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The effect of inhomogeneous fields on cholesteric liquid crystals is considered. Various types of 
solutions that minimize the free energy arise, depending on the geometry of distribution of directions 
of the inhomogeneity and cholesteric helical axis. The effects should be taken into account in inter­
preting the experimental data on the appearance of a periodic structure in thin layers of cholesteric 
liquid crystals Pl. A phenomenon similar to critical opalescence is noted on transition from the 
cholesteric phase to the nematic phase in an external field. 

1. The influence of homogeneous fields on cholesteric 
liquid crystals was first investigated by de Gennes[1l. 
(An analogous problem for helicoidal antiferromagnets 
was considered earlier by DzyaloshinskiI [2). The con­
clusions of these studies depend on the direction of the 
field relative to the axis of the helix and on the ratio of 
the elastic moduli Kii 

1 . 
F = -S dV{K I1 (div n)' + K,,(nrotn + a)' + K,,(nrotn)' - x(Hn)'}, 

2 (1) 
n is the director vector, X is the anisotropic part of 
the dielectric or diamagnetic susceptibility, H is the 
external field, and QI is the pitch of the helix. For real 
cholesteric substances X> O. 

In the absence of an external field, the ground state 
of the cholesteric mesophase is given by the following 
relations for the director components that minimize (1): 

nx = cos az, ny = sin az, (2) 

where the z axis is directed parallel to the helix. The 
direction of the helix axis is determined, for example, 
by the boundary conditions to the functional (1), and the 
actual analysis pertains therefore to suffiCiently thin 
films. 

When a field is applied perpendicular to the z axis 
(e .g., parallel to y), the period along the z axis in­
creases smoothly with the field and becomes infinite 
at Hc = Y21Ta (K2dx)1/2, Le., a transition into the 
nematic phase takes place. If the field is directed 
along the z axis and K22 = K33 , the period does not 
change at all up to fields 21T-1Hc , where it becomes in­
finite suddenly. On the other hand, if K22 ", K33 , then 
there exists a region of smooth variation of the period 
21T-1Hc(K2dK33)1/2, 21T-1HC (K3dKd1/2. For simplicity, 
we shall henceforth neglect this region, and consider 
only the isotropic case Ku = K22 = K33 . 

Everything stated above pertains to a homogeneous 
external field. In real devices that employ cholesteric 
liquid crystals, however, one uses inhomogeneous 
fields (usually periodic in space) [3). This is therefore 
the situation considered in the present paper. In the 
case of inhomogeneous fields, the investigation is much 
more complicated and new possible solutions appear. 
Although it is difficult to analyze them in analytic form 
(nonlinear differential equations with variable coef­
ficients), it is possible to understand the character 
of the solutions corresponding to the minimum value of 
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the free energy. In addition, we consider in the present 
paper a question connected with the continuous transi­
tion from the cholesteric to the nematic phase in a 
magnetic field. Since a viscous mode that vanishes in 
the long-wave limit (g - 0) exists in such a stransition, 
a phenomenon similar to the critical opalescence in 
ordinary phase transitions should be observed. 

2. We consider first a field directed along the z 
axis and periodically dependent only on y (we have in 
mind only such types of inhomogeneities). In this case, 
a conical molecule configuration is possible, i.e., 

nx = cos 8 cos cp, ny = cos 8 sin cp, n, = sin 8. (3 ) 

The functional for the free energy (1) is transformed 
with (3) in the following manner: 

1 {[ ( of) )' ocp' 
F = 2: S dV K dY + (cos' 8 ~ - a) 

o 2 

+Cos'Ssin'SC:)] -xlI'(y)sin'8}. 

The Euler-Lagrange equations corresponding to (4) 
take the form 

d (iJCP oCP) -;;;: cos' e a;: - a + cos' 8 sin' 8 a;: = 0, 

- 4K(cos' 8~ - a) cos 8 sine~+ sin20 cos 2e (~)' 
ijz r}z oz 

iJ'e 
- 2xH'(y)sin8 cos 8 -- = 0. 

oy' 
The first of these equations requires 

ocp / oz = (e, + a) / cos'8(1 + sin'S). 

(4) 

(5 ) 

(6) 

The integration constant C1 should be chosen to mini­
mize (4): 

F = ~S dV {K [(~)' + ( e, - a sin' 8)' 
2 ijy 1 + sin'S 

(7) 

t g'8(e,+a)'] , .,} 
+ (1+sin'8)' -XH (y)sm e . 

From the condition that (7) be minimal it follows that 
e = const. From the second equation of (5) we see that 
e can assume only the values 0 and 1T/2. If H2 
> 41T -2 H~, then e = 1T/2 (C 1 = - a, and if H2 < 41T _2 H~, 
then e = 0 (C1 = 0). In this case we obtain from (6) 
acp/az = a. Thus, in fields weaker than critical, we 
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have the usual cholesteric structure, and at H > 21T- 1 Hc 
we obtain the nematic structure n( 0, 0, 1). In the case 
of a periodic dependence H = H~ cos (qoY), where Ho 
> 21T _1 Hc , we obtain alternating layers of cholesteric 
and nematic phases (Fig. 1). The layer thickness is 
obviously determined by the value of qo and by the 
ratio Hc /Ho. At Hc /Ho « 1, thick nematic layers 
alternate with thin cholesteric ones; the situation is 
reversed at Hc /Ho ~ 1. We note here that structures 
of this type can find important applications in all types 
of liquid-crystal indicators and pickups Pl. 

We consider now another case, in which the field is 
directed along the y axis and depends periodically on 
x. We are then left with the cholesteric configuration 

nx =: cos cp, ny = sin <p, nZ. = O. 

But now cp can depend on x and z, so that the free 
energy takes the following form: 

(2a) 

F = f J dV {K [ ( :: ) '+ ( :: - a) '] - XH' sin' rp }. (8) 

For the time being we consider fields H weaker than 
critical. Then [l] 

4 
z=-K(k,rp)E(k,rp), (9) 

na 

where K and E are elliptic integrals of the first and 
second kind with modulus 

k=E(k,!!:...)~. 
2 H, 

(9a) 

We therefore have at H« Hc 

ocp! oz = a. (10) 

If H = Ho cos (q(,x), then we can rewrite (8), taking (10) 
into account, in the form 

1 J { (elfl )' xHo' } (11) F=- dV K ---qo ---[sin(fl-2qox)+sinfl]' 
2 .]x 4 ' 

where e = cp + 'loX. 
The Euler-Lagrange equation corresponding to (11) 

cannot be solved in analytic form. The character of the 
solution can, however, be easily understood. There is 
a critical field 

(12) 

When qo« CJ., this field satisfies the condition 
H « Hc which is necessary for the derivation of (10). 
At fields H < HI there is a "homogeneous" distribu­
tion 

Ckp / ox = 0, oS / ox = qo. (13 ) 

It corresponds, according to (9), to a subdivision of the 
liquid crystal into layers (along the x axis) with differ­
ent periods T of the cholesteric helix (along the z 
axis) (cf. Fig. 2). In visible light, these layers should 
be brightly colored. This is precisely what was ob­
served in the experiments of [31. On the other hand, 
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when the field HI is reached, the inhomogeneous dis­
tribution 

ofl!ox=O. (14) 

becomes more convenient, with 

nx=cos(az-qox), ny=sin(az-qox), n,=O. (15), 

Such a doubly-periodic structure should have remark­
able optical properties, and in particular selective re­
flection of Circularly-polarized light with wavelength 
1T/ qo (when propagating along the x axis) and 1T/0I. 
(when propagating along the z axis). 

In fields exceeding H (~Hc) our analysis no lO!1ger 
holds. It is clear, however, from the physical meaning 
of the problem that qo = const and 01. - 0 as H - Hc , 
in accord with formula (9). 

Other cases can be considered in similar fashion. 
We note also an interesting possibility that arises in 
the case of a field directed along the y axis and weakly 
modulated along the z axis. From (1) and (2a) we have 
in this case an equation for cp: 

a'rp xHo' 
oz' + 2K (1 + () cos 2qoz)sin2rp = 0, (16) 

where it is assumed that 

H = Ho(1 + '/2 {) cos 2qoZ), ()~ 1. (17) 

The region of greatest interest is again qo ~ .J X !KHo, 
which corresponds to parametric resonance for a 
linear equation analogous to (16). Solving (16) by per­
turbation theory, we obtain for the period of the 
cholesteric helix the results shown in Fig. 3. 

Leaving out the corresponding cumbersome deriva­
tions, we indicate only the possibility of obtaining a 
nematic structure, in the region of parametric reso­
nance, also in fields weaker than the critical value Hc. 
This is due to the growth of cp in this region. The in­
tegral for the period T then diverges logarithmically 

T=sln(w/B). 

Here s is the parametric growth exponent, 
w = HofX7K, E = (qo - w)/2, s = Y2.J(liw!2)2 E2. 

3. We consider now the question mentioned in Sec. 1, 
the change over of the viscous modes in smooth transi­
tion from the cholesteric into the nematic phase in a 
magnetic field Hc. In cholesteric liquid crystal there 
are two types of oscillation[41: twisting of the helical 
type, and viscous-shear modes. The first type of oscil­
lation involves n~l) and n~I), and the second includes vx , 
v and n( 1) Here n( 1) n( 1) and n( 1) are the fluctua-

Y' z . x' y' z 
tion corrections to the equilibrium values of the direc­
tor (2a), and Vx and Vy are the velocity components of 
the liquid crystal. From the equations of hydrodynam­
ics we can obtain (by linearizing these equations over 
the fluctuation increments) the dispersion equations 
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(q) for the modes. We put nx = cos<p(z, t), ny 
= sin<p(z, t), where <p(z, t) = <po(z) + nl(z, t); <po is a 
function minimizing the functional (8) with H = const, 
and nl is the fluctuation increment. Since 

sin (flo = sn(zH / kH,) , 

(where sn is an elliptic function [5]), we obtain in the 
first type of oscillations 

Ho' iPn. . ( iwy.H' ( zH )) k'--+k' --+1-2sn' -- n.=O 
H' f)z' K'Ho' kH, . 

This is a generalized Lame equation, the solutions of 
which are expressed in terms of the Jacobi ® function. 
We write out only the oscillations of interest to us, 
which are separated by a gap in the cholesteric phase: 

. 0' K{ 1-k' 2k'K(k,n/2)Q'} (18) 
'w ~-; E(k,n/2) [E(k,n/2)-(1-k)K(k,n/2)j" 

Here y 1 is the characteristic viscosity, which remains 
unchanged with good approximations on going over to 
the nematic phase. The index 1 identifies the mode in 
which the cholesteric helix is twisted. As H ~ Hc , 
according to (9a), the modulus k ~ 1 and the gap 
vanishes like (H - Hc? 

In connection with the existence of such a mode, the 
effective cross section for small-angle scattering of 
light acquires the large factor [w( 1) r2, 

f)o/f)Q' ~ I (H - H,), + A (8 /1.)']-', (19 ) 

where d(l' is the solid angle element, A is the wave­
length of the incident light, and A is a constant quantity 
obtained from (18). Expression (19) for the intensity of 
the unshifted line is obtained by calculating the corre­
lation function of the fluctuations of n at w = O. 
Neglecting the angle factors, which play to role here, 
we have 

do <nq (0) n_q (0) w(t) 

dQ'= w'+w(')' 

On the other hand, the equal-time correlation function 
in the numerator takes the following form: 

<nq(O)n_q(O) = T Iv.w(». 

Therefore at w = 0 we have da /d(l' ~ [w(l)r2 • This 
indicates very intensi ve light scattering. The total 
cross section behaves near the transition like 

(20) 
This formula is not valid in the immediate vicinity 

of Hc, for we have neglected in it the logarithmic de­
pendences on the field in the coefficient A. As to the 
shear modes, the dispersion equation for them cannot 
be expressed in analytic form. The equation that de­
termines the dispersion of this mode is the general 
Hill equation 

f)'n,(l) (I) KH' , ( zH) (.) 
K---iw(2)y,n, ---dn - n, ~O 

f)z' k'H/ kH, ' 
(21) 

where dn is the corresponding Jacobi elliptic func­
tion [5]. This function is doubly periodic with periods 
2K (k, 1T/2) and 4iE (k, 1T/2), and has simple zeroes 
at all points comparable with K( k, 1T/2) + iE (k, 1T/2). 
In weak fields, however, (21) goes over into the 
Mathieu equation 

a'n,(1) (II [H' 1 H' 2zH 1 (I) 

K--,--iw(')y,n, - -,-,(1-k'/2)+-}{,cos-kH Jni =0. 
()z k H, 2,. , 

We can now obtain the dispersion law 

iw (2) = K(u' + q') Iv,. (22) 

The appearance of the gap ~ ci in (22) is analogous to 
the appearance of the forbidden band in the periodic 
potential. 

If it is assumed (as confirmed by direct substitution) 
that the dispersion equation retains its form when 
H ~ Hc, but (l is replaced by the corresponding period 
in the magnetic field (9) 

u-+'/,71u 1K(k, n/2)E(k, n/2), 

then this mode also results in intensive scattering as 
H ~ Hc 

0- In' (H - H,.). (23) 

We note also that similar singularities should be ob­
served in the scattering of slow neutrons. In this case 
the wave length of light A should be replaced in (19) by 
l/mv, where mv is the neutron momentum. 

The questions considered in the present paper can 
be useful in the development of methods for determin­
ing the parameters of liquid crystals. On the other 
hand, intensive scattering of light on going over to the 
nematic phase can be used for indicator devices 

In conclusion, the author is sincerely grateful to 
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