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The spatial distribution of the radio-frequency magnetization of an electron fluid is investigated. It 
is shown that the magnetization produced in the bulk metal by Doppler- shifted spin resonance is dis­
tributed harmonically with a period determined by the parameters of the Fermi surface. The role 
of quasi-particle spin correlation in such a resonance is considered. The static paramagnetic struc­
ture of metals is discussed. 

1. Spin waves in nonferromagnetic metals, [1J the pos­
sibility of propagation of which has been confirmed ex­
perimentally,c2J are the characteristic oscillations of 
the spin system of the quasiparticles of an electron 
fluid. Similar collective excitations are capable of lead­
ing to the anomalous penetration of the electromagnetic 
field into the bulk of the metal. The spatial distribution 
of this field depends on the energy spectrum of weakly 
attenuated waves of magnetization, [3 ,4J which is deter­
mined both by the spin correlation between the electrons 
and by the topology of their Fermi surface. However, in 
a number of cases, the region of propagation of the spin 
waves is limited by the requirement of the absence of 
Cerenkov absorption of their energy by the spins of the 
individual quasiparticles, which leads to strong damping. 
We note that similar absorption, accompanied by the 
spin reversal of the quasiparticle, can, in the case of its 
motion along the direction of propagation of the wave, be 
treated as a spin resonance at a frequency shifted by 
virtue of the Doppler effect. [5J In the present research, 
we shall show that although the Cerenkov spin absorp­
tion also leads to strong damping of the collective exci­
tations of the magnetization, it contributes at the same 
time to the creation in the bulk of the metal of a har­
monic distribution of the magnetization of another origin, 
due to the individual motion of the charged particles. 

2. We consider the quasiparticles of an electron 
fluid, drifting in the field of constant magnetic induction 
Bo with a nonzero velocity v Bo' In addition to the cyclo­
tron rotation of the electrons about Bo, precession takes 
place with a frequency w, a precession of the spin mag­
netic moments directed parallel or antiparallel to the 
field Bo (naturally, the parallel orientations are ener­
getically more favorable). In a variable magnetic field 
of frequency equal to the spin preceSSion frequency, the 
probability develops of a reorientation of the magnetic 
moments. From the quasiclassical viewpoint, it is pos­
sible to represent it as a reversal of the magnetic mo­
ment, which continues to precess about Bo, taking place 
within the time of the spin relaxation T 1• Such reversals 
lead to the appearance of a precessing transverse mag­
netization. However, as a consequence of the drift mo­
tion of the electrons, a Doppler effect takes place, and 
the quasiparticles experience a radio-frequency (RF) 
field at the frequency Wi = W - qvBo' which differs from 
the field frequency w. Here q is the length of the wave 
vector of the spin wave propagating along Bo the spin 
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wave is given by the dispersion equation for the magnetic 
excitations of the electron fluid. Since the velocity vBo 
can be large, then in the case of waves with sufficiently 
large q, the electron spins can experience the resonant 
frequency Wi = Wo, when the frequency of the RF field is 
far from w. It is clear that the magnetic moment of the 
quasiparticle will resonantly remove energy from that 
harmonic of the spin wave packet whose wavelength "-
is equal to d-the displacement of the given quasiparticle 
along the constant magnetic field within one period of 
preceSSion with frequency Iw - wol, i.e., "- = d 
= 21TVB/lw - wol. The group of electrons which drift 
with velocity v Bo' for which the condition of the Doppler­
shifted spin resonance is satisfied for the same q, 
creates a transverse magnetization that precesses with 
frequency w. As a consequence of the systematic motion 
of the quasiparticles, this is distributed harmonically 
over the volume of the metal with period d. Since the dif 
different groups of electrons drift with different veloci­
ties, the spatial oscillations of the magnetization of a 
single group of electrons will be smeared out in the 
total observed effect because of the presence of a group 
of electrons with slightly different velocities. An excep­
tion will be groups of those electrons which undergo 
extremal displacement d along the direction of propaga­
tion of the wave. The oscillations of the magnetization 
created by them are not neutralized and consequently 
appear in the total effect. 

It should be noted that drift of the electrons along the 
direction of propagation of the spin wave is also possi­
ble when the constant magnetic field Bo is perpendicular 
to this direction. In that case, it is required that the 
Fermi surface be open and the field Bo be orthogonal to 
the mean direction of openness n. 

It follows from the properties of the different traj ec­
tories of the quasiparticles in a constant magnetic 
field[6] that there exist three cases of extremal dis­
placement of the quasiparticles along the direction of 
propagation of the spin wave: a) The electrons move 
along helical trajectories which correspond to orbits of 
finite radius on the Fermi surface with extremal v~lues 
of the velocity. Here 

ex ( vA ) d=d,=- -- , 
eBo apBO ex"r 

(1) 

where A(PBo' E) is the cross section area of the energy 
surface of the plane PBo = const, PBo is the component 
of the momentum of the quasiparticle p along Bo, 
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K = W c /Iw - wol, and w c is the cyclotron frequency, 
which we shall assume to be constant. b) The electron 
orbits lie inside the limiting points on the Fermi sur­
face. In this case 

d = d, = 2ncxK-'I, / eB" (2) 

where K is the Gaussian curvature of the energy surface 
at the limiting point. c) The quasiparticles move along 
open trajectories which are characterized by the same 
displacement 

d = d, = cp,x cos {} / eB" B, -L q, B, ~ n, (3) 

where J is the angle between q and n, and Po is the 
period of the open orbit. Thus, it is clear that the period 
of the resultant harmonic distribution of the magnetiza­
tion in the metal is determined by the different param­
eters of the Fermi surface. The characteristic damping 
time of magnetization in the given case is to-the time 
of relaxation of the momentum of the quasiparticle; 
therefore, for the existence of oscillations, it is neces­
sary that the condition woto » 1 be satisfied. 

We note that the phenomenon considered by us is out­
wardly similar to the radio-frequency size effect, which 
is due to the focusing of ineffective electrons by a mag­
netic field, [7J but appears as a result of some other 
(spin) mechanism. 

3. We investigate the nonequilibrium magnetization 
M1, excited by the RF field B( ~ e- iwt) in a semi- infinite 
metallic sample found in the field of constant magnetic 
induction Bo. In the calculations, we shall use both the 
set of coordinates xyz with the z axis directed along Bo, 
and the l: axis which passes through the initial coordin­
ate system and is directed into the interior of the metal, 
normally to the surface of the specimen. We note that, 
by virtue of the symmetry of the problem, all the quan­
tities in the metallic half-space l; > 0 considered, which 
are functions of the coordinates, depend only on l:. The 
transverse nonequilibrium magnetization M~ = M~ + iM~ 
is determined by the expression 

(4) 

where dTp = (21Tl1r3d3p and og.(p, l:) is the nonequilibrium 
distribution function of the spin density of the quasipar­
ticles, which, in the linear approximation, obeys the 
equation [3,4J 1) 

~B+' = 211,B+' - 2 S dT.' <D (p, p') 6g+ (p',~), 

<I>(p, p') characterizes the spin correlation of the quasi­
particles of the electron fluid, E and no are respectively 
the energy and Fermi distribution function of the quasi­
particles, and qJ is the phase of the electron which ro­
tates about the orbit with frequency wc' 

Equation (5) is solved jointly with the Maxwell equa­
tions. The boundary conditions which need to be consid­
ered here are that on the surface of the metal l: = 0, the 

1) Equation (5) differs inessentially from that obtained by Silin. [3,4] 

tangential components of the magnetic and electric fields 
are continuous, and as l: - 00 all the functions vanish. 
We shall assume that the effects associated with the 
character of the reflection of the quasiparticles from 
the surface are unimportant. [8,9J This circumstance 
permits us to obtain a solution of the problem in closed 
form, by reducing it to the finding of the distribution of 
the magnetization in an unbounded medium. We continue 
the nonequilibrium magnetic induction Bi in even fashion 
into the region l: < 0 and introduce its Fourier compon­
ent 

~ 

b,+ = 2 J d~B'+ (~) cos q~, (6) 
, 

where q is the component of the wave vector q along l:. 
Similar expansions are valid for og+ and M~. Moreover, 
let us assume the simple model proposed by SHin [10J of 
a spin correlation in which <I>(p, p') is approximated by 
the constant quantity 

, / San, <D (p, p ) = - flo 2 dTp a; = const. (7) 

As a result of the solution of Eq. (5), making use of 
formulas (4) and (6), we obtain the following relation, 
which connects mil and bil-the spatial Fourier compon­
ents of the nonequilibrium magnetic induction [lOJ 

+ 1-(1+i/Olt,)X(q,0l) b+ (8) 
m, = l( 1-[i/Olt, + fl,/(1 + ~,)lX(q, Ol) ,. 

Here 
211,' Sd an. 

l( = - 1 + ~, Tp---a;-

is the static paramagnetic susceptibility of the electron 
fluid, and the function X(q, w) in the general case can be 
written in the form 

x = - iOl <~ J d'll' cxp {~ [(Ol - Ol, + -'-- + -'--) (rp - <p') 
U e _X> LJc T1 to 

- S qv, d<p" ]}) , 

.' 
(9) 

where ( ... ) denotes averaging both over the closed and 
the open orbits on the Fermi surface. Strictly speaking, 
in the case of open trajectories, the phase variable ({J 

must be replaced by a variable which changes along the 
orbit of the electron in p space, and the characteristic 
time of the motion must be the time within which the mo­
mentum of the quasiparticle changes by an amount equal 
to the period of the orbit in the direction of openness. 

It is well known [3,16J that the field equations for not 
too high frequencies reduce to 

rot (B' - 4nM') = 0, divB' =0. (10) 

It then follows that the spectrum of the magnetic excita­
tions of the electron fluid is determined by the denomin­
ator of (8), i.e., it corresponds to the poles of the mag­
netization mq' We note that averaging over the Fermi 
surface can lead to the appearance in (8) of additional 
Singularities of the type. of branch points. We find the 
sought magnetization M! after the inverse Fourier trans­
formation in (8); first, one must carry out averaging in 
Eq. (9). In the case of an arbitrary disperSion law, this 
can only be done approximately. Here it is difficult to 
compare the relative value of the contributions to the 
integral over q from the different Singularities mil, each 
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of which corresponds to a definite mechanism of forma­
tion of the magnetization. Therefore we consider one 
problem further, furnishing specific models of the en­
ergy surface which are so selected that in each of them 
there would be one of the cases a), b), and c) enumera­
ted above of extremal displacement of the quasiparti­
cles. 

4. In this section, we consider the situation when the 
constant magnetic field directed along the axis of sym­
metry of the energy surface is perpendicular to the sur­
face of the metal. 

A .. We shall assume that the dispersion law has the 
form [l1J 

PL' ,2p,v,., np, 
e=----sm-, 

2m' n 2p, 
(11) 

where m* is the effective mass of the quasipatricle, 
p 1 is the component of its momentum perpendicular to 
the z axis, and P1 and V1 are parameters with the dimen­
sions of momentum and velocity. The corresponding 
Fermi surface E = EF is a corrugated cylinder with 
necks at Pz = (2n + 1)P1 (we assume 2p1V1/1T < EF) and as 
a boundary of the Brillouin zone, we take pz = ± Pl. We 
note that, in spite of the fact that this surface is open, 
for the orientation of Bo chosen by us, only closed elec­
tron orbits in p space are possible. It follows from Eq. 
(11) that the velocity of motion of the electrons along Bo 

1', (p,) = 88/ 8p, = v, sin (np, / p,) (12) 

has the extrema ± V1 for Pz = ± P1/2. This means that the 
extremal values of Vz are achieved on the helical trajec­
tories. The expression (9) has the form 

x = M(8-i + iT))'-s'j-V" (13) 

where 6. = w/wo, s = qV1/WO, 1) = l/woto + l/woT1' while 
the square root is determined in the complex s plane 
with cuts going off to infinity (see the figure), the points 
of which correspond to the conditions of Doppler- shifted 
spin resonance of the individual electrons moving with 
the velocitieu v z(pz), and are given by the equation 

8 - 1 - Sl', / V, + iT) = O. (14) 

Choice of the analytic branch of the function 
[1 - S2/(6. - 1 + i1))2)1/2 is understood from the drawing: 
the values of this function are purely imaginary on the 
cuts and the imaginary part is positive on the right side 
of the upper cut and on the left of the lower cut. 

Setting the denominator of (8) equal to zero, we ob­
tain the dispersion equation for collective excitations 
of the magnetization 

F,-'(s) = [(8 - 1 + iT))' - s'l''' - ih = 0, (15) 

where h = a - iM, f = f3o/(1 + f3o), a = 1/woto. We note 
that the propagation of spin waves without Cerenkov spin 
absorption is possible only for 

(16) 

i.e., the limiting values of s lie near the root branch 
points sb = ± (6. = 1 + i 1)), from which the cuts are also 
constructed. 

Having in mind an investigation of effects connected 
with Doppler-shifted spin resonance, which are the 
greatest for W f wo, we eliminate from consideration the 
range of frequencies which correspond to 6. ~ 1. Then, 

neglecting damping, we get from Eq. (15) 

s,,;:::;±[8-1-(M)'/2(8-i)], IMI~I<\-il. (17) 

Nonzero solutions of (15) for 6. = 0 indicate a possible 
existence of a static paramagnetic structure of the me­
tal l12 ,13J with period 21TV1/WO' It is seen from the rela­
tion (17) that exchange interaction between the spins of 
quasiparticles leads to a frequency-dependent shift of 
the wave vectors of the spin waves from their limiting 
values to smaller lsi. In what follows, it is convenient 
to divide the frequency region considered into two parts: 
the low frequency, in which the imaginary part of s, 
which is responsible for the wave damping, exceeds the 
exchange shift (1) »(M)2/2slim) and the high frequency, 
in which the latter term prevails ((M)2/2slim »1)). 

Since the wavelengths of the magnetic excitations, 
which make the principal contribution to M~, are much 
greater than the thickness of the skin layer, then, using 
the even parity of X(s) in s, with the aid of Eqs. (6), (8) 
and (13), we get the following expression for the magne­
tization in the depth of the metal: -M+'(~);:::;~M(f-1)11+(0) Jdse"uF,(s), P> 161, (18) 

2rrv, _00 

where the effective penetration depth of the exciting RF 
field in the sample is 

6=11+-'(0) Jd~B+'(~), 
o 

and u = r;Wo/v1 has the meaning of the number of spin 
reversals in the time of passage of the quasiparticle 
through the distance r;. We close the contour of integra­
tion in the upper half-plane of the complex variable s. 
Then, in the integral over s, which appears in (18), con­
tributions are made both by the residues of the pole and 
also by Ie-the integral over the contour C which goes 
around the cut. Taking into account the jump in F 1( s) in 
the transition from one side of the cut to the other, we 
reduce Ie to an integral around the line of the cut, which 
in turn is equal to an integral over the dotted line paral­
lel to the imaginary axis (see the drawing). As a result, 
after calculations, we have (u » 1, a R! 1) « 1) 

{ 
[(2n) 'l,t'I'U-'J,(8 -1)-% + nh(8 -1)-')exp[iu(8 - 1 + iT))], 

Ie ;:::; (8f)'/2slim~ T), 
-2[2rri(8 -1))'/'u-'I'(8j)-'exp[iu(8 -1 + iT))), (19a) 

(8/),/2so• ~ T). (19b) 

The contribution to the integral over s from the residue 

1m, 

-IJl-f+i'll Res 

Location of the singularities of F 1,2 (s) in the complex s plane for 
(6~ I) < O. The circles indicate poles, the arrows the directions of their 
displacements for increase of 6. 
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at the pole of F l(s), which lies in the upper half-plane, 
is equal to 

Ip = 2n:h[ (ll- 1 + i'lj)' + h')-'''exp{iu[ (d -1 + i'lj)' + h']'iI}. (20) 

We compare the relative values of the contributions 
to (18) made by the different singularities of F 1( s). It is 
not difficult to establish the fact that at low frequencies, 
the first component of the integral over the contour C 
dominates. Therefore, in accord with (1) and (18), we 
can assume that 

M '( )::::i xM (1 - f) B+ (0) [2n:z z] 2 
+ z (zd,) 'I, I ll- 11 exp iTsign(ll- 1) - iljJ - T. ,( 1) 

where II = Vito is the free path length of the quasiparti­
cle, and lJI = arg[i(t:. - 1)]1/2. It is known[7J that the ac­
tion of the exciting RF field in the low-frequency case 
reduces to the formation of a skin layer near the sur­
face of the metal. Therefore, as t:. - 0, the expressions 
(19a), (19b) and (20) can be used for consideration of the 
static paramagnetic structure of the metal [12J , which 
arises in a strong constant magnetic field perpendicular 
to the surface in the presence of a weak, constant, trans­
verse magnetic field incident at the skin layer depth. 
It is evident from the formulas mentioned that for t:. = 0, 
within the framewox:k of our considerations, the static 
structure disappears in the bulk of the metal, although 
the corresponding solution (17) of the dispersion equa­
tion also indicates the possibility of its existence. So 
far as the quasistatic structure is concerned, which 
arises for small t:. f 0, it is due to the presence of the 
root branch point and not to the polar singularity. 

The situation is different in the high frequency reg­
ion. The principal contribution to the integration in (18) 
is made by the residue and the corresponding asymptote 
of the magnetization has the form 

M+'(z)= X6w•ll'(f-1)fB+(0) exp(i zwos'_i~_~) (22) 
V 1S t VI 2 i1 

(we recall that Sl was defined in Eq. (17)). 
The results (21) and (22) indicate a rather curious 

fact; with change in frequency w, the nature of the exci­
tations which dominate in the creation of a nonequili­
brium magnetization in the bulk of the metal also 
changes. Actually, if the magnetization at low frequen­
cies is due principally to the motion of individual quasi­
particles, then, in the transition to the high-frequency 
region, the decisive role belongs to the collective exci­
tation-the spin wave. The reason for this is that, be­
cause of spin correlation between the quasiparticles, 
the condition of the Doppler- shifted spin resonance is 
violated with increase in frequency for electrons with 
extremal velocity vz , and the spin waves are propagated 
almost without attenuation. From the mathematical 
point of view, this is due to the "departure" of the poles 
from the vicinity of the branch points (see the figure). 
Thus, even in the phenomenon considered by us, the cor­
relation between quasiparticles leads to a new distinction 
in the behavior of nonequilibrium magnetization in com­
parison with that observed in a gas of noninteracting 
electrons. 

B. In the case of a quadratic dispersion law, the ex­
tremal displacement along the direction of wave propa­
gation is experienced by electrons of the reference 
points of the Fermi surface, at which v z = ± V2 = ± vF 

and Gaussian curvature K = PF' The nonequilibrium 
magnetization M~ can be found from Eq. (18), where we 
replace Vi by V2 and Fl(S) by 

F,(s) = {2s1n-' (1l-1 +s + ill) _ ih}-' , 
11-1-s+ !'I] 

(23) 

and the function F2(S) is determined in the complex s 
plane with cuts similar to those considered above, such 
that on the right edge of the upper cut, In( ... ) = In 1 ... 1 

+ i1T. 
We also note that the quantity If I « 1 which usually 

enters in h = a - it:.f is negative. [2,3J Under these condi· 
tions, it follows from the dispersion equation F21(S) = 0 
that weakly attenuated collective excitations of the mag­
netization are possible only for IMI »a, t:. < 1 (as be­
fore, we do not consider the region of frequencies t:. ~ 1) 
and correspond to 

S,,' ::::i + [Slim - i'l] - 2s1imexP (2slinl M) ], 

slim= 11l-11 > IMI. 
(24) 

The presence of a pole in the upper half-plane deter­
mines the component appearing in the integral in (18): 

Ip::::i -8n:isli~(Ilf)-'exp (2sDP/M+ ius,). (25) 

However, integration over the contour C, which goes 
around the cut from the branch point sb = t:. - 1 + i TJ , 
gives a contribution that is many times greater to the 
integral over s. This is connected with the fact that the 
exchange shift in the dimensionless wave vectors s from 
their limiting values cannot surpass 1m s by very much 
and prevents damping of the waves. Therefore, the 
radio-frequency magnetization in the bulk metal is pro­
duced almost entirely as a result of Doppler- shifted 
spin resonance, due to the motion of the individual 
quasiparticles and has the form 

(26) 

x G(z, ll)exp [i 2n:z sign(Il-1)+iarg (Il-1)---=-], 
~ ~ 

G-' (z, ll) = [2(1l- 1) / h - i In (4nz / d,) + (n: f 2) sign (6 -1))' - n:" 

(27) 
In deriving (26), we used the saddle-point method. We 
note that the first component in square brackets is dom­
inant in (27). 

5. We now turn to the case in which the quasiparti­
cles move along open trajectories, which tells a great 
deal about the character of the effect considered. Let 
the magnetic field Eo be parallel to the surface of the 
sample and the y axis coincide with the t; axis, along 
which the snin waves propagate that are excited by the 
RF field B,;. For simplicity, we shall assume that all 
the electron trajectories are open. A similar situation 
is possible in the case in which the Fermi sur~ace is 
modeled by a right circular cylinder whose axis is 
directed along the x axis. Under these conditions, the 
movement of the quasiparticle in momentum space takes 
place along the Px axis, and in coordinate space, along 
the yaxis; half of them move with the same mean veloc­
ity Vy = V3 = poc/eBoT and half with the velocity-v3.[6,9J 
Averaging is carried out over T-the time of transit by 
the electron of the period of the orbit po in p space. It 
should be clear that one means 21T/T by the cyclotron 
frequency Wc in the expression (3). It follows from the 
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relations (6), (8) and (9) that the magnetization M!U:) in 
the example considered is given by the formula (18) with 
the replacement in it of V1 by V3 and F1(s) by 

F3(S) = [(L1- 1 + il'j)' - s' - ih(L1-1 + il'j) ]-', (28) 

the only singularities of which are the poles 

s",~±(L1-1-L1t/2+ia/2), 1L1f1~1L1-11. (29) 

As a result, we get the relation 
M+~XOl./)111-1111(1-f)B.(O) {' +. ['(11 ill} (30) , ~ 2v,s, exp !S,IL I arg I - • 

In spite of the fact that F3(S) does have a characteristic 
branch, peculiar to the model considered, the fact that 
for Li. « 1 the Eqs. (29) go over into the condition of 
resonance absorption indicates that these singularities 
stem from the presence of a threshold of spin absorp­
tion at the Doppler-shifted frequency. The phase change 
of the magnetization (30) on going through Li. == 1, brought 
about by the fact that electrons with velocities VI;; of 
opposite sign participate in the resonance on the two 
sides of Li. == 1, supports this view. The spin waves (29) 
are analogous to dopplerons-waves that appear near the 
absorption thresholds for Doppler- shifted cyclotron 
resonance. CH ,l3] 

Analyzing the problem of static paramagnetic struc­
ture (touched on by us in Sec. 4) with the help of (30), 
we note that such an effect disappears in the bulk of the 
metal at Li. == 0 and the quasistatic structure, which ari­
ses for small Li. f 0, is periodic in the direction y 1 Bo 
and is described by the poles of F3(S). 

6. The expressions (21), (26), and (30), obtained for 
specific models, are also applicable for the qualitative 
description of the distribution of magnetization in metals 
with very complicated energy surfaces. Actually, we 
shall consider that the principal contribution to the os­
cillation of the magnetization is made by electrons 
which achieve the extremal displacement d, and we 
expand VI;; in (9) in a series near the points of the Fermi 
surface corresponding to extremal d. It is clear from 
formulas (8) and (9) that the character of the singulari­
ties of mq, which are connected with the Doppler- shifted 
spin resonance, is determined by the first (after zero) 
nonvanishing term of the expansion, i.e., it depends on 
the number of electron orbits for which the displacement 
d is close to extremal. In fact, a small number of limit­
ing-point electrons determines the logarithmic branch 
and the quasi particles on the extremal spiral trajector­
ies the root branch. In the case of open trajectories, 
when the electrons drift along I;; with the same velOcity, 
the Singularities of mq are poles. In accord with this, 
the amplitudes of the oscillations (26), (21) and (30) in­
crease steadily with time. It is of interest that the first 
two of them are damped with the distance I;; in power 
fashion, as I;; -1 and I;; -1/2, respectively. We note that the 
dependence of v s on cp in the general case leads to the 
appearance in the spatial oscillations of higher harmon­
ics of the type e27Tin l;;/d. So far as formula (30) is con­
cerned, in real situations, in addition to the open trajec­
tories, one must also take the closed trajectories into 
account, and also the trajectories which pass through the 
saddle point of the Fermi surface, near which the period 
T goes to infinity logarithmically. However, in the 
geometry considl~red, this corresponds to VI;; == 0; there-

fore, their account only brings about a re-evaluation of 
the poles and does not change the picture qualitatively. 

The harmonic distribution of the magnetization that 
has been discussed produces oscillations both of the 
spin contribution to the impedance and also of the RF 
field passing through the thick metal plane in a change 
of the constant field Bo or frequency w. For Li. < 1, this 
field is given by the expressions (21), (26) and (30), 
where one must put the thickness of the plate L in place 
of !;;. We recall that, near ordinary spin resonance 
Li. ~ 1, it is described by formulas of "selective trans­
parency." [2,8J In the experimental observation of the 
oscillations of the magnetization, it should be kept in 
mind that for Li. < 1 they coexist with Gantmakher- Kaner 
oscillations, [B,7J the amplitude of which is generally 
greater. However, the fact that the harmonic distribu­
tion of the magnetization is damped out slowly with dis­
tance and has another period allows us to expect that in 
some case (large value of the free path), one can separ­
ate these two types of oscillations. In the high frequency 
region Li. > 1, cyclotron waves can be propagated in the 
electron fluid even in the geometry considered. [3J For 
weak correlation between the quasiparticles, their mini­
mal length [15J is large in comparison with the period of 
the harmonic distribution of magnetization and therefore 
the RF field, passing through the plate due to these 
waves, can be separated from the field of interest to us. 
We note that the most favorable situation for the obser­
vation of Doppler- shifted spin resonance is possible in 
metals where the electronic g factor is a little larger. 
than two, since the condition of nondiffuse resonance 
woto » 1 in them can be satisfied in magnetic fields for 
which W cto;:; 1, and, consequently the Gantmakher­
Kaner oscillations and the cyclotron waves are not ob­
served. 

The presence of Doppler- shifted spin resonance in 
metals can give information not only on the various 
parameters of the Fermi surface, but also on the value 
of the spin correlation of the quasiparticles, their effec­
tive mass and their g factor. 

The author is deeply grateful to E. A. Kaner for use­
ful discussion of problems touched on in the research. 
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