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The two-particle Green function for electrons on magnetic surface levels, averaged over an ensemble 
of random irregularities of the metal boundary, is calculated. It is shown that the width of resonance 
transitions in a high frequency electromagnetic field is not identical to the sum of the level widths 
and is defined by the transport scattering cross section. In a comparatively strong magnetic field, 
or for sufficiently smooth irregularities, the transport width of the transition is much smaller and 
depends on the magnetic field strength in other ways than the total width. The shape of the reson
ance curve is analyzed by taking into account scattering by the boundary irregularities in a metal 
with a spherical or cylindrical Fermi surface. 

1. INTRODUCTION 

WHEN a metallic sample is placed in a constant mag
netic field, two different types of electronic states are 
produced. Besides the usual volume states correspond
ing to the Landau level, there exists electrons that col
lide with the boundary of the metal. In a magnetic field 
parallel to the surface of the sample, the motion of such 
, 'surface" electrons has a periodic character, and is 
consequently qmmtized. These quantum states are called 
magnetic surface levels. In weak magnetic fields 
(1-10 Oe), the frequencies of the transitions between 
levels lie in the microwave band (1010_1011 Hz). The 
transitions indueed by the electromagnetic field lead to 
the resonant oscillations of the surface impedance of 
metals, first observed experimentally by Khaikin l1]. 
This is the interpretation proposed by Nee and Prange[2] 
for the oscillations of the surface impedance in weak 
magnetic fields. Recently, Koch and co-workers car
ried our extensive experimental investigations of this 
phenomenon in many metals. Since the surface states 
are the result of multiple collisions between the elec
trons and the boundary of the metal, microscopic sur
face inhomogeneities playa very important role in the 
spectrum and in the damping of the magnetic surface 
levels. The role of the roughnesses was discussed 
qualitatively by Prange and Nee[7] and by Fischbeck 
and Mertsching[8]. A detailed study of the influence of 
random inhomogeneities of the metal boundary on the 
spectrum and damping of the surface stage was carried 
out in [; 9] , using the results of the theory of wave dif
fraction by surfaces with random roughnesses (cf., 
e.g., llO,ll]). Subsequently, the princiral results of[9] 
were derived again by Fal'kovskil[12 , who used a dia
gram technique developed by Chaplik and Entin[13]. It 
should be noted that the problem of the influence of 
roughnesses on the surface electronic states in a mag
netic field has many features in common with the prob
lem of the spectrum and damping of waves in an irregu
lar waveguide with rough walls[14]. The magnetic field 
plays here the role of the second wall in a flat wave
guide, forming together with the metal surface an 
"electronic" waveguide. This analogy was used by 
Makarov and Fuks[15] in an analysis of the influence of 
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surface rougbnesses on the spectrum and damping of 
magnetic surface states. 

In all the aforementioned theoretical papers, they 
calculated the surface-level broadening, which is obvi
ously determined by the total cross section for the scat
tering of the electron by the random inhomogeneities. 
In the experiments one usually measures the width of 
the resonant-absorption peaks, which is determined ac
tually not by the total but by the transport scattering 
cross section. One can expect the difference between 
the two to become particularly strong when a strong 
correlation exists between the successive reflections 
of the electrons from the surface. In other words, when 
the inhomogeneity length on the surface exceeds the 
distance between two successive collisions of the elec
tron with the boundary, the transport scattering cross 
section becomes much smaller than the total cross sec
tion. The experimental widths of the resonant transi
tions can therefore not be compared, generally speak
ing, with the sum of the total widths of the levels be
tween which the transition takes place. 

We investigate in the present paper the influence of 
a rough metal surface on the width of the resonant tran
sition between magnetic surface levels. Unlike the cited 
studies, where formulas were obtained for the damping 
of the average single-particle Green's functions, we 
calculate here the damping of two-particle Green's 
functions. 

2. FORMULATION OF PROBLEM. GENERAL 
RELATIONS 

We consider a metal placed in a constant and homo
geneous magnetic field H parallel to the central surface 
of the sample (x = 0). The x axis is directed into the 
interior of the metal and the z axis along the vector H. 
Assume that a plane monochromatic electromagnetic 
wave Ii = Y(x)e- iwt propagates in the metal in a direc
tion normal to the surface. The real part of the surface 
impedance is proportional to the dissipative loss Q 
(per unit time). In the approximation linear in the field 

F, this loss can be calculated from the formula 

2Jte2.~ ,~ 
Q=- (fm-/n)l(nlv8(x)lm>I'o(Ulnm -Ul), (2.1) 

IlUl 
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where fn = f(En) is the equilibrium distribution function 
over the quantum states In) with allowance for the 
interaction of the electrop.s with the scatterers, En are 
the exact energy levels, v is the electron- velocity 
operator, 11wnm = En - Em' and e is the absolut~"y'alue 
of the electron charge. The matrix elements (nlvo(x) 1m) 
in (2.1) are conveniently expressed in terms of the 
Green's functions 

~ (E R R')= ~ IjJn'(R)ljJn(R') 
± " .l....J E - En ± ie ' 

(2.2) 

where 1/J n(R) are the eigenfunctions of the electronic 
Hamiltonian with allowance for the external electro
magnetic fields; E is an infinitesimally small positive 
quantity indicating the direction of circling around the 
poles in the complex E plane; the asterisk denotes 
complex conjugation. Transformations of formula (2.1), 
similar to those given by Edwards[16] for the static 
case, enable us to rewrite the expression for Q in the 
form 

Q = 2e~j dE(f - f) {S dRdR'~(R,R') (~(R)0(X)) 
o 

(2.3) 

Here :Y = ~_ - ;9 + is the causal Green's function, and the 
tilde over a function means that the argument E (which 
will henceforth be omitted) is shifted by an amount tiw: 

f = t(E + n(fJ); W(R, R') = ~(E + liw; R, R') 

etc. 
. 

We now perform a Fourier transformation with 
respect to the coordinates y and z, which are parallel 
to the central surface of the metal: 

~ (R, R') = n G (p, p'; x, x')exp { ~ (pr - p'r') } dp dp', (2.4) 
-~ 

where r denotes a two-dimensional radius-vector in the 
{y, z} plane, and analogously for the velocity vector v: 

~ 

~ elpr/~v (R) e-iqr:"dr = (2nn)2 6 (p - q) v (q, x). (2.5) 
-~ 

Substituting (2.4) and (2.5) in (2.3), we obtain 
~ 

Q = S S dx dx'.ii',;(x, X')0,(X)0;' (x'). (2.6) 
o 

Here .ii'ij(x, x') denotes the kernel of the dissipative-

conductivity-operator: 
2h'" OD 00 

.ii',;(x,x')=·;n(fJ S dE(f-f) S S dpdp' (2.7) 
o 

XI'i(p,p'; x,x')v,(p,x)v;, (p', x')G(p', p; x',x). 

The problem consists of investigating the Singularities 
of the kernel .ii'ij at frequencies Gt' close to the resonant 
frequencies wnm of the transitions between the states 
numbered n and m. 

3. SPECTRUM AND DAMPING OF SINGLE-PARTICLE 
STATES 

In the simplest case of a spherical Fermi surface, 
the Schrodinger equation for the Green's function takes 
the form , 

[ _ ,d' 1 .( x - X ),.], 6 (p - p') Il (x - x') 
J.!-+---- G 'x:r/--

dx' 4 J.! I] (p,p,,)- nQ(2nn)' (3.1) 

Here 0 = eH /m c is the cyclotron frequency, m the 
effective electron mass, IJ. = (2eH /ncr1/2 is the mag
netic length, X = - cpy/eH is the x- coordinate of the 
center of the electron orbit, and n01] = E - p~/2m. We 
note that Eq. (3.1) is actually valid not only in the case 
of a spherical Fermi surface, but also for a larger 
class of equal-energy surfaces whose interceptions 
with the Pz = const plane are circles. The only differ
ence is that the quantity 1]110 should be taken to mean 
the energy E l(PZ) of the transverse electron motion (in 
a plane perpendicular to the magnetic field H). In par
ticular, for a cylindrical Fermi surface parallel to the 
z axis we have 1] = E/110, where E is the total electron 
energy. 

The boundary conditions for Eq. (3.1) are that the 
Green's function vanish at x, x' - ao and on the surface 
of the metal. We specify the metal-vacuum interface in 
the form 

x=1;(r), <1;(r)=0. (3.2) 

The function !; (r) is a random function of two spatial 
coordinates with zero mean value, and the angle brackets 
denote averaging over the ensemble and its realizations. 
Assuming the surface roughnesses to be spatially- homo
geneous, we introduce also the correlation function of 
the roughnesses 

<1;(r)1;(r') = T(r - r'). (3.3) 

The value of ir at r = r' determines the mean-squared 
height (variance) a of the roughnesses, and the distance 
L over which iF'(r) decreases Significantly determines 
the correlation length (radius). 

In the weak non-specularity approximation, when the 
surface roughnesses can be regarded as perturbations, 
the boundary condition on the surface of the metal can 
be written in the form 

~(r, r'; 0, x') + S(r)~.'(r, r'; 0, x') = 0, (3.4) 

where the prime at the Green's function denotes differ
entiation with respect to x. Changing over in this condi
tion to the Fourier components, we obtain 

G(p,p'; o,x')+ S1;(P-x)G.'(x,p'; O,x')dx = 0, (3.5) 

where !;(p - K) denotes the Fourier transform of the 
random function !; (r). 

The averaging of expression (2.7) for .itij reduces to 
a calculation of the mean value of the product of two 
Green's functions. In the calculation of the integrals 
with respect to the momenta p and p' in (2.7), the main 
contribution is made only by the pole parts of the 
G-functions, which can be written in the form 

G(p, p'; x, x') ~ 2D(x, x'; x, X')g(p, p'), (3.6) 

where 
2D (x, x'; x, X') = (2n / h'Q) 

( X - X ) ( x' - X' ) { I ( X) (X' )} -. XD'~'I, -J.!-' - D"_'I, --J.!- D'_'I, --; D~'_'I' --;- .(3.7) 

Here D1] _ 1/2 are parabolic- cylinder functions and are 
the eigenfunctions of Eq. (3.1) without the right-hand 
side, D~ -1/2 denotes the derivative of D1] -1/2 with 
respect to the argument. 1]' = 1](p~), and X' = X(p~) 
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= - Cp' /eH. Substitution of (3.6) i;' the boundary condi
tion d.5) leads to the following integral equation for the 
function g(p, pi) with a random kernel 

g(p,p')= gc (p) {Il(p - p')- S (;(p -x)g(x, P')dx}, (3.8) 

where 

go(p) = D:_",(- X!/J-)!/J-D.-%(- X//J-). (3.9) 

An equation for the functiop g(p,.l pi) in the form (3.8) 
was obtained by Chaplik and Entin L13J in an investiga
tion on the conductivity of a thin film with rough boun
daries. They formulated a diagram technique for the 
calculation of the average Green's function (g(p, pi). 
Analogous calculations of the spectrum of natural modes 
in a waveguide with random inhomogeneities were also 
performed in[14,17,18J. The methods and results of these 
investigations were applied to the problem of the spec
trum of magnetic: surface levels by Makarov and 
Fuks C15J and by Fal'kovskil [12J. We present here only 
the final expression for the average single-particle 
Green's function 

(g(l', p'» = g(p)ll(p - pi), 
go(p) 

g(p)= 1+go(p)M(p)' (3.10) 

The function M(p) is the analog of the mass operator. 
In the first Born approximation in terms of the small 
parameters of the non- specularity of the scattering, 
M(p) is connected with the spatial spectrum of the 
roughnesses 

by the relation 

W(p) =_1_1Jf' (r)e-;P'/"dr 
(2nli)2 j 

M(p) = S go(q)W(p- q)dq. 

(3.11) 

(3.12) 

If we disregard the irregularities on the surface of 
the metal, Le., we assume that!; = 0 and M = 0, then 
the spectrum of the unperturbed surface states is deter
mined from the dispersion equation 

D,_,,, (-X ! /J-) = O. (3.13) 

At a fixed transverse electron energy E1(pz) = 1]nn, 
this equation leads to a quantization of the X- coordinate 
of the center of the orbit: 

x = Xn(l]) = -cpu" I eH. (3.14) 

In the quasiclassical approximation, the dispersion 
equation (3.13) takes the form 

l][arc cos (-£) + £{1- £')%] = n(n - 'I,) (3.15) 

where ~ = X/2/11]1/2, and n are natural numbers. From 
this it is easy to obtain, in particular, the formulas 

aXn /J-!pn aXn n/J- (3.16) 
~ = - 111[2 sinl:pn' Tn = cpnll t/ 2 ' 

where (,On denotes the quantized value of the angle of 
encounter of the electron with the metal boundary 
(x = 0) in the yz plane: 

_ [3n ( 1 )] 'f. 
!pn- 2t1 n- 4 . (3.17) 

As seen from (3.10), allowance for the scattering of 
the electrons by random surface inhomogeneities leads 
to a shift of the poles of the average Green's function 

g(p) in comparison with the poles (3.13) of the unper
turbed function go(p). The real part of the mass opera
tor, Re M (pn) = M<rJ determines the shift of the energy 
levels y n 

IlE = - ( aXn ) -, M',) (3.18) 
n aE.L n , 

and the imaginary part 1m M (pn) = MdJ determines 
their width: y n 

_ ( aXn ) -, ,i) 
fn - iJEl. Mn. (3.19) 

4. TWO-PARTICLE GREEN'S FUNCTION. WIDTH OF 
RESONANT TRANSITIONS 

We proceed now to calculate the conductivity tensor 
(J'l'ij(x, x') averaged over the ensemble of realizations 
of the random roughnesses. 

1'. If we substitute the expression (3.6) for 
G(p, pi; x, x') in (2.7), we obtain mean values of the 
products of two single-particle Green's functions in the 
form 

(g(p, p')g(p', p» == (2nli)-'SL'1(p, p'). (4.1) 

Here S is the metal surface area exposed to the elec
tromagnetic wave. By starting from (3.8), we can obtain 
for b.(p, pi) an analog of the Bethe-Salpeter equation, 
which takes in the simplest ladder approximation the 
form 

c\(p, p') = g(p)g(p) {1l(P - p'H S W(p - x)L'1(x, Pl)dx}. (4.2) 

It is convenient to represent the averaged Green's func
tions g(p) in the form of differences between the retar
ded and advanced Green's functions g+(p) and g-(p) , 
respectively, whose poles lie on opposite sides of their 
real axis: 

g±(p) = ([go(p)]-'+M'''(p) ±i!ll,i,(p)}-'. (4.3) 

We represent in the same manner the non-averaged 
function g(p, pi) = g+(p, pi) - g_(p, pi), which is connec
ted with the causal function G = G+ - G_ by relation 
(3.6). 

It is easy to see that in the pole approximation the 
main contribution to the integral (2.7) is made by only 
two terms: 

(g+(p, p')g_(p', p» = (2nli)-2S~+(p, pi), 

(4.4) 

An equation for b.+(p, pi) is obtained from (4.2) directly 
and takes the form (cf. l13J ) 

i'l+ (p, p') = g+ (p)g_ (p) {Il (p - p') + I W (p - x)~ «x, p')dx}. (4.5) 

Using expressions (3.9) and (3.10), we can expand the 
functions g±(p) in the "partial fractions" in the form 

~ ) X M',) 'M") ]-' g±(p)=i.....[Xn(E,p, - + n ±r n , (4.6) 

where the summation is over all the surface states with 
given total energy E. 

2. The spectrum of the unperturbed frequencies w~m 
of the resonant transitions of a metal with a specular 
surface is determined from the condition that the pair 
of poles of the functions go(p) and go(p) coincide: 
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If we use the quasi classical quantization condition (3.15) 
and the ensuing formulas (3.16), then we obtain for w~m 
the following formula: 

W nm' = Qn(n - m) / cpn. (4.8) 

It is valid as the transitions occur between sufficiently 
close levels, so that In - m I « n and hW~m «En' The 
orbits of the electrons that interact most effectively 
with the high-frequency electromagnetic field lie en
tirely in a skin layer of thickness 15, and are character
ized by glancing angles (,On ~ (6/R)1/2, where R = v/n 
is the Larmor radius. It follows therefore that only 
glancing electrons with (,On « 1 become effective in 
weak magnetic fields (H = 1-10 Oe). This is indeed the 
reason why the frequencies w~m of transitions even be
tween neighboring levels greatly exceed the cyclotron 
frequency n and lie in the microwave band. The reson
ant frequency closest to w~m corresponds to a transi
tion between states numbered n + 1 and m + 1. Starting 
from (4.8) and (3.17), we can easily obtain the following 
estimate for the distance between resonances of neigh
boring series: 

(4.9) 

3. In the case of a surface that is not very rough, 
when the reflection of the electrons from the metal 
boundary can be regarded as nearly specular, the con
tributions to the integrals of the function ~+(p, p') with 
respect to p and p' are made, as before, only by a small 
vicinity of the point of the double pole: 

I eH eH 
p; ~ p, n ~ --Xn(E) ~ --Xm(E + liw). (4.10) 

c c 

The function ~+(p, p') is the "sharpest" among all the 
remaining functions of p and p' in the integral (2.7). 
This enables us to take the smooth functions outside the 
integral with respect to dpydpy at the point p~. As to the 
integrals with respect to the longitudinal momenta Pz 
and p~, the main contribution to them is made by the 
vicinity of the extremal frequencies wnm(pz) = w~ 
and consequently, all the functions in (2.7), with the ex
ception of ~+(p, pi), can be taken outside the integrals 
with respect to dpz and dp~ at the point Pz = P~ = p~~, 
corresponding to the extremal transition frequency. We 
note that in this sense the cylindrical Fermi surface is 
not exceptional, since the integrands in (2.7) do not de
pend on Pz and P~ at all in this case, and they can be 
taken outside the integral with respect to dpz and dp~. 
Thus, an analysis of the dependence of the dissipative 
conductivity kernel X'ij on the frequency W reduces to 
an investigation of the integral 

1(00) = S [d+ (p, pi) + tv (pi, p) ] dp dp' = 2 Re S d+ (p, pi) dp dp'.( 4.11) 

4. Returning to the integral equation (4.5), let us de
termine the conditions under which we can confine our
selves in the calculation of the integral (4.11) in the 
product 

g+(p)C,- (p) = ~ [(Xi - X -i- Mi) (X. - X + 117:) ]-, (4.12) 
',1 

to only one term with s = n and j = m, corresponding to 

a resonant transition between the levels n and m. Inte
grating (4.12) with respect to Py' we obtain 

<D(p,) = Sg+(p)g_(p)dP.= 2~:H 1: [Xi-X.+MJ-M:]-'. (4.13) 
.,J 

We introduce the frequency wnm of the transition be
tween the averaged states nand m as a solution of the 
equation 

(4.14) 

From (4.14) we obtain with the aid of formulas (3.16) 
and (3.18) at n- m« n 

(4.15) 

Then the principal (resonant) term (s = n, j = m) in the 
sum (4.13) can be written in the form 

(4.16) 

Here r nm = r n + r m is the total width of the levels be
tween which the transition takes place; the widths r nm 
are determined by the total cross sections for the scat
tering of electrons by the rough surface, and are con
nected with the imaginary part of the mass operator M 
by relation (3.19). 

When estimating the contribution of the remaining 
(nonresonant) terms to the sum over s and j in (4.13), 
it is necessary to take into account only those surface 
states for which the electronic trajectories do not lie 
entirely in the skin layer. In the quasiclassical ap
proximation, this sum can be replaced by an integral, 
which can be easily estimated by USing relations (3.16): 

~' _ nl1'!' 
""-' [Xi-X.+M;-M:]-'~N-, (4.17) 
.,i IlCP 

Here N is the number of states whose orbits lie inside 
the skin layer (0 < Xj + 2JlTJ1/2 :s; 15). Comparing (4.16) 
in (4.17), we arrive at an inequality that enables us to 
confine ourselves in the sum (4.13) to the resonant 
terms only: 

(4.18) 

Thus, the deviation from resonance W - wnm and the 
total level width r nm should be smaller than the distan
ces between neighboring resonances of adjacent series 
(compare with the estimate (4.9)). On the other hand, it 
is obvious that this is the only case of interest, for 
otherwise the neighboring absorption lines overlap and 
cannot be resolved as individual resonances. It should 
also be noted here that the transition frequencies w~ 
and wnm ' which are respectively solutions of (4.7) and 
(4.14), depend, generally speaking, on a continuous 
quantum number, namely the longitudinal momentum pz. 
For this reason, integration with respect to the momenta 
Pz and P~ in (4.11) smears out the resonant dependence 
of X'ij on W even in the case of specular reflection of the 

electrons from the metal boundary. An exception in this 
respect is the case of a cylindrical Fermi surface, when 
the functions go(p) and g(p) (and consequently also M(p)) 
depend only on Py and do not depend on pz. 

5. We proceed, finally, to calculate the integral 
(4.11). To this end, we integrate both halves of (4.5) 
with respect to dp' and introduce a new unknown func
tion zJ!(p) 
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J L'I+(p,p')dp' = l/J(p)g+(p)g-(p). 

From (4.5) we obtain for </!(p) the equation 

l/J(p) ,= 1 + S W(p - x)g+(x)g_(x)l/J(x)dx. 

(4.19) 

(4.20) 

We now integrat.e (4.19) with respect to dp and recognize 
that the product g+(p)'iL(p) is a "sharp" function of p 
and differs from zero only in the narrow interval y 

about the point 

Illpylg"'" eH IJlfn(i)+M~i) I 
c 

This enables us to take the function </!(p) outside the in
tegral with respect to dpy' so that we obtain for J(w) 
from (4.19) 

1(<0) = 2Re S l/J (p;, p,) CD (p,) dp" (4.21) 

where q,(pz) is given by (4.16). We now put in (4.20) 
Py = P~ and recognize that W(p - K) is a much smoother 

function of Py than g+(p)'g_(p). Indeed, the width of the 

function W with respect to the variable Py can be esti
mated at lopylW RJ niL, where L is the correlation in
terval of the roughnesses. 

The inequality lopylg « lopylW' as shown in[15) (see 
formula (3.22) of[ 15J ), should always be satisfied provi
ded the shifts and the widths of the levels are smaller 
than the distances between them. This makes it possi
ble to take W(Py- K y ' Pz- K z) in (4.20) outside the in
tegral with respect to dKy at Ky = P~. As the result we 
arrive at the equation 

00 

l/J (p;, pJ =1 + .r W[p; (p,) - pun (x,) ;p, - x,]CD(x,)l/J(p;, x,) dx,. (4.22) 

We have explicitly taken it into account here that P~ de
pends on the transverse energy Eland is therefore a 
function of pz. In the simplest case of a cylindrical 
Fermi surface, the function q, does not depend on the 
longitudinal momentum Pz' so that we readily obtain 
from (4.21) and (4.22) 

.1(W) = 2p! Re[CD-' - W(O) ]-', (4.23) 

where Pf is the dimension of the Fermi cylinder along 
the Pz axis, and we have i~troduced the notation 

W(py) == J W(p"p,)dp,. (4.24) 

Substituting in (4.23) the explicit form of q, from (4.16), 
we find that the dependence of the conductivity on the 
frequency w near the frequencies wnm of the resonant 
transitions in a metal with a cylindrical Fermi surface 
are described by a Lorentz curve 

') Ii fJX -, 
I(w) = ~"pjn /_n / Ynm 

I"" . aE1- 1i'(w-wnm)'+Ynm" 
(4.25) 

where 

(4.25a) 

If the transverse energy E 1 depends on fz , the most 
effective electrons are those near Pz = p~x. This makes 

it possible to expand the pz-dependent tranSition fre
quency wnm(pz) in (4.16) about the extremal point pext. 
For concreteness we assume pext = 0 and imply thi~ 
argument in all the functions thit follow: 

fJ' 
Wnm" ==-, wnm(p,). (4.26) ap, 

This leads to the following dependence of q, on Pz: 

2ni (ax) -, 
CD(p,)"'" 'I "I aE' [L'I-iv-sp,']-', 

/-I Wnm 1-
(4.27) 

where 

L'I= 2(ro-ronm) V= 2rnm s=~ (4.27a) 
I Wnm N I' Ii I Wnm N I ' I ronm N I . 

When solving at (4.22), we consider two opposite 
limiting cases. 

a) Let q,(pz) be a much "sharper" function of Pz 
than W, i.e., 

(4.28) 

Then, as shown by simple estimates, the second term 
in the first part of (4.22) can be neglected when satis
faction of the inequality (4.28) is approached, i.e., we 
can put </!(p~, pz) RJ 1. As a result we obtain for J(w) 
from (4.21) 

I(w) = c [ (L'I' + v,),/, + s~ ]'1. C = (2n)' / ax. /-' (4.29) 
2(L'I'+ v') , /-1'1 ro nm" I fJE . 

Thus, in the case of resonance at the extremal frequen
cies ,,)~~, the dependence of the conductivity on the fre
quency w has a different character than in the case of a 
cylindrical Fermi surface. 

b) In the limiting case that is the opposite of (4.28), 
the function W is the "sharpest" in comparison with q, 
and </!, so that we get from (4.22) 

l/J(p;, p,) = [1-CD(p,)W(O)]-'. (4.30) 

Substituting (4.30) in (4.21) and integrating with respect 
to dpz' we arrive again at formula (4.29), with the only 
difference that r nm in the definition (4.27a) of the 
parameter II must be replaced by Ynm in accordance 
with formula (4.25a). 

In concluding this section, we note that integration 
with respect to the energy E in (2.7) also leads to addi
tional smearing of the resonance (cf.[19J ) in the fre
quency band 

,L'I<O "'" w(T + liw) I E j • (4.31) 

This smearing, however, can be neglected and ( f - f)/nw 
in (2.7) can be replaced by -o(E - Ef), if 

(4.32) 

5. DISCUSSION OF RESULTS 

The shapes of the absorption lines due to transitions 
between magnetic surface levels are described by ex
preSSions (4.25) in (4.29) derived in the preceding sec
tion. The first of them pertains to a cylindrical Fermi 
surface and the second to resonance at extremal fre
quencies. 

1. We consider first the Simpler case of a cylindri
cal Fermi surface. First, it follows from (4.25) and 
(4.15) that the roughnesses lead to a shift of the reson
ant frequency wnm relative to the unperturbed frequency 
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W~m' owing to the level shifts 5En and 5E m. Second, 
and more important, the width 'Ynm of the resonance 
curve is generally not equal to the sum of the widths 
r nm = r n + r m of the levels between which the transi
tion takes place. The width r n of each level, as shown 
earlier [15] , is determined by the sum of the probabili
ties of the electron transition as a result of incoherent 
scattering by the surface from the state In) into all 
possible surface states (including the same state In), 
but with a random phase): 

Ii ax _,[,+'/.J 
_ n I-n 1 "W( n_ 0) fn - 2' aE '-.i P. P •. 

Jl .L k=t 

(5.1) 

IT we introduce in place of the total damping r n the 
analog of the "transport" damping 'Yn' then we can re
write (4.25a) in the form 

Vnm = Yn +Vm. (5.2) 

The expression for 'Yn differs from (5.1) only in the ab
sence of the term with k = n. This means that the cross 
section for the scattering into this state is excluded 
from the "transport" damping, just as in classical 
kinetics scattering through a zero angle makes no con
tribution to the transport cross section. Using the 
quasi classical asymptotic expressions (3.16) for aXn/aE 
and recognizing that in weak magnetic fields the reson
ance is ensured only by glancing electrons (X R1 R), we 
obtain for 'Y n 

(5.3) 

If the inequality 

lap; / ani ~Ii / L, (5.4) 

is satisfied, then W(p~ - p~) in the sum (5.3) is a slowly 
varying function of the number k, so that the sum can be 
replaced in the quasiclassical approximation by an in
tegral. Then the "transport" damping 'Yn obviously 
does not differ from the total damping r n' and conse
quently the resonance width 'Ynm is equal to the sum of 
the widths r n + r m of the levels between which the 
transition takes place. The dependence of the total 
width r n on the state of the surface and on the value of 
the magnetic field was investigated in detail earlier [15] • 

The inequality (5.4) means that the distance between 
two successive collisions of the electron with the sur
face of the metal greatly exceeds the correlation radius 
of the roughnesses. The successive acts of electron 
scattering are statistically independent and there is no 
correlation between the "fluctuations" of the energies 
En and Em of the different states. The limiting case 
opposite to (5.4) (Iapn/anl »n/L) corresponds to a 
strong correlation orthe successive reflections. In this 
case the surface roughnesses are so gently sloping that 
the main cause of the level broadening is incoherent 
scattering of the electron into the same state (i.e., 
specular reflection but with a random phase): 

W(O);Jl> W(p; - p;), n =1= k, (5.5) 

It follows therefore that the transport damping 

rr,Ii' ( E )'i' 
Y"=7 '2m W(anH'/,), (5.6) 

an' == (neli / c)'[3 (n - 'I,) (2mE) 'i. ]-' 

is in this case much smaller than the total r n' and the 
width 'Ynm of the resonant transition between levels 
turns out to be smaller than the width of each level. 
The reason for this fact is that in the case of long 
gently- sloping roughnesses the random positions of the 
energy levels (with sufficiently close numbers, e.g. for 
all glancing electrons) turn out to be correlated. The 
entire system of levels fluctuates in this case as a 
whole, so that the distance between the levels is prac
tically unchanged in spite of the large spread (r n) of 
these fluctuations. It is seen from (5.6) that the charac
ter of the dependence of 'Yn (and consequently of 'Ynm) 
on the m~gneUc field H strongly influences the explicit 
form of the spatial spectrum W(p) of the surface rough
nesses. For example, in the case of a Gaussian corre
lation function of the roughnesses 

o , L ) 'i. ( P'L') 
JP(r) = a'exp (- ~:). W(p)= 2~ (-;t exp - 4fi' (5.7) 

it follows from (5.6) that 

[ a 'L'] 2rr,e'a' ( EL ) 'I, 
Yn=AH'exp - ~Ii' H'/" A=~ 2rr,m • (5.8) 

At the same time, the total damping is r n = AH2 and is 
practically independent of the explicit form of the corre
lation function. 

2. In the case of resonance at the extremal transi
tion frequencies, as follows from (4.29), the absorption 
line shape differs Significantly from a Lorentz curve. 
This is due to the fact that a relatively small group of 
electrons, with longitudinal momenta in the interval 
15pzI<l> R1 1L'l. - ivI 1 / 2, takes part in the resonance (see 
formula (4.27)). Since the frequencies wnm of the tran
sitions between states with different numbered nand m 
depend on p in this case, the resonance becomes 
smeared ouf even when the electron reflection is specu
lar. In the absence of scattering (v = 0), the absorption 
becomes infinite in proportion to 1L'l.1-1/ 2 as L'l. - 0, and 

I has a sharply asymmetrical form. Allowance for the 
roughnesses leads to a shift and to a smearing of the 
resonance maximum. A simple test of the extremum of 
(4.29) shows that the maximum shifts from L'l. = 0 by an 
amount L'l.o = sv/31 / 2 , i.e., the resonant frequency wres 
satisfies the relation 

(5.9) 

Consequently, unlike the case of a cylindrical Fermi 
surface, the position of the absorption maximum is con
nected not only with the average displacement of the 
energy levels 5En - 5Em , but also with their transport 
width 'Ynm' The value of J(w) at the maximum is 

C (3 )'i' C 
J(w,e,) = -:;<i: 4 """ 0.8 0 . (5.10) 

We emphasize that when the inequality (4.28) is satis
fied the parameter v in (4.29) is determined by the total 
level width r nm' whereas in the opposite limiting case 
the definition of v contains the transport dam ping 'Y nm . 
This is connected with the fact that in the former case, 
upon Single scattering of an electron by the rough sur
face, the characteristic change of the z-component of 
the momentum by an amount 15pzlw R1 niL is so large 
that the electron is no longer resonant after the scatter
ing. Therefore scattering into a state with the same 
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number (but with a different pz) also contributes to the 
width of the resonance. On the other hand, if the oppo
site inequality '6pz l4> » 16pzlw is satisfied, then r nm 
must be replaced by Ynm for the same reasons as in the 
case of a cylindrical Fermi surface. 

3. We have confined ourselves above to an analysis 
of the smearing of a resonance by magnetic surface 
levels in the case of a single-parameter spatial spec
trum of the roughnesses, when there is only one macro
scopic parameter L over which the correlation function 
if'(r) changes significantly. There can actually be super
imposed on such roughnesses also roughnesses of 
atomic scale, due to the natural roughness of the crys
tal surface. If this" small ripple" is in thermodynamic 
equilibrium, then, as shown by Andreev[20] , the reflec
tion of the conduction electrons becomes locally specu
lar, i.e., the diffuse character of the scattering is con
nected only with the macroscopic roughnesses consid
ered above. 
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