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A model of a metal with narrow allowed bands is investigated. For certain crystal structures an insta­
bility appears at a higher temperature than the instability in the electron system. As a result a dis­
tortion of the crystal structure occurs. The distortion is of the type which doubles the period, and 
leads to a metal-dielectric transition. The conditions which the parameters of the electron spectrum 
must satisfy in order to achieve a change of the crystal structure with the simultaneous formation of 
dielectric and superconducting gaps on the Fermi surface are determined. It is established that the 
super conducting transition temperature T s may be much higher than the corresponding temperature 
in the absence of the dielectric transition; this is due to the increased density of states near the edge 
of the allowed bands of the dielectric phase. The main changes in the phonon spectrum caused by the 
structural distortion result in the appearance of an optical phonon branch which is separated from the 
acoustic branch by a gap. 

1. INTRODUCTION 

I T is known that the highest-temperature super conduct­
ing compounds undergo a structural transformation at 
temperatures T c lying somewhat above the supercon­
ducting transition temperature T S.[1J The point of view 
has been expressed[2J that the proximity of T c to Ts 
guarantees high values of the latter, since near the tem­
perature of the structural transformation one of the 
optical phonon modes becomes sufficiently low- fre­
quency. Therefore, the effective coupling constant A 
for the interaction of the electrons with this mode, 
which is inversely proportional to the average value 
(W 2>1/2 of the phonon frequency, must increase in this 
connection. On the other hand, the expression for the 
superconducting transition temperature [3J 

T.=1.14(w 2 )"'exp(-1/AN(O» (1) 

contains the average value of the phonon frequency in 
the factor in front of the exponential (N(O) denotes the 
density of electron states near the Fermi level). The 
investigation of the possibility of increasing Ts by 
means of an exciton mechanism of superconductivity[4J 
is connected with precisely this fact. As is clear from 
Eq. (1), T s must have a maximum as a function of < w 2 >. 
In the article by Anderson and Blount[2J it is conjec­
tured that, as a consequence of the structural trans­
formation, a state near this maximum is realized. 

There is an opposite point of view concerning the 
effect of the structural transformation on T s which as­
serts that, due to the large value of the constant A in 
the high-temperature phase, the latter becomes unstable 
upon lowering the temperature to TK , and the new phase 
existing below TK possesses a smaller electron-phonon 
coupling constant T, which thus ensures its stability. 
Therefore, it is asserted that in the absence of a struc­
tural transformation T s would be above the observed 
value. 

Up to now the topic of discussion has been the chan-
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ges of the phonon characteristics associated with a 
structural transformation. We note that the value of T s 
given by Eq. (1) is very sensitive to the density N(O) of 
electron states near the Fermi level, which may vary 
in connection with the structural transformation. An 
appreciable change of the denSity of states N(O), accom­
panying the structural transformation, was observed by 
Chu et al. r5J for V-Ru alloys undergoing a structural 
transition near Ts' One can deduce the formation of a 
dielectric gap on part of the Fermi surface from the 
temperature dependences of the reSistivity and of the 
magnetic susceptibility near T K • It has been shown that 
the density of states N(O) increases sharply near the 
dielectric gap as a result of the formation of a dielec­
tric gap near the Fermi level; this is shown for the 
case of a semi metal having unequal concentrations of 
electrons and holes in the authors' articles r 6J and in the 
article by Mattis and Langer[7J for the case of a metal 
with a narrow, not precisely half-filled band. As a re­
sult the expression for T s has the form 

T. = 1.14<w')'''-~- exp ( ___ J.l._) 
d AN(O)d ' 

where fl. is the energy of degeneracy of the" excess" 
electrons and d is the dielectric gap. 

The density of states N(O)d/fl. effectively increases 
for fl./ d « 1, a result which is related to the 
"expulsion" of states from the region of the dielectric 
gap. For the same reason the energy region near the 
Fermi level where an attractive interelectron interac­
tion exists is decreased, a fact which is reflected by 
the presence of the factor fl./ d in front of the exponen­
tial. Thus, the super conducting transition temperature 
T s must have a maximum as the impurity concentra­
tion determining the value of fl. is varied, just as it has 
a maximum assoCiated with variation of the average 
phonon frequency. 

The model of a one-d~mensional metal [8,9J is another 
example of the effect of dielectric pairing on super-
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conductivity. Here quartets of particles are formed 
near the Fermi surface instead of electron-electron or 
electron-hole pairs. Since without taking Umklapp 
processes[sJ into account the effective coupling con­
stant in a dielectric (electron-hole) pair is half as large 
as in a Cooper (electron-electron) pair, it follows that 
when quartets of particles are taken into account the 
super conducting transition temferature coincides with 
the usual expression for TS.[3 It was shown in[loJ by 
one of the authors that the formation of similar quartets 
of particles is possible for a transition metal or for a 
semimetal with almost identical carrier concentrations 
in two bands having markedly different effective mas­
ses. Since the binding energies of the Cooper and 
dielectric pairs are identical in the present case, the 
superconducting transition temperature T s due to the 
Bose condensation of quartets of particles may be much 
higher than the Bose- condensation temperature for 
Cooper pairs. [3J The qualitative explanation of such 
mutual influence between the dielectric and supercon­
ducting pairings lies in the fact that, as a result of each 
pairing separately, the density of states near the gap 
being formed (dielectric or superconducting) is in­
creased, and the other type of pairing occurs against 
the background of this enhanced denSity of states. How­
ever, if the dielectric gap is exponentially small (in the 
absence of Cooper pairing) in comparison with the 
super conducting gap ~, as happens in the one-dimen­
sional case, then the variation of the denSity of states 
in a very narrow (in comparison with ~) energy interval 
(of order d) essentially does not have any effect on ~. 
On the other hand, in this case the influence of the 
super conducting pairing on the dielectric pairing is 
very important for the analogous reason. As a result 
the dielectric gap d appears at the same temperature 
as the super conducting gap. 

In the present article we shall investigate the tran­
sition into the dielectric state, due to the change of 
crystalline strueture which occurs as a result of the 
electron-phonon interaction, using a model of a metal 
having rather narrow allowed bands (see below). It 
turns out that for a certain type of crystalline structure 
the metallic state is unstable at T < T c in the nearest­
neighbor approximation (the transition integral w is 
considered only between ne are st- neighbor atoms). In 
the presence of an interaction u with non-nearest atoms 
(the integral corresponding to the transition of an elec­
tron from a given atom to the next-nearest neighbor 
atom is conSidered) which is larger than a certain 
critical value, the initial metallic state is stable at any 
arbitrary temperature. In the present case the effect of 
u on the metal-dielectric phase transition is analogous 
to the influence of the magnetization M on the super­
conductivity of a ferromagnetic substance:[llJ when 
!l BM (here !l B denotes the Bohr magnet on) is smaller 
than the width ~ of the superconducting gap, the pOSition 
of the Fermi level is shifted (for one direction of the 
spin), by an amount !l BM, from the middle of the super­
conducting gap toward the upper band; for the other 
spin direction it is shifted by the same amount toward 
the lower band. In the case which we are considering, 
the coordinate of the point on the edge of the Brillouin 
zone, which is rearranged as a result of the metal­
dielectric transition, plays the role of the spin, that is, 

on a certain part of the boundary of the new Brillouin 
zone the conduction band comes closer to the Fermi 
level, which lies in the forbidden band, and on the other 
part of the boundary the valence band comes closer to 
the Fermi level. Thus, the minimum distance 2 () be­
tween the valence band and the conduction band (the so­
called indirect forbidden band) may be much smaller 
than the quantity d (the so- called direct forbidden band). 
On the other hand, the increase in the density of states 
in comparison with the density of states in the initial 
metallic phase takes place in an interval of order d. 
Such a dielectric state with 15 « d may turn out to be 
unstable with respect to the formation of Cooper pairs. 

In fact, let us excite two electrons into the conduction 
band, expending thereby an energy 215. If their binding 
energy in a Cooper pair turns out to be greater than 215, 
then such a process is energetically favorable, and the 
system must be rearranged, that is, a changeover of 
the covalent pairs, which are responsible for the dielec­
tric state, into Cooper pairs seems to occur. Moreover, 
since the denSity of states in the allowed bands increa­
ses in an interval of the order of d, the binding energy 
of the Cooper pairs can be much greater than in the 
initial metallic state. A similar situation occurs in the 
model of the so- called exciton insulator. [12J If the 
dielectric gap is smaller than the binding energy of the 
electron and the hole in an exciton, then the amount of 
energy expended in the excitation of the electron and 
hole is smaller than the amount gained as a result of 
exciton formation. Therefore, a rearrangement of the 
initial state occurs. To be sure, in this case the initial 
and final (exciton dielectric) states do not differ qualita­
tively. As will be clear from what follows (see Fig. 1 
below), the dependence of the super conducting gap or T s 
on 15 has a form which is analogous to the dependence 
of the order parameter ~i for an exciton insulator on 
the width of the initial forbidden band. Namely, just as 
in the case considered earlier, [12J there exists a cer­
tain positive value of 15, above which superconductivity 
is impOSSible. In the model of an exciton insulator this 
value corresponds to the width of the forbidden band, 
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FIG. I. The dependence of Ts/Tso on d-u for the following values of 
the varied parameters A~/A' d and wD/w: curve 1-0.8 and 0.1; curve 2-
0.8 and 0.025; curve 3-0.5 and 0.1 ; curve 4-0.5 and 0.025; curve 5-
0.45 and 0.1 ; curve 6-0.45 and 0.025; curve 7 -0.4 and 0.1; curve 8-
0.4 and 0.025. 
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FIG. 2. The dependence of t,ft.o 
on d-u for several pairs of values of 
the parameters ~;,t~d and wD/w, the 
labelling of the curves being the 
same as in Fig. I. 
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which is equal to the exciton's binding energy. Just as 
in[12], a maximum of A or Ts corresponds to the region 
o ~ O. The difference between the present case and the 
model of an exciton insulator lies in the fact that in the 
latter case the solution for Ai tended to zero for large 
negative values of the forbidden band. In the present 
case the solutions for A and T s tend to the solution 
given by Eq. (1) [3] for values of 0 which are large in 
comparison with d. 

As is clear from Fig. 3 (see below), the ratio T s / A 
can be larger than 0.57. [3] This effect is associated 
with the fact that in the simultaneous presence of 
dielectric and superconducting gaps near the Fermi 
level, the number of thermally broken superconducting 
pairs is determined by both the superconducting and by 
the dielectric (d) gaps. Therefore, the effectiveness of 
thermal breaking of superconducting pairs may be sub­
stantially suppressed, as indicated by the value Ts/A 
> 0.57 under certain conditions. On the other hand, 
there is also an opposite tendency associated with the 
effect of the dielectric gap on the super conducting tran­
sition temperature. Namely, the high density of states 
near the edge of the allowed band leads to an increase 
in the role of the entropy factor, which characterizes 
the distribution of the electrons excited through the gap 
with respect to the states in the allowed band. This ex­
plains the value Ts/A < 0.57 at the maximum value of 
the ratio T s/ T So (see Fig. 3). 

2. THE METAL-DIELECTRIC PHASE TRANSITION 
UNDER THE INFLUENCE OF THE ELECTRON­
PHONON INTERACTION 

Let us consider a metallic system with the depen­
dence of the electron energy spectrum on the quasi-

momentum having the property 

for selected values of the vector q. Simple cubic and 
body-centered cubic lattices in the tight-binding limit 
and only taking z nearest neighbors into account, when 
q = ('II/a) (± 1, ± 1, ± 1), may serve as a typical example 
to which we shall constantly turn. Let us show that in 
this case the crystal lattice becomes unstable for an 
arbitrarily weak electron-phonon interaction at T = O. 
This type of instability was investigated by Afanas'ev 
and Kagan[13] for the special case of Fermi surfaces 
containing flat regions. The nature of the instability 
can be investigated with the aid of the Dyson equation 
for the phonon Green's function: 

D(k,w) =D.(k,w)![1-II(k,w)D.(k,w)] (2) 

with the polarization operator given by 

II(k,w) = - ig' .E.E S :: GoO (p + k)Gaa(p), (3) . . 
where g is the electron-phonon coupling constant, and 
cP(](l) is the Green's function of the electrons. 

Under condition (1) the evaluation of the polarization 
operator for k = q gives the following result (without 
taking Umklapp processes into account) 

II(kiw)= 2 ~N(O) [In (el :1) +t ~ -i<P], (4) 

where N(O) = 1/2w is the average denSity of states in the 
allowed band of width 2w. The factor 1/8 in (4) reflects 
the reduction of the volume participating in the integra­
tion over dp in Eq. (3) for normal scattering processes, 
when states with quasimomenta p + qand p must belong 
to states in the first Brillouin zone. Taking the Umklapp 
processes into account amounts to making the substitu­
tion 

( 5) 

where gN corresponds to normal processes, and gUl' 
gU2' and gU3 correspond to Umklapp processes involving 
reciprocal lattice vectors of modulus 211/a, 21Tv'2/a, and 
21Tv'3/a, corresponding to the edge, the diagonal across 
the face, and the space diagonal of the cubic Brillouin 
zone. 

Substituting the calculated value (4) of the polariza­
tion operator n (having made the substitution indicated 
in (5») into Eq. (2), we find that the phonon function D 
has a pure imaginary pole 

Iw l=2wexp(-1/2g'N(O)), (6) 

which reflects the instability of the lattice due to the 
interaction with electrons involving a momentum trans­
fer q. The difference between expression (6) and the 
analogous expression in the theory of superconductivity 
(which describes there the instability in the electron 
system) conSists, in the first place, in the fact that the 
energy of the states participating in the integration in 
(3) is limited only to the region of allowed states ± w 
instead of being restricted to a narrow layer ± wD near 
the Fermi level and, in the second place, the summation 
over the spin index in (3) leads to an effective doubling 
of the square of the electron-phonon coupling constant. 
The introduction into the investigation of a certain order 
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parameter for the new phase with the help of the so­
called "anomalous" averages can lead to a general 
method for the elimination of such instabilities. In the 
present case we introduce into consideration the anom­
alous average < cl>q> = (bq + b':'q >, which characterizes 
(in accord with the definition of the phonon creation and 
annihilation operators bq and bq) the macroscopic 
deformation of the lattice. It will be shown below that 
the expression for the dielectric gap d in the electron 
spectrum coincides with expression (6), and the magni­
tude of the distortion (bq + b':' q> of the crystal lattice 
is proportional to the gap 

(7) 

The Coulomb interaction was not taken into consid­
eration in the work by Mattis and Langer,[7J since it 
was assumed to be smaller than the electron- phonon 
interaction. However, no quantitative relationship be­
tween these interactions can justify the neglect of the 
Coulomb effects, since from considerations of the stabil­
ity of the system as a whole it follows that in the static 
limit w = 0 the Coulomb repulsion must exceed the at­
traction due to the electron-phonon interaction. However, 
Cooper pairing of the electrons becomes possible thanks 
to the well-known effect of the suppression of the 
Coulomb repulsion by the factor In(EF/wD)' We note 
that the Coulomb vertex part in the annihilation channel, 

4ne' I [4ne'] (8) r(k,w)=J;2 _ 1-J;2II(k,oo) 

contains the same polarization operator II (k, w) as ap­
pears in expression (2) for the phonon Green's function 
D. However, the function Do = w~(q)/(W2 - w~(q) appear­
ing in Eq. (2) is negative for w2 < w~(q), whereas only 
the positive factor 41/'e2/k2 plays an essential role in ex­
preSSion (8) for the vertex part. This indicates that the 
Coulomb vertex r(k, w) in (8) does not have a pole at 
k = q and w = 0, but instead it vanishes. This means that 
the screening of the Coulomb interaction turns out to be 
very strong in the neighborhood of the point k = q, owing 
to the property Ep + q = - Ep of the electron spectrum; at 

the same time the nature of the screening at large dis­
tances (corresponding to small values of Ikl) remains 
the same as usual. The vertex parts have opposite signs 
in the annihilation and scattering channels. Therefore 
the Coulomb vertex has a purely imaginary pole, re­
flecting the instability of the system with respect to 
electron-hole pairing, only in the channel associated 
with particle-hole scattering with total momentum k = q 
(see Eq. (15') below). Finally, in the channel for elec­
tron-electron scattering with small total momentum 
there is the Cooper- type singularity, whose nature is 
not related to the special form (1) of the electron spec­
trum. [3J 

The cited analysis of the Singularities of the vertex 
parts in the annihilation and scattering channels can 
serve as a basis for the use of the" parquet" approxi­
mation.[sJ However, the effect mentioned above con­
cerning the effeetive doubling of the electron-phonon 
interaction in expression (6) for the pole, together with 
the condition w :;}> wD, permits us to confine our atten­
tion to only taking the Singularities of the phonon Green's 
function into account, since the instability in the phonon 
system appears sooner when the temperature is lowered. 

Thus, we take the distortion of the crystal lattice due 
to the electron-phonon interaction to be the mechanism 
which governs the metal-dielectric phase transition. In 
our scheme the distortion of the lattice, which is des­
cribed by the above- mentioned anomalous averages 
(bq + b.: q>, must necessarily lead in turn to the inclusion 

of anomalous averages (~_ q, uapu> of the electron 
annihilation and creation operators in the investigation. 
The quantity (ap_ q, uapu> characterizes the rearrange­
ment of the electron spectrum, since after multiplica­
tion by the effective interaction constant this quantity 
determines the energy gap in the electron spectrum. 

Now let us turn to an investigation of the thermo­
dynamics of the transition within the framework of the 
approach outlined above. In order to do this, let us con­
sider the system of electrons and phonons in the crystal: 

de = L, [e(p) - (jr.t]ap.+ap• + L,ooo(k) (b.+b. + 'I,) 
P,D" k 

+ L,L,g(k)ap: •. "ap.(b. + b_k +) + 'I, L, L, L, U(k)a:+k."ap~_ •.• ,ap,.'a"., 
p,a II: p,a P.'O" II: (9) 

where the first and second terms describe the energies 
of the free electrons and free phonons, and the third and 
fourth terms allow for the electron-phonon interaction 
and the Coulomb interaction between the electrons. Let 
us represent the dependence of the kinetic energy of the 
electrons on their quasimomentum, E(p), measured with 
respect to the middle of the allowed band, in the form 

e(p) = ep + B,(p), (10) 

where the correction E1(p) takes the influence of non­
nearest neighbors into account in the tight-binding limit, 
their effect being to produce some additional modulation 
(in momentum space) of the equal-energy surfaces Ep 
= const. For example, for the case of a simple cubiC" 
lattice we have 

Ep = '/'w (cos apx + cos apy + cos ap,) , (11) 

and in the approximation taking only next- nearest atoms 
into account the expression for El(P) has the following 
form: 

e, (p) = u( cos apx cos apy + cos apx cos ap, + cos apy cos ap,) (12) 

By virtue of our choice of the origin for the energy 
reference system (namely, the middle of the allowed 
band), a shift O!l of the chemical potential is introduced 
in order to allow for the deviation on = n - no of the 
electron concentration from the value no, which corre­
sponds to occupation up to the middle of the allowed 
band with O!l = O. 

For the following calculations, in which we shall 
make extensive use of the smallness of u « w and on 
« no, it is convenient to introduce the notation 

'V p = -e,(p) +6r.t. (13) 

Besides the condition u « w we shall also assume that 
the interaction of two electrons on a single center is 
smaller than the width w of the allowed band, and there­
fore the Hubbard metal-dielectric transition is ab-
sent. [14J 

We introduce furthermore the operators of the elec­
tron and phonon fields in the" Heisenberg" represen­
tation: 
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where c = a, b, and we determine the Green's functions 
of the electrons in the temperature technique: PJ 

G .... (';) = -<Ta •• ('f) a •• (0», 
(14) 

G;_.,.('f) = <Ta.-.,.('f) ap• (0) ), 

where ( ... ) denotes averaging according to Gibbs, and T 
is the operator of chronological ordering with regard to 
the" time" T. The equations of motion for the Green's 
functions t14) are obtained in the usual way:(3] 

(- : ... - e. + v. )G~~ (,;H[d.l.G:~.,.('f) = 11(,;), 

(15) 

where 

[d.l.= 1:g(q+h)(<DHh (';»+ 1:U (q+h) 1:G:~'-h'P(+O) 
h p. 

h p 

Here we have used the fact that the vector 2q belongs to 
the space of the reciprocal lattice vectors h, that is 

and the summation over h takes Umklapp processes in 
the system into account. With the screening effects 
which were established in the investigation of the corre­
sponding vertex part (8) taken into account, one finds 
that the term containing U(q + h) in (15'), corresponding 
to the annihilation channel, vanishes. In turn one can 
write down equations of motion of the following form for 
the average values of the phonon- field operators appear­
ing in (15'): 

(- :,; -wo(q) )<bHh(';»= -g(q+h) 1:1: (G:~'-h-h"'(+O»', 
h' p,' (16) 

( - a~ + wo(q) ) <O-.-h(';) >= g(q + h) 1:1: (G:~'-h-h"P(+O»)'. 
b' P,O' 

Equations (15) together with Eqs. (16) for the deter-
mination of the unknown coefficients (bq( T» and ' 
(b_q(T» form a closed system of equations permitting 
us to determine the unknown functions ~(T) and 

G:~q,k(T) in a self-consistent way (thanks to the rela­
tion (15'». Actually it is easier to solve the system of 
algebraic equations which arise from Eqs. (15) and (16) 
after making the transition to a Fourier series expan­
sion of all T- dependent quantities in the interval (0, 1/ T). 
To sum up, after eliminating the quantities ( <Pq(T» with 
the aid of the relations 

<<Dq+h (.) > •• =<bHh (,;) + O-._h (,;) > •• 

2wo(q) 'I: .. =g(q+h) , ,()lIo.T- Gp_ ... (+O) 
-(0" -Wo q 

(17) 

p,n 

(the presence of the factor 0 on reflects the static nature 
of the distortion of the crystal structure), we obtain the 
following equations, which are familiar from the theory 
of superconductivity: [3J 

(iw • .+ v. - e.)G:: (w n ) + d.G~~.,.(Wn) = 1, 

dqG:: (00.) + (iw. + v. + e.) G"~.,. (00.) = 0; 
(18) 

(19) 
P,O" c.J" 

Ad = [ 2g' + go' ( 1 - 2g' In : )] / [ 1 + go'in : ( 1 - 2g'In : )] , 

(19') 

where g~ = (21T2e2/EPF)ln(4PF/Kn) is the effective couplinc 
constant of the Coulomb interaction,[ls] w is a quantity 
of the order of the plasma frequency, and PF "'" q/2. The 
effective coupling constant Ad of the electron-hole inter­
action, given by Eq. (19'), is obtained from Eq. (15') in 
which the integration is defined in a region of width 2w 
for the electron-phonon interaction and in a region of 
width 2 w for the Coulomb interaction. 

The functions 
G::(w.) = (iwn + v. + e.) /D, 

(20) 
D = (boo. + v.)' - e.' - d.'. 

satisfy the system of equations (18). Returning to the 
self- consistency condition (19), we obtain the following 
equation after summing over wn: 

(21) 

+th -v. + (e.' +d.')'/' }, 
2T ' 

which determines the order parameter dq as a function 
of the temperature T, the electron-phonon coupling 
constant g, and the effective Coulomb interaction con­
stant gc' Let us determine the chemical potential Oil 
from the other equation: 

IIn=T .E.EG:~(w.)-nD 
k,cr Ill" 

= \"~[th -e,(k)+IlJA.+(e.'+d.')'" (22) 
l...J 2 2T • 
+ h -e,(k)+ 1lJA.-(e.' + d.')'/'] 

t 2T ' 

Equations (21) and (22) are well-known in the theory 
of a semimetal- semiconductor phase transition,fIS ,16] 
the only difference being that the summation over the 
quasimomentum k in Eq. (21) goes over all states in 
the Brillouin zone, but not in a layer of the order of wpl 
near the Fermi surface (here wpl denotes the plasma 
frequency). As an example we present the solution of 
Eq. (21) in the simplest case on = 0 (Le. Oil = 0). 
Equation (22) is identically satisfied by virtue of the 
specific dependence of E1 on k. In the subsequent dis­
cussions it is important to realize that, because of the 
chosen origin of our energy reference system (energy is 
measured from the middle of the allowed band), the 
Fermi surface is, by definition, the surface where 

e. + el (k) = O. (23) 

In order to simplify the subsequent calculations, we re­
place the true Fermi surface (23) by the surface 

c, + U= 0 (24) 

in one- half of the solid angle of each octant in momentum 
space, and we replace it by the surface 

c. - U= ° (24') 

in the other half. The substitution (24), (24') correspond'; 
to a change from a smooth modulation of the Fermi sur­
face to a step-like modulation. If we further change 
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from a summation over k to an integration over dk, and 
then to an integration over the energy, that is, after 

making the changes :0 - J dk - N(O) J dE, then instead 
k 

of Eq. (21) we obtain 

1 SV de 1 (u+(e'+d')'" -u+(e'+d')'" ) - => th + th ___ -----'0-
'A/ 0 (e' + d') '/, 2 2T :iT' 

(25) 

where Ad = AdN(O) and N(O) = 1/2w denotes the average 
density of states. 

It is clear from Eq. (25) that at T = 0 the modulation 
of the Fermi surface does not have any effect on the 
dielectric gap d as long as the amplitude u is smaller 
than the gap itself, u < d, since in this case 

d= w/sh(-l/'A/)= do. (26) 

In the region u > d we have 
1 10 de 

T7 = ~ (e2 + tP)'I. ' 
(UI-dl)t/Z 

that is, 
d = [do(2u - d.)] Y,. 

Thus, when the amplitude u of the modulation exceeds 
the maximum value do of the dielectric gap, then the 
metallic phase is stable with respect to a metal-dielec­
tric transition right down to the temperature of absolute 
zero. This, of course, does not exclude a transition into 
the super conducting state, a point which will be investi­
gated below. Finally, we note that the maximum critical 
temperature Tc of the dielectric transition is attained 
when u = oJ.!. = 0 and amounts to Tc = 0.57 do. 

3. THE DIELECTRIC-SUPERCONDUCTOR PHASE 
TRANSITION 

The transition into the superconducting state might 
be a competing phase transition in the system under 
consideration if the fact that the very same electron­
phonon interaction is responsible for the electron­
electron attraction is taken into consideration. The 
expression for the gap e. o (superconducting in the 
present case) in the spectrum has the following form 
(atT=O): 

1'1. = 20lD exp [-1/ ('A' - 'A/)]; 

'A' = gN'N(O) , 'A/ = g,'N(O) / [1 + go'N(O) In (w / OlD)]. 
(27) 

Since the dependence of the free energy of the super­
conducting and dielectric phases on the order param­
eters e. and d is identical~7] a comparison of the 
dielectric d and super conducting e. gaps enables us to 
establish which phase is actually realized. For exam­
ple, from Eqs. (26) and (27) we obtain the following re­
sult for the ground state associated with 0 n = 0 and 
u = 0: 

-.!!.. = ~ exp (_1_ - _1_), 'A. = 'A' - 'A/. (28) 
1'1 OlD 'A: 'A/ 

In the case when the electron-phonon coupling constants 
gUl' gU2' and gU3 in (5) are small in comparison with 
gN, the ratio die. given by (28) may become smaller than 
unity, and the ground state then turns out to be super­
conducting. However, if it is assumed that gN = i Ul 
= gU2 = glh' then the conclusion of Mattis and Langer[7] 
about the impossibility of a superconducting transition 
turns out to be correct. 

Everywhere below we shall assume the condition d/e. 
> 1 to be satisfied, but it will be shown that upon taking 
account of the interaction with non- nearest neighbors 
(0 < u < do/2) the coexistence of dielectric and super-

I conducting phases is possible in the sense that compati­
ble nontrivial solutions exist for e. and d. In this con­
nection, depending on the relation between T sand T c a 
sequence of metal- superconductor (if T c < T s) or 
metal- dielectric- superconductor (if T c > T s) transitions 
may be realized as the temperature is lowered. In the 

. present article we shall only investigate this latter pos­
sibility without taking the parquet diagrams into account, 

, having in mind that the superconducting transition tem­
perature Ts (allowing for the lattice distortion (4)q)) is 

, higher than the temperature Tc at which the singularity 
in the parquet diagrams first appears. 

One can carry out a combined calculation of the di-
I electric and super conducting pairings in a system of 

electrons having the energy spectrum (1) on the basis of 
the initial Hamiltonian (9). However, in order to shorten 
the calculations it is convenient to change (with the aid 
of the usual procedure for the elimination of the phonon 
variables) to the following effective Hamiltonian ~e: 

~.= L,(e.-v.)a •• +ak.+ L,OlO(p) (b.+b.+ '/,)+g(q) L,a: .... a •• 
~ . ~ 

X (b. + b_.+) + '/, L,L, U(q)a .. ·;. •.• a;_ •.• ,a.,.,a •• -
P," ",0' 

- '/,gN' .r,L,.r,a •• +a_~.-.a-.,.-.a.,., (29) 
p p' a 

in which only those terms of the electron-phonon inter­
action remain which correspond to momentum transfers 
q selected according to condition (1). Further, together 
with the Green's functions Gkk and Gk-q,k defined by 
Eqs. (14) we also introduce the anomalous Gor'kov func­
tions into the treatment: 

Fkk+ = (TiZ_ •. _.(,;) iZ •• > , F ........ =(TiZ_k+ •. _.(,;)iZ •.• ), 
(30) 

F .. = (Ta_k. -.(,;)a.a), Fk - q . k = <Ta-kH. -.(,;) a •. • >. 
The following calculations follow the scheme dis­

cussed in Sec. 2. The equations of motion for the 
Green's functions G and F (defined by Eqs. (14) and (30» 
with the Hamiltonian (29) turn out to be rather compli­
cated in comparison with (18). We shall write them 
down (after expanding the functions (14) and (30) in 
Fourier series) in the form of a system of equations for 
the unknown Fourier coefficients ~(c..'n>, ~-q,k(u.'n), 
Fidc(wn), and Fk_q,k(wn): 

(iOl.+ v - e)G .. +d'G._ •.• - I'1+<F •• + = 1, 

dG .. + (iOO n + v + e) G'-•. k - 1'1+·F ........ = 0, 

- I'1+G .. +(iOOn - v - e)F .. + + dFk+_ ••• == 0, 
(31) 

where the commutation properties of the electron field 
operators upon averaging their products in expressions 
of the type 

d = 'A. L, (a._ •.• (,;) iZ •• (,;»= 'A. L, TL, G:~ •. p(Oln)' 
p,a p,a (lin (32) 
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have already been taken into consideration. 
The solution of the system (31) can be obtained with­

out any difficulty. Substituting the found functions 
GJc- q, k and FkIc into the self- consistency condition (32), 
we obtain the following equations after performing the 
summation indicated in (32) over the frequencies wn 
= 1TT(2n + 1): 

:,= Jde 14 {( 1+ (e'~'d')'0 fh(A,+) 

+ (1 (e';~)'I') fh(A,-)+ (1+ (e':~')'I' )fh(A,+) 

+ (1 (e' +";') 'f> )fh(A'-)}, . 
~ = Sde'/.{fh (A,+H fh (A,-H fh (A, +H fh (A,-)), 
A. 0 

fh(A)=th(A/2T)/A, At,=[«e'+d')'I'±v",)'+~'p., (33) 

v",=±u+61l, r.:d = N (0) A"d' 

In Eqs. (33) and (34) the usual transition 

fo .E -+N(O) S de, 
• 

(34) 

has already been completed, and the function El(k) has 
been replaced by a step-function (see Eqs. (24) and 
(24')), just as was done in Sec. 2. 

Equations (33) and (34) together with the equation 
w 

6n = 2 S de'l.{ «e' + d')'I. + v,)fh(A,+) -«e' + d') 'I. - v,)fh(A,-) 
-0 (35) 
+«e' + d') 'I. + v,)fh(A,+) - «e' + d'),I. - v,)fh(A,-)} 

form a system which in principle allows us to determine 
the order parameters d, /), and the chemical potential BJ.I. 
as functions of the temperature T, the coupling constants 
AS and Ad, and so forth. The existence of a simultaneous 
solution of Eqs. (33)-(35) with nonzero values of d and /), 
would imply the existence of a super conducting state of 
the system. Let us consider, for example, the case of a 
half-filled allowed band (fin = 0) at the temperature of 
absolute zero. Then instead of Eqs. (33) and (34) one 
can write down 
1 S.. 1 { 1 + u/(e' + d')'b 1- u/(e' + d')Y' } 

)./ = 0 de "2 [«8'+d')'}'+u)'+~']'J. + [«e'+d')'I·-u)'+~'P' 
(36) 

1 ·SD 1{ 1 1} 
1.,'= 0 d82' [«e'+d')'h+u)2'+~,l'" + [«ez+d')Y'-u)'+~']'f> 

(37) 
Let us clarify the nature of the conditions to be imposed 
on the parameters Ad, AS' w, wD, and u such that an 
infinitesimal, nontrivial solution first arises for the 
super conducting gap. In order to do this, let us set 
/), = +0 in Eqs. (36) and (37). In this limit Eq. (36) has 
the solution for the dielectric gap d which was derived 
earlier; for example, for u < d the solution is given by 
(see Eq. (26)): 

d = w/sh(-l/A/). (26') 

When taken in the same limit /), = +0, Eq. (37) has the 
form 

1 COD U 1 { . d+U(UlD'+d')'I'ld - = Arsh - + arcsm ---,-c-::--c---:::':,,--
A,' d (u'-d')'1'2 U+'(UlD'+d')'. 

. d-U(COD'+d')'''/d} 
- arCSIll _ U + (UlD' + d') y, 

(38) 

and with the value of d obtained from (26) substituted 
into this expression it is exactly the condition imposed 
on Ad' A~, etc. This condition becomes particularly 
transparent if (d - u)/u « 1 

1 UlD It ( U ) 'I. -=Arsh-+-=- --
A,' _ d 2l"2 d- U 

(39) 

when condition (39) is satisfied for an arbitrarily weak 
attraction A ~. 

Nonzero solutions for d and /), do not imply anything 
other than the coexistence of dielectric and supercon­
ducting phases with order parameters d and /)', respec­
tively, and reflect the condensation of boson-like forma­
tions in the system in the form of electron-hole and 
electron-electron pairs. The nature of the coexistence 
of dielectric and superconducting condensates is evident 
from a comparison of the amount of energy, 2(d - El(k)) 
~ 2( d - u), needed to excite a pair of electrons from the 
dielectric condensate, with their "binding" energy in 
super conducting pairs. If the gain in energy of the 
superconducting pairing exceeds the energy 2(d - u), 
which is expended in exciting an electron pair through 
the thermal dielectric gap, then the super conducting 
state of the system becomes energetically advantageous. 
In the theory of an exciton insulator, a similar relation­
ship between the width of the forbidden semiconductor 
band and the exciton binding energy is necessary for the 
existence of the exciton-insulator phase.[12] 

We note, incidentally, that virtually excited electrons 
fall into a region having a high density of states in the 
allowed band. Condition (39) essentially illustrates this 
concept. Now let us turn to the investigation of the 
superconducting transition temperature T s. For this 
purpose we set /), = + 0 in Eqs. (33) and (34) (as before 
BJ.I.=Bn=O): 

1 S.. 1 1 { (e'+d'),"+u h (e'+d')'h_ U } 
-- - de th + t -'--'----'--
1./ - 0 (e'+d')'b 2 2T. 2T. 

(40) 

1 (e'+d')'f, -U} 4 
+ (e'+d')'b_ u th 2T. . ( 1) 

The assumption that the dielectric transition tempera­
ture Tc ' associated with the phonon instability, is higher 
than the critical temperature Ts of the super conducting 
transition has been used in these equations, that is, the 
dielectric gap d(T) retains a finite value at T = Ts' 
Therefore in the present case our treatment pertains to 
systems possessing the following sequence of transi­
tions: metal-dielectric (at T = Tc)-superconductor 
(at T = Ts)' For an arbitrary relation between the occu­
pation on of the band and the parameter u (which des­
cribes the effect of non- nearest neighbors), the inter­
mediate phase may turn out to not be dielectric, but in­
stead it may be either a doped semiconductor (Bn 1= 0) 
or a semimetal (d - u < 0). Therefore, in the general 
case Tc denotes t,he critical temperature of the struc­
tural transformation, which precedes (as the tempera­
ture is lowered) the superconducting transition. The 
effectiveness of the superconductivity mechanism con­
sidered here is most easily traced by making a compar-
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ison of the critieal temperature T S' determined from 
Eqs. (40) and (41), with the value Tso = (0.57) 
x 2 wD exp (-1/A s) which applies in the absence of a 
dielectric transition. 

The dependence of the ratio Ts/T so on the difference 
d - u (in units of do), obtained from the simultaneous 
solution of Eqs. (40) and (41) with regard to d and Ts ' 
is shown in Fig. 1 for several values of the variational 
parameters u, A glAd, and wD/w. Let us illustrate that 
positive values of the difference d - u on Figs. 1-3 
correspond to the position of the chemical potential in­
side the forbidden band of the dielectric phase, and in 
the case on = 0 under consideration they correspond to 
the states in the allowed band of the initial metallic 
phase being half-filled. It is quite clear that with a re­
duction of the excitation energy d - u from the level of 
the chemical potential to the nearest allowed state above 
the dielectric gap, the ratio Ts/Tsoincreases. The in­
crease of Ts/T So becomes especially clearly defined for 
small values of A~/Ad' (All of the numerical examples 
are cited for the value Ad = 113.) We note that in all of 
the examples cited in Fig. 1 the maximum value of the 
ratio Ts/Tso is reached at negative (but comparatively 
small in absolute magnitude) values of d - u. With in­
creasing values of Id - ul the Fermi level is shifted 
away from the edge of the allowed band, and for Id - ul 
;::; d it is found in the energy region where the structural 
transformation has little effect on the density of states. 
Therefore T s tends to T o' It is clear from Fig. 1 that 
the maximum values of of s I T,so increase with decreasing 
values of the parameters A~/Ad and wd/w. The largest 
of the cited values of T siT so amounts to 44.7, which oc­
curs when A~/Ad = 0.4 and wD/w = 0.025. 

Now let us turn our attention to the case when, in con­
nection with the equality of the electron-phonon coupling 
constant gN for normal processes and the constant gu 
for Umklapp processes, the ratio A~/Ad is equal to 0.5. 
Taking account of the Coulomb interaction decreases the 
value of the ratio A~/Ad' since the Coulomb interaction 
leads to a decrease of A ~ (which is defined in (28)) as­
sociated with a simultaneous increase of Ad (given by 
expression (19')). However, if gN > gu then the ratio 
A~/Ad may become even larger than 0.5. It is particu­
larly worth noting that the increase in the maximum 
values of the ratio T siT so associated with a reduction 
of the values of A ~ lAd and wD/w, which can be traced in 
Fig. 1, is accompanied by an abrupt contraction of the 
range of values of the parameter d - u in which Ts I T so 
> 1 is generally achieved. 

From the dependence of the ratio of the super con­
ducting gap D. at T = 0 (determined from the solution of 
Eqs. (36) and (37)) to the value of the superconducting 
gap D.o = wD Isinh(-I/A s) in the absence of the dielectric 
transition, which is shown in Fig. 2, it is clear that the 
ratio D.I D. 0 behaves like T siT so' However, Fig. 3 indi­
cates that the ratio T siD. is smaller than 0.57 in the 
region of maximum values of the ratio Ts/Tso' The 
range of values of d - u, where T sic. > 0.57, widens in 
connection with a decrease in the values of A~/Ad and 
wD/w. 

Finally let us consider the case when the band is not 
exactly half-full, that is, on f. O. It is clear that in this 
case the first transition to be encountered (upon 
decreasing the temperature) corresponds to the transi-

tion of the metal into a doped (up to the level on) semi­
conductor. A further reduction of the temperature leads 
to a semiconductor-superconductor transition. In order 
to investigate this case it is necessary to consider the 
solution of a system of equations of the general form 
(33), (34), and (35). We obtain the following result for 
the magnitude of the super conducting gap at the tem­
perature of absolute zero, T = 0 (if, in addition, we as­
sume that Vl = u + ojJ. ;::; d and V2 = -u + ojJ. < d): 

( ~-~-In WD +~) =~ v, 4d(.v,'-d')'" (42) 
'A.' 'A.' w 2 2 (v,'-d','" In 1'1' . 

Equation (42) can be treated as a certain equation of the 
BCS type with an effective coupling constant Ae (an at­
tractive interaction if Ae > 0) 

1/J.., = 1/'},.' -1/.'A.' -In (wDlw) + 1/2, 

where the effective denSity of states is vIN(O)/(v~ _ d2)l/2 
and the effective cutoff energy for this attractive inter­
action is 2ld2(vi - d2)F/4. It is clear that Eq. (42) can 
certainly have solutions which appreciably exceed the 
usual value D.o (given by Eq. (27)) for reasonable values 
of wD, w, Ad' AS' and u. 

4. THE PHONON SPECTRUM 

The order parameter d in the electron system, deter­
mined from the equation of self- consistency (15), is re­
lated to the order parameter (<pq) in the phonon system 
by the relation d = g( <Pq). By the same token the equili­
brium density of the Bose condensate of phonons is 
uniquely determined, although the total number of 
phonons is not conserved. We note that in the classical 
problem concerning the condensation of a Bose gas with 
repulsion,[3] the density of the condensate is determined 
from the condition for conservation of the total number 
of particles. The formation of a finite, longitudinal dis­
placement proportional to (bq + b~q)/(2 WO(q))1/2 should 
be regarded, according to definition, as the physical 
manifestation of a macroscopic filling of the phonon 
states with momentum q. In order to explain the changes 
in the phonon spectrum due to the effect of Bose conden­
sation in the state with q = (rTl a) (± 1, ± 1, ± 1) let us in­
clude the term 

'/, L,L,B(p"p,)!Dp,!Dp,!D_p,-." 
PI P2 

in the Hamiltonian (9), where this term corresponds to a 
phonon-phonon interaction due to the anharmonic nature 
of the lattice vibrations. 

Just as in the investigation of the electron spectrum, 
the introduction of the anomalous averages (<pq) inevit-

ably involves the anomalous phonon Green's function 
Dk(t - t') = - i ('f<Pk_ q(t) <P_ k(t') in the treatment, to­
gether with the usual phonon Green's function Dk(t - t') 
= - i(T~(t)q,_lt(t'). The equations of motion for 
I1c(t - t') and Dk(t - t') (after Fourier transformation 
with respect to the difference t - t') have the form [3J 

[w' - wo'(p) lDp(w) - ~20(p)Dp(.w) = 1, 

[w' - wo'(p + q) jD:(w) - ~02(p)Dp(w) = 0, 
(43) 

where we have the following expressions for the self­
energy parts ~02 and ~20 in the case of a weak phonon-
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phonon interaction: 

~02(p) = 8(1l>.).[B(p, -q) + B(p, p + q)], 

~20(p) = 8(1l>.).[B(p + q, q) + B(p + q, p)). 

If it is impossible to regard the interaction of the 
phonons as weak (see, for example,[3]), then for the 

(44) 

case of a rarefied Bose gas it is necessary to replace 
the Fourier components B(p) of the potential in formulae 
(44) by the total scattering amplitude. From Eqs. (43) 
we obtain the following results for the phonon functions: 

D.(.w) = [w' - wo'(p + q)) / det, D.(w) = ~02(p) / det, 
det = [w' - wo'(p) ][w' -wo'(p + q)) - ~,o'(p). 

Hence, from the meaning of the poles of the Green's 
function we obtain the following result for the excitation 
spectrum: 

[w±(p))' = 1/2 (wo'(p) + w;(p + q) 
± [(wo'(p) - wo'(p + q))' + 4~,o')'I>}. (45) 

Let us assume that in the normal phase, prior to dis­
tortion of the lattice, the system only has an acoustic 
branch wo(p) with period 21T/a. The poles (of the Green's 
function) w+(p) and w-(p) (given by Eq. (45)) characterize 
the spectrum of the optical and acoustic branches in the 
rearranged lattice. It is clear from Eq. (45) that, by 
virtue of relations (44), the gap in the phonon spectrum 
is determined by the anharmonicity constants B and the 
electron-phonon coupling constant g. The oxides, chalco­
genides, and dichalcogenides of the transition metals 
appear to be the most suitable materials, in which it 
might be possible to realize the superconductivity 
mechanism considered above. It is well-known that the 
behavior of the s- electrons in solids can be described 
rather well in the approximation of almost free elec­
trons. On the other hand, due to the stronger localiza­
tion of d-electrons near the atoms, their behavior can 
be described better in the tight-binding approximation. 
But in the transition metals the energy levels of the 
d-electrons overlap with the levels of the s-electrons. 
In this connection an additional delocalization of the 
d-electron states occurs due to the s - d interaction, 
and in this case the tight-binding approximation, which 
has been used in the present work, turns out to be un­
justified. However, in many transition metal compounds 
the overlap of the s- and d-electron energy levels is 
removed, and the one-electron, tight-binding approxima­
tion turns out to be adequate for the d-electrons. 

On the other hand, it may turn out that the correla­
tion effects, which are omitted in the one-electron ap­
proximation, will playa decisive role. Namely, if the 
interaction U between two electrons with opposite spins 
on a single atom is larger than the width w of the 
allowed band, then the electrons turn out to be com­
pletely localized on the center, and a band description 
is not suitable. Such a situation occurs for f- electrons 
due to their very weak overlap on neighboring atoms, 
which leads to a very small value of w. For d-electrons 
the ratio between U and w may vary over wide limits. 
For example, the value of U in compounds containing the 
same atom, but compounds in which the atom manifests 
a difference valence, decreases in connection with an 
increase of the number of d-electrons remaining on the 
atom, as a consequence of their mutual screening. How-

ever, the value of w is directly proportional to the num­
ber of nearest neighbors and therefore depends on the 
type of crystal structure. A wide class of transition 
metal compounds exist in which the role of correlation 
effects is not decisive and which undergo a metal-semi­
conductor phase transition with a change in the symme­
try of the crystal lattice. For example, VOz undergoes 
such a transition at a temperature of 340oK, VZ0 3 at 
150 0 K and NiS at 290oK. The model of a metal-semi­
condu~tor phase transition considered in the present 
article may have a relation to some of these. 

As was indicated above (see Fig. 1), the appearance 
of superconductivity in the dielectric phase is very sen­
sitive to the parameters characterizing the initial 
metallic spectrum, namely it is very sensitive to the 
relationship between the magnitude d of the dielectric 
gap resulting from the structural transformation and 
the value of the integral u characterizing the overlap 
with non- nearest neighbors. As is clear from Fig. 1, it 
is necessary to investigate compounds in which the in­
direct forbidden band d - u in the semiconducting phase 
is much smaller than the direct forbidden band d. In 
this connection, after rearrangement of the crystal lat­
tice the state may turn out to be semimetallic 
(d - u < 0). Realization of these conditions may be 
achieved by varying the density of the system by pres­
sure or by an isomorphic partial replacement of the 
transition metal atoms (e.g., changing the concentration 
of Cr in Cr-doped V20 a).[17] Similar changes in the 
electron spectrum occur in the V-Ru system[5] in con­
nection with a structural transformation near the super­
conducting transition temperature. The change in the 
temperature dependence of the conductivity and the 
magnetic susceptibility associated with the structural 
transformation indicates the appearance of a dielectric 
gap on part of the Fermi surface. It is possible that 
similar changes of the electronic characteristics occur 
in connection with structural transformations in sys­
tems having the lattice structure of fJ - W. 
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