - sl) is the wave function of the pro- 
duced atomic hydrogen, characterized by -the quantum 
numbers s. In (6), ki and kf a r e  the momenta of the 
relative motion of the fragments in the initial in 
the final states. 

On the energy-conservation surface we have 

E = EI = kiZ/2pp - EOi = EF = klZ!2Mt - En, - E; - Ell , ) .  

where Enf and Ein} a r e  the energies of the nuclear 
and electronic motions in Hz, respectively, EF; is the 
energy of the bound state of the H atom, and Mf = 1 
+ pp. Since both electrons a r e  effectively different in 
the electronic ground state,  the expression for the dif- 
ferential cross  section of the reaction (1) is['] 

where dQ(l) is the c r o s s  section for the capture of a 
Hz 

definite electron, in our case the first ,  from Hz, fol- 
lowed by transitLon of H,' to the n-th electronic state 
and of H to the n-th state:  

The summation over nf is carried out here  over a l l  
the nuclear-motion final states that a r e  permitted by 
the conservation law, including a portion of the continu- 
ous spectrum belonging to the n-th electronic t e rm of 
Hz*. 

We calculate the asymptotic form of (8) a s  l / v  - 0 
by using the sec_ond Born approximation for the transi- 
tion amplitude Tfi  

IIB 
T,r a T1i =(F'ljI + j i+~d ; I l l> ,  

G ~ [ E  + iO - H,]-I .  
(9) 

Since the relative velocity of the nuclei in both Hz and 
H; is small  in comparison with the velocity of the elec- 
tron motion and in comparison with the velocity of the 
incoming proton, we can neglect in the operator Go the 
kinetic energy of the relative nuclear motion, i.e., we 
can assume that 

Under this assumption, the operator (9) becomes 
diagonal in R: 

(here Go is the resolvent of the operator (10)) and the 
expression for the matrix element takes the form 

" IIB 
(kt; n ,n f ;  iiIT,, Ik; 'Zgc,ni) 

= d 3 ~ X . , ' ( ~ ) X n i  (R) <kt; n; &(R) Iki; lZ,+>. 
(1 2) 

We substitute (12) in (8) and let the upper limit of 
summation with respect to nf tend to infinity a t  large 
E. Then, expanding the integrand asymptotically in 
powers of 1 / ~  and using the completeness condition of 
the functions Xnf(R), we obtain for the principal 
asymptotic t e rm of (8) the expression 
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@A" 
- = ( 2 n ) ' ~ / S  d ' R l ~ , ~  ( R )  lZ l (k l ;  n; n"l;,i(R) Iki; lZ,+>lz, (13) 

dS2 

which has an obvious physical meaning: dQ(l) is the 
Hz 

c ross  section, averaged a l l  the possible values of R, 
for the capture of an electron by an incident particle - 
pi with mass p p,  charge + 1, and momentum ki, the 
electrons being initially in a bound state in the field of 
two immobile Coulomb centers located a t  the point 
*R/2. The particle Ei possessing the indicated char- 
acteristics will henceforth be called a proton, in spite 
of the fact that i t s  mass differs from mp. 

In the case of reaction (2), a transition from the 
exact Hamiltonian to the one expanded in powers of 
l /mp, analogous to  the transition from (4) to (5), lead 
to the following picture. The particle Ei with mass p p  
and charge + 1  is incident on a Coulomb center with 
charge + 2, in the field of which two electrons a r e  
situated in a bound state, and the interaction causes a 
transition of one of the electrons into the bound state of 
the hydrogen atom. The expression for the cross  sec- 
tion of such a process, at which He' turns out to be in 
a stationary state characterized by the se t  of quantum 
numbers {n}, is 

dQ.. - zdo::, -- "(He) @"' (2n)41r.2~(k1;  n; 51% ~ k , ;  isa>\a, 
dS2 

(14) 

and since 
-(me) r l ,  = ;;?' ( 0 )  , 

it suffices to obtain the asymptotic form of the ampli- 
H tude ;fi2(R). We shall henceforth denote the se t s  of 

quantum numbers specifying the initial and final states 
in (13) and (14) by {i} and {f}, respectively, and the 
states themselves will be designated 1 i ) and ( f 1 . 
3. FIRST-ORDER TERMS 

We proceed to calculate the asymptotic behavior of 

the matrix elements ( f 1 ? j r z )  (R) I i ) a s  l /v  - 0. The 

first-order terms a r e  

We consid_er first  a matrix element containing the 
interaction Vpiel with the electron 1. A diagram of 
this matrix element is shown in Fig. l a  and corre-  
sponds to the integral 

Here Ai = ki - ppkf/Mf, Af = kf - ki a r e  the trans- 
ferred momenta, with {A;, A;) 2 v2/4, s o  that A: - .o a s  v - ~o ((1 = i ,  f); @i and @f a r e  the wave func- 
tions in the momentum representation: 

1 
Y, ( q )  = -j d3s exp ( I ~ ~ ) G ' ~  ( s ) ,  

(2n)  ''2 

I rn,, ( P )  = 41 d's exp ( i q s ) ~ ~  ( s ) .  
( 2 ~ )  

Since A: - 03, to find the asymptotic form of (16) 

FIG. 1 .  Diagrams of the first-order terms that make the principal 
contribution to the asymptotic charge-exchange amplitude. 

we use for the factors in (16) the following asymptotic 
expressions, which a r e  obtained directly from the 
Schrodinger equation in the momentum representa- 
tionrlol for the ground state of the hydrogen molecule. 
As ql -.o we have 

where - 1 y, (s,,  q z )  = -j d3sz exp ( iq2sz)+i(s~,  s d ,  
(2n)  

For atomic hydrogen we have 

Substituting these asymptotic expressions in (16), we 
obtain 

2 (2n) f 
T.x = -_ V I (  Ad V p r ( A  I )  [ e 9  {T A ~ R ) I ' + ( o ,  0 )  (16' ) 

A1 

where n~ = A/A.  The corresponding expression for 
(2) follows from (19) and (16) a t  R = 0 when the hydro- 
gen wave functions a r e  replaced by the helium wave 
functions. Then 

We note that (16') decreases like l /v6 as v - .o. 

We consider further the first-order terms +pi,nuc 
= + qPiPI in (15), which contain the interactions 

of the incoming particle Ei with the immobile Coulomb 
centers. This matrix element is shown graphically in 
Fig. lb .  The corresponding integral is 

We have introduced here the velocity vector vf 
= kf[nf of atomic hydrogen. In the integral with respect 
to  d ql, the most important regions, which make the 
principal contributions to  the asymptotic expression, 
a r e  the regions of localization of the wave functions @i 
and c p ~  in the momentum representation, i.e., the 
vicinities of the points q l  = 0 (localization region of 
\ki) and ql vf (localization of (PH). These regions 
a r e  well separated a t  large v, s o  that the contributions 
from them can be calculated separately. Expanding in 
the indicated vicinity the nonsingular parts of the inte- 
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grand and using the asymptotic expressions (18) and 
(18'), we obtain for the main contribution to  (20) 

xcos (st - q l ' )R  (qr - A I ) R  cF ( 
2 

COS .I .I - v,)) - (21) 

Each of the terms in this expression decreases like 
l /v6 a s  l /v  - 0,  just as the amplitude (16), and both 
matrix elements make comparable contributions to the 
asymptotic expression. The first-order t e rm remain- 
ing in (15) and containing vpip2 (the interaction of pi 
with electron 2) makes a smal ler  contribution than the 
t e rms  considered above. Indeed, the integral corre-  
sponding to this matrix element is given by 

The main contribution to  the integral is made by the 
vicinities of the points q l  = ~f and q2 = 0, which a r e  
the regions of localization of the wave function @f and 
the wave function ~ i ( q 1 ,  q2) with respect to the argu- 
ment qz. In addition, the denominator of Vpe also 
vanishes in these regions. At the same time we can 
use for @i(ql, q2) with respect to  the argument q l  and 
for c p ~  the asymptotic forms (18) and (18') in the 
vicinities of ql  - ~f and q2 x 0. Thus, we obtain the 
estimate 

const 
I f ,  ,=, w V ~ ( A I )  V ~ * ( U I ) ,  (23) 

where const does not depend on v. This expression de- 
creases  like l/v8, and is asymptotically small  in com- 
parison with the t e rms  (16) and (21), s o  that the matrix 
element corresponding to the interaction Vpie2 can be 
omitted in the calculation of the asymptotic form for 
large velocities1'. Thus, the asymptotic first-order 
matrix element (15) is given by a sum of the expres- 
sions (16') and (21). 

4. SECOND-ORDER TERMS 

Out of the twelve second-order t e rms  

(in the case of the reaction (1) i t  is con_venient_to con- 
sider simultaneously the interactions Vpip3 + Vpip, 

- = and Qelps + Celpr = Velnuc of the exchanged 

electron with the two Coulomb centers) most t e rms  a r e  
asymptotically small  in comparison with the first-  
order terms. Two te rms  that contain repeated interac- 
tions of the type indicated in Fig. 2a decrease like 
v - ~  In v as v - m and a r e  smal l  in comparison with 
the corresponding first-order t e rm (20) (Fig. lb). 

Further, a l l  five second-order t e rms  containing the 
interaction vPie2 a r e  small. We consider, e.g., the 
matrix element ( f 1 ?F2co$,iy I i )  shown in Fig. 
2b. Analysis of the in egran s ows that a t  large v the 

')1n their calculation of the asymptotic form of (22), Chatterjee 
and McDowell [ 8 1  neglected the momentum transfer A, = kf/Mf= vf 
of the electron e ,  in comparison with the Bohr value. However, since 
4 > 1 when v 9 1 ,  the conclusion of  [ 8 ]  that the matrix element (22) 
makes an important contribution is not justified. 

principal contributions to the integrals with respect to 
dSq2 and d3q; a r e  made by the regions of localization 
of the wave functions in momentum space, viz., the 
vicinities of the points q2 = 0 and q& = 0 at  which the 
denominator of the potential Vpe also vanishes, and by 
the vicinities of the points q l  = 0 and q1 = vf in the 
integral with respect to  d3q1. The nonsingular functions 
a r e  the potential Vpp, _the wave function q ~ ,  and the 
f ree  Green's function. Go, in the system of regions q2 
x 0, q; - 0, and ql = 0 and respectively Vpp and @i 
with respect to the argument Q, in the system of regions 
q2 = 0, M 0 ,  and Q = vf. Expanding the nonsingular 
functions in the indicated regions and using (18) and (18'), 
we find that the principal contribution of the diagram of 
Fig. 2b is const, 

<f I f,),.,~~?~,,,nuc I i> - 
u,' V P P  

The leading t e rm here is the second t e rm (the contri- 
bution from the regions q2 - 0, q; = 0,  ql = vf), which 
decreases like v - ~  In v and becomes asymptotically 
small  in comparison with the first-order terms.  

Finally, among the remaining five second-order 
matrices we can neglect the contributions ~f the two 
te rms  containing the electron interaction Vele2. We 
consider, for example the diagram of Fig. 2c. The 
main contribution to  the asymptotic form of the inte- 
gral  corresponding to  this diagram is made by the 
regions qp = +:~-l pvf, q1 = 0, q2 = Af, in which a r e  local- 
ized the functions q~ and Ikf as well as *i with re -  
spect to  the variable ql. In addition, the-denominators 
of Vee and of the free Green's function Go also vanish 
in them. The leading asymptotic form is then 

l n u  V p e ( A J V p e ( A i )  - const - ( f I  ?a,e2~uPp,e,~i)- 
u  ArZ 

(26) 

and decreases like v-' In v a s  v --a. 
It remains to consider only the three t e rms  shown 

graphically in Fig. 3. The principal contributions to 
the integral corresponding to Fig. 3b a r e  made by the 
localization regions of the wave functions @i, @f, and 
(PH, the vicinities of the points q~ = 0, q2 = 0, qp = ppvf. 
Expanding the potentials and the denominator of the 
Green's functions in the indicated vicinities, we obtain 
the following asymptotic expression for  the diagram of 
Fig. 3b 

a b c 
FIG. 2. Diagrams of the second-order terms that are asymptotically 

small in comparison with the first-order terms. 

a b c 
FIG. 3. Diagrams of the second-order terms that make as important 

contributions to the asymptotic expression as the first-order terms 
shown in Fig. 1 .  
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where q = qp - ppvf. We have similarly for the 
asymptotic form of diagram 3c 

z ( k )  a M , ~ p V w ( u j )  V , , ( A j )  
<flPp,nuc ~ ~ V ~ , ~ , l i )  = - ,  

k,' - dkikj 

Let us compare the obtained asymptotic expressions 
(27) and (28) with the asymptotic firs:-order t e rm of 
(21), which contains the interaction V 
serve here that the second t e rm of (2 
celled by (27), and the algebraic sum of (21), (27), and 
(28) is equal to 

where Tl(v) is the first  term of the (21). In the region 
of small  scattering angles of interest to us,  equation 
(29) is of the order of Tl(v)/pp, and consequently the 
sum of (29) is smaller by a factor p p  than each of the 
terms. Thus, a s  a result of the interference of the 
amplitudes corresponding to  the indicated first-  and 
second-order terms,  their leading asymptotic forms 
cancel each other in part, as a result of which we have 

Similarly, in case (2), 

Since the first-order t e rms  shown in Fig. 1 make com- 
parable contributions to (15) in the small-angle region, 
i t  follows that by virtue of (30) and (30') the principal 
matrix element in this region is (16) (Fig. l a ) .  

L_et us  g o y i d e r  finally the matrix element 
( f 1 Ve lnucGoVe gi I i ) , shown in Fig. 3a. Expanding the 
nonsingular part of the integrand in the vicinities of 
the points ql  = 0, qz = 0, qp = ppvf, we obtain 

where zf = h:/v2. _As v - m, Eq. (31) decreases like 
l /vs in the region I hf - 1 I >> l / v  and like l /v5 when 
I si - 1 1 5 l /v.  Thus, the asymptotic sum of the first-  
and second-order terms coincides with the asymptotic 
sum of the diagrams shown in Figs. l a  and 3a a t  small  
scattering angles, and is given by the sum of the ex- 
pressions (19) and (31): 

(Hz) .. 2  ( 2 n )  " 
T,, ( R )  = ( f l  V p L e ,  + ~ , n u c C o V ~ , p ,  li) = - -- 

u2 
Vpe(Ai)  Vm(A t ) '  

The corresponding expression for (2) takes the form 
(He)- - 4(2n)" 

7 , ;  - (fl V P , # ,  + Ve:nuc li) -- 
u" 

Vp.(Ai) V p c ( A t )  T(Afi2), 

where r ( t )  is defined in (19'). 
The estimates of the contributions of the third- 

order  t e rms  of the Born se r i es  show that for processes 
(1) and (2) their  contribution to  the asymptotic ampli- 
tude Tfi is smal ler  than that of the first-  and second- 
order terms. It is necessary to take into account two 
orders  of perturbation theory because realization of 
the reactions in question calls for a change in the mo- 
menta of two particles, the incident proton (from ki to 
(Clp/Mf) kf) and the captured electron (from go = 1 to 
kf/Mf), something possible only as the result of a t  
least two pair interactions. We note that to study the 
scattering a t  sufficiently large angles i t  is necessary 
to consider a perturbation-theory se r i es  based on the 
Hamiltonian (4). Account must be taken here of t e rms  
of st i l l  higher orders  (in particular, for the reaction 
(2) the terms of the f i rs t  three orders  of the Born 
se r i es  make comparable contributions to  the amplitude). 
The third-order t e rms  become smal l  only in the region 
of small  scattering angles. Thus, the asymptotic am- 
plitudes of reactions (1) and (2) a r e  given respectively 
by expressions (32) and (33). 

5. EXPRESSIONS FOR THE CROSS SECTIONS AND 
COMPARISON WITH EXPERIMENTAL DATA 

To obtain asymptotic expressions for the total c ross  
sections of the processes in question i t  is necessary to  
substitute (32) and (33) in (13) and (14), respectively, 
and integrate over the angle variables. Since the radial 
nuclear wave functions in (13) a r e  localized in the 
vicinity A r  - ( l/mpw)1/2 near the point Ro = 1 .4[11], and 
the functions r+ vary noticeably over the distances 
-ro = 1, it follows that I?, can be expanded in the 
vicinity of Ro. In addition, owing t o  the presence of the 
rapidly oscillating factor exp (iRoAf - n ~ ) ,  the contri- 
bution of the c ross  t e rms  of the form exp ( ~ A ~ . R ) T + T ?  
to the integral over the angle variables in (13) is 
asymptotically small. Consequently, the asymptotic 
total c ross  section corresponding to (13) is of the form 

where ~ $ 9  = 21s~r:/5~1z is the Brinkman-Kramers 
c ross  section for charge exchange on a hydrogen atom. 
Averaging (34) over the initial states,  we obtain 

We have used here for  the integral with respect to d r  
in (34) the asymptotic expression 

r (0 0 )  iu iut 
~ . ( ~ n ~ , d ~ ) = ~ + - ~ d t r x ~ [ - - ( ~ ' - i ) ] ~ * ( t , t n ~ ~ ) .  A2 (32) 

2 "  2  
The corresponding expression for (2) is 
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In the case when the final state of the target is not 
established in the experiment, i t  is necessary to sum 
(35) and (36) over the final states of the electron in Hi 
o r  in He', including part of the continuous spectrum, 
and since the states with large electron energy make a 
small  contribution, the summation can be extended 
over all  the final states.  Taking into account the com- 
pleteness condition, and also Eqs. (7) and (14), we ob- 
tain for the total capture c ross  sections in a fixed final 
state of hydrogen 

where PH,(s~)= Jd3~21@irH1(~,, s2) lz, 

PA= ( ~ i )  = jd3SZ 1 (s,, s2) 1 (39) 

a r e  the corresponding electron densities. Summing 
finally over all  the bound states of the hydrogen atom, 
we obtain an asymptotic expression for the total cap- 
ture cross  section 

QB" = 1,202~:$' (0.296 + jH,) , (40 

Q::"'= l.202~:";'(0.296 + -$jHe), (41 

where 

Rnl(r )  is the radial Coulomb function["]. Q E ~ )  and 

QF;) in (40) and (41) a r e  the total c ross  sections for 
electron capture in the 1s state of the hydrogen atom, 
c_alculated with allowance for only the first-order t e rm 
Vpie 

The values of the electron densities that enter in (45) 
a r e  known exactly near the nuclei: 

s o  that 
(HI) - 

Q B K  - 2.892~:?, Q~F'=  45.50~::). (46) 

Estimates of expressions (40) and (41) show that a t  
moderately large v the t e rms  proportional to  the 
velocity turn out to be actually corrections to the con- 
stant terms.  We calculate the coefficient (42) and (43) 
with the aid of the very simple electron wave functions 
of the type 

where 
cp (s) = (Z3 / n)  Xe-", cpl(s) = (zf3 / n) 'he-",, 

As shown in the Appendix, we have in this case JHe 
z 1/2(1 + z'), for process (2), s o  that 

The corresponding expression for (1) is 
5nv 

Q: - 1.2 (0.3 + -) 9 1 2  Q::". (49) 

Recognizing that the c ross  section for the capture of 
an electron from the hydrogen atom is 

5nv 
Q?= 1.2 ( 0.3 + -)Q::', 2.. (50) 

we see  that there is a linear relation between the c ross  
sections of the corresponding processes : 

as previously obtained by Tuan and ~ e r j u o ~ [ ' ]  within 
the framework of first-order theory. 

The c ross  sections calculated from formulas (48) 
and (49) a r e  compared in Fig. 4 with the experimental 

obtained for incident protons with energy 
above 1 MeV (in the lab). The lower se r i es  of the re-  
sults corresponds to  the process ( I ) ,  and the upper to 
the process (2). As seen from the figure, there is 
satisfactory agreement between the experimental data 

FIG. 4. Electron capture cross sections in processes ( I )  and (2) vs. 
the energy of the incident proton (in the laboratory system): 0 ,  O-ex- 
perimental data from ['I, *, 0-['I, X-[41, 0, .-['I. The theoretical 
plots 1 and 2 were calculated from formulas (49) and (48) for processes 
( I )  and (2), respectively. 
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for, (1) in the region E < 1.4 MeV. At larger  values of 
E there  is a considerable discrepancy between data by 
different workers. The theoretical calculations for (1) 
agree  well with the data at E 2 2 MeV. For  re-  
action (2), the sca t ter  of the experimental points is 
much smal ler ,  and a t  E ,> 6 MeV the points coincide 
with the theoretical values within the l imits of experi- 
mental e r ro r .  On the basis of the presented experi- 
mental data we can thus assume that the capture c r o s s  
sections Q ~ ~ Q ~ ~  for  E > 2 MeV in the case  of (1) 

and E _> 6 MeV in the case  of (2) reach their  asymp- 
totic values given by formulas (48) and (49). The rea- 
son why the asymptotic values of QH, a r e  reached a t  
higher energies than those of QH, is that the smal l  
parameter of the problem, namely the ratio of the 
"orbital" velocity of the exchanged electron to v, has 
a larger  value in the case  of capture from He than in 
capture from Hz a t  the same  incident-proton energy. 
We note finally that if  we neglect those t e r m s  of (35) 
and (36) which a r e  proportional to the velocity and 
which make contributions of 20 and 15% a t  6 MeV, r e -  
spectively, then we can draw, with the same  accuracy, 
the following conclusions, which do not depend on the 
employed many-electron wave functions of Hz and He. 

F i r s t ,  only transitions to the final nua s ta tes  
(a = g, u )  of Hi and to (ns) s ta tes  of He' a r e  
"allowed." The c r o s s  sections for capture with transi-  
tion of He' to s ta tes  with higher angular momenta and 
Hi in s ta tes  with larger  projections of the angular mo- 
mentum decrease much more rapidly a s  v - m .  Second, 
the c r o s s  sections (48) and (49) decrease a t  equal ra tes  
as v - m ,  and consequently their  rat io does not depend 
on the velocity of the incident proton. 

APPENDIX 

If wave function (47) is used, the expression for  the 
coefficient (43) takes the form 

where 

- - ( 2 1 + 1 )  ( n - 1 - I ) !  
j d s  exp(- s ( l +  nz ' ) )s"[~:!: . :  ( s )  ]', 

2  ( n + 1 ) !  
(A.2) 

F (a ,  f i ;  S)  is a confluent hypergeometric function. An 
integral of the type (A.2), in the form of a Laplace 
transform, has been calculated for  a more general  
case  in[l4]. For  the given values of the parameters we 
have 

where F (a ,  p ;  7 ;  x)  is a hypergeometric function that 
reduces in the present case  to a polynomial of finite 
degree. Summing (A.4) over  a l l  I ,  we obtain 

.-I 

J " = 2 ( 1 + z 1 )  p,,,. 
,=o 

(A.5) 

As a result  of the calculation of the finite sums  (A.4) 
and (A.5) we find that the coefficients Jn a r e  ra ther  
slowly varying functions of n. Thus, a t  n = 1 ,  2, and 3 
they a r e  equal to 1, 1.12, and 1.18, respectively. Recog- 
nizing that (A.l) contains the rapidly decreasing factor 
l/n3, we find, accurate to severa l  tenths, that JHe 
M 1/2(1 + z'). 

In conclusion, the author thanks A. M. Brodskii, 
V. V. Tolmachev, and 0. B. Firsov for  valuable r e -  
marks  and interest  in the work. 
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