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Some principally novel effects arising on multi-pulsed excitation of signals of the light-echo type are 
considered theoretically. An exact expression for the power of the echo response from a particle 
system with a spin of arbitrary magnitude is found for an arbitrary number of exciting pulses of 
arbitrary physical nature. It is assumed that the energy spectrum of a single particle is nondegen­
erate and eqUidistant and that the operator for momentum interaction with the particles is linear 
with respect to the effective spin. The operator of the observable quantity, however, may be an 
arbitrary analytic function of the effective spin components. The following features of quantum 
systems excited by multi-pulses are shown to exist: the possibility of obtaining effective wave vec­
tors or arbitrary magnitude, increase of time resolution of the crystal for investi~tion of a dense 
sequence of pulses, increase of information on the dynamiCS of the quantum systems and on external 
generators in the responses of the light-echo type and increase of effective duration of phase memory. 
As examples the excitation of sound by electro-magnetic pulses and the excitation of an electro-mag­
netic field by sound pulses are considered. It is shown that even a small increase of the number of 
exciting pulses removes in certain cases insurmountable difficulties of the two-pUlse excitation 
scheme. Some possible technical applications of multi-pulsed excitation of an echo-signal set are 
discussed. 

INTRODUCTION 

LIGHT echo (LE), theoretically predicted and experi­
mentally observed in[l] and [21, respectively, is a 
sharply-directional coherent light beam containing 
valuable information on the dynamics of optical quan­
tum systems and on the external generators that ex­
cite the medium. Even the first theoretical and experi­
mental investigation of light echo in gases [3] and 
crystals [2,41 have confirmed the point of view [l] that 
pulsed coherent optics makes it possible to investigate 
and employ for practical purposes dynamic processes 
that occur in a medium at nanosecond time intervals. 
In cases when the wavelengths A of the exciting external 
generators or of the field radiated by the medium is 
much smaller than the dimensions of the quantum sys­
tem, the number of possible different coherent states 
of the medium is very large. When a quantum system 
is excited by a series of n successive light pulses, 
each of these coherent states +( kl, ... ,kn ; 
At1, ... ,Atn ; T 1, ... ,Tn-1) is determined by the wave 
vectors k1, ... ,kn of the exciting pulses, by the dura-
tions At1, ... ,Atn of these pulses, and by the time in-
tervals T 1, ... ,Tn-1 between these pulses. Therefore 
the quantum system stores in "its memory" all these 
parameters of the excitation process and combines them 
in a definite manner. Moreover, at definite time inter­
vals the system again issues this information in the 
form of light pulses of duration T r ~ T 1r (x 2N/ S t1, 
where T 1r is the spontaneous emission time of a single 
particle, N is the number of excited particles, and S 
is the area of the end face of the sample. A similar 
situation arises in the case of excitation of quantum 
systems by hypersound and terasound (ll ~ 10 12 sec-1)[51, 
and also when optical and acoustic exciting pulses are 
combined f61 • Some of these processes can apparently 
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be used in optical computers [7]. 

In the present paper we develop a general theory of 
multipulse optical and acoustic excitation of quantum 
systems with nondegenerate equidistant discrete spec­
trum in the case when the operators of the interaction 
of the exciting pulses with the particles are linear in 
the effective spin. The obtained formulas determine 
the instants of time, the directions, the wave vectors, 
and the intensities of the emitted responses after an 
n-pulse optical and acoustical excitation of the system. 
From the obtained general formulas it is also seen 
that a change of both the sequence (in time) and the 
magnitude of all the parameters of the exciting pulses 
leads to the formation of macroscopically distinguish­
able states >¥(k1, ... ,kn ; (At 1,.,.,Ain; Tl, ... ,Tn-1) 
of the quantum system. Each of these states can yield 
up to (3n + 2n - 1)/4 responses that differ in the emis­
sion direction, the times of appearance, and the radia­
tion intensity. Thus, optical quantum systems do in­
deed possess a dynamic phase memory with large 
volume and are promising from the point of view of 
their use as memory elements in optical computers. 

Particular interest attaches to two sequences of 
optical and acoustic exciting pulses, which are general­
ized variants of the sequences of Carr and Purcell 
(CP)[Bl and of Waugh and Wang (WW)[9] and are well 
known in nuclear spin echo, As particular cases of the 
general theory we discuss here in greater detail ef­
fects that arise in the case when these sequences are 
used in optics and acoustics. 

In a CP sequence, the first 900 pulse is followed by 
(n - 1) 1800 pulses, and the time intervals between the 
pulses as well as'the wave vectors of the pulses are 
arbitrary. The main advantages of a CP sequence is 
the possibility of obtaining the following effective wave 
vector 
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k eff =(-1)"[-k,+ t(-1)m2km 1. 
m=:2 

In particular, if the wave vectors of all the odd pulses 
in the sequence are equal to the wave vector of the 
first pulse, and the wave vectors of all the even pulses 
are equal to the wave vector of the first pulse taken 
with a minus sign, Le., km = (-l)m+lkl' 
m = 1,2,3, ... ,n, then we obtain keff = (_1)n+l (2n 
- 1)kl. By the same token, we can use a coherent field 
with a wave vector kl to generate another coherent 
field with wave vector (2n - 1) kl of the same fre­
quency. By way of an example we can consider the 
generation of terasound pulses with the aid of optical 
pulses of the infrared band. Since the ratio of the 
electromagnetic and acoustic wave velocities is ap­
proximately lOS, a series of n ~ 105 optical pulses is 
needed for this purpose. 

The WW sequence consists of n 90° pulses. The 
time interval between the first and second pulses is 
equal to T, and each of the remaining time intervals 
between pulses is equal to 2T. The wave vectors of 
the first two pulses are arbitrary, and the wave vec­
tors of all the remaining pulses are equal to the wave 
vector of the second pulse. 

The main reason why the WW sequence is of inter­
est is that when n» 2, Tl > T2 and T < T2, where T2 
is the time of irreversible relaxation of the mean 
values of the transverse components of the effective 
spin at n = 2, and Tl is the relaxation time of the 
average value of the longitudinal component of the ef­
fective spin, which is the same for all n; the effective 
time T2eff of the irreversible transverse relaxation 
becomes longer and tends to Tl with decreasing T (9]. 

Simple considerations show that the process of 
lengthening of the phase memory of the transverse spin 
components in the case of multipulse excitation of spin 
systems, observed in(9], should take place also for the 
transverse components of the electric dipole moment 
in the case of optical excitation. Indeed, the theory of 
irreversible damping of Signals such as light echo dif­
fers from the theory of irreversible damping of spin 
echo, in principle, only in that the different lattice sums 
that describe the two-particle interactions contain fac­
tors of the type exp (ikm . rj), where rj are the radius 
vectors of the ions. However, as a rule, the lattice 
sums converge at distances on the order of (1O-7 _1O- S) 
cm, where exp (ikm . rj) ~ 1. Thus, there is no essen­
tial difference between the laws of irreversible relaxa­
tion in experiments aimed at observing spin and light 
echo, and our statement is justified. Similar considera­
tions hold true also for acoustic excitation at frequency 
v:s lOll sec-I. 

Finally, we present a scheme for the excitation of a 
coherent electromagnetic Signal with the aid of three­
acoustic pulses. This example shows that a phenome­
non that does not occur in two-pulse excitation can be 
observed already when the number of exciting pulses 
is increased by one. 

1. RESPONSES OF A SPIN SYSTEM TO n-PULSE 
EXCITATION 

We consider a certain physical system made up of 
N identical particles having an arbitrary effective spin 

R, with a static Hamiltonian in the form 

:JeR = :Jeo + :Je',:Jeo = ~ /i W OR'3, 
, 

:Je' = 1: /i;l,.W/lj3; Wo > 0; j = 1,2, ... , N. 
j 

(1 ) 

Here wo is the resonant angular frequency of the un­
perturbed particles, wo + ~Wj is the resonant angular 
frequency of the perturbed j-th particle, and Rjb Rj2' 
and Rj3 are the operators of the Cartesian components 
of the effective spin of the j-th particle. The commuta­
tion relations of these operators are of the form 

(2) 

where (Jjj' is the Kronecker ~ymbol, e(J(J'(J" is an ~nti­
symmetrlcal unit tensor of thlrd rank, each of the lll­
dices (J, (J', and (J" takes on the values 1, 2, and 3, and 
summation with respect to the index (J" is implied. We 
shall henceforth use the notation 

(3 ) 

Assume that, starting with the instant of time t = 0, 
n periodiC coherent resonant pulses from several 
generators of different phYSical nature (optical, 
acoustic, etc.) act on the system at certain time inter­
vals. The Hamiltonian of the interaction of the field of 
the m-th pulse with the system is of the form (at 
R = }'2 and in particular, n = 2 see(2] andfS] for light 
and sound, respectively) 

:Jem (t) = - '/,/i[U_(t - tom)- U+(t - tm)]· 

x 1: [aj(m) exp( - iWot) Rj(l) + aj~m) exp(iwot)Rj(_o]; 
; 

m= 1,2, ... ,n. 
(4) 

Here aj (m) are complex numerical quantities that do 
not depend on the time t and take into account the 
amplitude of the field of the pulse and are constants 
characterizing the interaction of the field with the par­
ticles, tom and tm are the instants of time of the start 
and end of the action of the pulse on the system, re­
spectively, with tOl = 0, while U_ (x) and U+(x) are 
asymmetrical unit step functions PO] of the real vari­
able x 

U_(x) = {O for x<O, 
1 for x ;;. '0; 

U+(x)={O for x.;;;; 0, 
1 for x> 0. 

(5 ) 

The simplest model Hamiltonian corresponding to the 
process of n-pulse excitation of a system of particles 
can be written in the form 

" 
:Je(t) =:JeR + 12 {:Je m (t) -[U_(t - tom) - u+ (t - tm ) J:Je'}. (6) 

m=l 

In many concrete problems[2,S], the scatter of the reso­
nant frequencies of the particles during the time that 
the pulses act on the system does not play an important 
role, and therefore the term with ~Wj is missing from 
dC(t) at the corresponding instance of time. 

Assume that at t = 0 the system (1) is in a state 
described by the density matrix 

P = IT Pj, pj = exp[\;R,(o>l [Sp exp \;R,(o>l-', (7) 

where!,; = -nwo/kBT, kB is Boltzmann's constant, 
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and T is the temperature. At an arbitrary instant of 
time t 2: 0, the mean value < f) of the observed physi­
cal quantity characterizing the system (1) and described 
in the Schrodinger representation by the analytic opera­
tor function 

t == /[R 1 (1), R2(1)"'" RN(I); R1(Ol' R2(O)~"" RN(o); RH - O , R~(-th"" RN(-o), 

can be calculated from the formula 

(f> = sp.P (t) pIP (t)) -'f = sp pIP (t) ]-'/.2' (t) (8) 
= Sp pfIR'(1) (t), R2(1)(t), ... , RN(O(t); R1(.)(t),R,(.) (t), .. 0 

00' , R'(-1) (t), RZ(-o (t), . . 0 , RN(-o (t)], 

where Rj(y)(t) (j = 1,2, ... ,N; y = 0, ±1 is an opera­

tor describing the corresponding combination of the 
Cartesian components of the effective spin of the j -th 
particle, written in the Heisenberg representation 

, (9) 

P(t) = P lexp [ - iii-If ~(t')dt']}o 
The operator 2(t) is the matrix evolution function[ll) 
written in the form of the universally accepted sym­
bOlic exponential with the aid of the Dyson chronologi­
cal operator p,P2) and d6'(t') is the Hamiltonian indi­
cated in (6). Using the commutation relations (2), we 
can show that at t 2:' tn, where tn is the instant of 
time when the action of the last (n-th) pulse on the 
system (1) terminates, the following equation holds 
true: 

(10) 

where the operator Rj(y)( t, n) is a linear combination 
of the operators (3) in the form 

R j (Vn ) (t, n) = exp (iYnwot) 2: iY'-Yn 

Vo, 'Yt. ...• 'Vn_l=O' ±1 

The quantities B are defined here as follows: 

B(m) = B (m) 0 

-y m_t ,-y m 'IIm _ t ,v m' 

'\'»1-1, Vm = 0, ±1; m = 1,2, ... , n. 

In (11) and (12) we have used the following notation 
[cf. (4)]: 

(12) 

Xj(m) = -Tmllwh Lm = tOm+t - tm for m < n; 'Xj(n) = - (t - tn)I~'WJ; 
8J(m) = l!:daj(m) I L\.tm ; Uj(m)laj(mll=aHm); ~.tm=tm-tom; 

m=1,2,00.,no (13) 
After investigating (9) with the aid of the properties of 
the step functions [10) and the properties of the evolu­
tion operator[ 11) for the instants of time t satisfying 
the condition tn 2: t 2: 0, we can show that relation (10) 
for the instants of time t satisfying the condition til 
:5 t :s tOIl+1 (II = 1, 2, .. 0, n - 1), is valid if we replace 
n by II in (10)-(13). Consequently, this method can be 
used to analyze accurately and rigorously the responses 
of the system (1) in the process of n-pulse excitation 
(6), which appear at instants between the times of the 
eXCiting pulses, as will be done in the exposition that 
follows. 

2. POWER OF ECHO SIGNALS 

We consider the case when the pulses (4) acting on 
the system (1) are traveling plane waves. In this case 

the quantities 8j(m)(13) are the same for all the par­
ticles f61, 8j(m) = 8m, and the quantities (lj(m)(13) 
take the form (6) 

(14) 

where km is the wave vector of the field of the m-th 
pulse in the sample, rj is the radius vector of the 
mass center of the j -th particles, and 13m is a complex 
constant that takes into account the initial phase of the 
m-th pulse. We consider radiation of the system (1), 
due to spontaneous transition only between neighbOring 
levels of the particle. The power of this radiation per 
unit solid angle in the direction of the wave vector k 
at the instant of time t 2: tn can be obtained, taking (7), 
(8), and (11) into account, from the following formulas 
(at R = 1'2 and n = 2, see[2,61): 

l(k, t) = I.(k) sp pIP(t) ]-'R.+R._P (t) = I, (k) + I,(k, t); 

I, (k) = I.(k) .E Sp p;R;(I)(t, n)R j (_1) (t, n); 

I,(k, t) = I. (k) .E.E exp[ik(r, - ") ]Sp p;R}(1)(t, n)Sp pIR,(-o (t, n); 

j, I = 1,2,000, N. (15 ) 

Here lo( k) is the radiation power of an isolated parti­
cle per unit solid angle in the direction of k, h(k) is 
the incoherent part of the power, Le., it is proportional 
to the number of particles n in the system (1) and 
does not depend on the time t, and h(k, t) is the co­
herent part of the power, Le., it is proportional to N2 
- N and depends on the time t. 

With the aid of (11) we can easily analyze the rela­
tions (15) even if they are not written out in detail. It 
is obvious that in the general case, in order for the 
coherent part of the radiation part to reach macro­
scopic values, it is necessary that some terms in the 
formula for h(k, t), in the expression following the 
two signs of summation over the particles, be independ­
ent of the indices j and l. This takes place if the 
following two conditions are simultaneously satisfied: 

t = tn + ",/t, + "','" + Co 0 + """-""-'; 
k = k" +",,'(k,-k,) + ",,'(k,- k,) + 00' + ",'n_,(k" - k".,); (16) 

v/, yz', ... , v' n-t = 0, ±1; 

where we should have t = t1 and k = k1 at n = 1. It 
must be borne in mind that if we choose in (16) a set of 
values for y~, Y2' •.. , y~-l in the relation for t (for k), 
then we must substitute only this set of values in the 
relation for k (for t). 

It follows from all the foregOing that the system (1) 
produces as a result of n-pulse excitation super radiant 
coherent signals of the echo and free-induction type, 
characterized by appearance times and by wave vec­
tors satisfying the relations (16). However, by varying 
the quantities e~, 82, ... , 8n we can amplify these sig­
nals to a definite limit or to attenuate them until they 
vanish completely. 

A sequence of n pulses can be characterized by ef­
fective wave vectors, which can be taken to the arbi­
trary combinations of the wave vectors in the right­
hand side of the relation for k in (16). The relations 
(16) are satisfied'only when Y~T1 + y;T2 + ... +y'n-1Tn-1 
2: 0, since these relations were obtained for t 2: tn­
Consequently, they determine the responses that appear 
after the n-th pulse. The very last of these responses 
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appears at the instant of time t = tn + T 1 + T 2 + ... + Tn-l 
< 2tn with a wave vector k = 2kn - k 1 • 

A sequence of n pulses can be characterized by the 
number of responses appearing after the n-th pulse. 
The maximum value Mn of such responses is given by 

(17) 

If we replace n by II = 1, 2, ... , n - 1 in all the preced­
ing relations and arguments and consider the instants 
of time t satisfying the condition til ::s t ::s t oll+1 , then 
we can analyze the responses that appear between the 
v-th and the II + I-st pulses. The maximum number 
Mil of such responses is determined by the equation 
(at Tv 2: Tl + T2.·. + Til-I) 

M, = (3'-' + 1) 12. (18) 

The maximum total number M(ll) of the responses is: 

M'n)= ~Mm= 3n+2n-1. (19) 
~ 4 m_' 

If the n-pulse excitation is such that the system (1) has 
a maximum number Mml of responses that differ in 
their times of appearance and in their wave numbers, 
then some of these responses will always have equal 
intensities. Choosing sequences of n pulses, we can 
obtain echo signals at arbitrary prescribed instants of 
time and obtain the radiation of physical fields with 
arbitrary wave vectors. 

Obviously, the theory considered in the present sec­
tion can describe real systems if the following condi­
tions are satisfied: 

(20) 

where T 2rev is the time of the reversible transverse 
relaxation due to the scatter of the resonant frequen­
cies as indicated in (1). 

3. PULSE SEQUENCE OF THE CP TYPE 

For a more detailed analysis of the possibilities of 
the multipulse-excitation technique, we consider the 
action of a CP sequence consisting of n 2: 2 pulses on 
the system (1). Such a sequence is characterized by 
el = 17/2; e2, e3, ... , en = 17, and we then obtain from 
(15) (at t 2: tn ) 

I,(k) = Io(k)N{R(R + 1) - '/,(2R + 1) cth ['/'b(2R + 1)] cth ('W 
+ '/,clh' ('/2b)}; 

I,(k, t) = Io(k) [Sp p;Rj(Od' LL exp {i [t - tn + .E (_1)"+mTm ] 
; I=;!:=i m=1 

x (~Wj - ~w,) }exp{ i [k + (-1)nk, - 2 I>-1)n+mkm ] (rj - r,) }. 

m_' (21) 
For a CP sequence, the summation over the particles 
in the formula for I 1( k) is carried out exactly. The 
final expression given above for I 1( k) illustrates the 
temperature dependence of the incoherent part of the 
power. The temperature dependence of the coherent 
part of the radiation power, as seen from (21), is de­
termined by a factor equal to the square of the mean 
value of the longitudinal component of the effective 
spin of one of the particles at the instant of time t = O. 

This mean value can be calculated from the formula 

Sp pjR"o) = '/,{ (2R + 1) cth ['/,(2R + 1)~] - cth ('I,m. (22) 

It follows from (21) that the coherent part of the 
radiation power has a maximum when the relations 

t~tn- r,\-1)n+m Tm, k=(-1)"[ -k,+2 t(-1)mkm], (23) 
m=z 

which are a particular case of (16), are satisfied. It 
follows from (23) that the first and most important 
distinguishing feature of a sequence of the CP type is 
that it is characterized by only one effective vector 

keff = (-1)" [-k' + 2 t (-Wkm], _. 
which depends on the vectors of all the pulses multi­
plied by the largest possible (see (16)) numerical coef­
ficients. Thus, a sequence of the CP type makes it 
possible to excite radiation (a physical field) with a 
wave vector k = keff. 

A second feature of a sequence of the CP type is 
that after the n-th pulse the system should produce not 
more than one response. A third feature of this se­
quence is that the intensities of the responses do not 
depend on the number of pulses and exceed the intensi­
ties of the responses excited by all other arbitrary 
sequences of pulses. 

If the number n of all the pulses acting on the sys­
tem is odd and (23) is satisfied, then the larger 
T2, T4, T6, ••• ,Tn-l and the smaller T1, T3, T5, ••• ,Tn-2, 
the larger the time interval between the last n-th 
pulse and the response appearing after this pulse. If 
n is an even number and (23) is satisfied, then the 
larger T 1, T3, T 5, ••• ,Tn-l and the smaller T2, T 4, 

T 6, ••• ,Tn-2, the larger the interval between the n-th 
pulse and the response that follows it. It follows from 
the foregOing that at small time intervals between the 
pulses, the time interval between the n-th pulse and 
the response that appears after it can be large as a 
result of the large n. 

4. PULSE SEQUENCE OF THE WW TYPE 

We consider the behavior of the system (1) when it 
is acted upon by a sequence of the WW type, consisting 
of n 2: 2 pulses. The parameters characterizing the 
pulses of the type WW sequence should have the fol­
lowing values: 

'1'1 = 't, 't'z = 't's = ... = 't'n-t = 2't; 
9, = 9, = ... = 9n = n I 2; (Ij(l) = II. exp (ik,r,), (24) 

aj(2) =.,aj(,) = ... =aj(n) = lI,exp (ik,rj). 

Substituting (24) in (15), we obtain for the coherent part 
of the spontaneous-radiation power on the system (1) 
the expression (at t 2: tn ): 

I,(k, t) = lo(k) [Sp p;Rj,O)]' .ELL {P(nllP'n)~' 
i '=l=J 'Ii,;' 

x exp[i(k - 2k2 + k,) (rj - r,) j + Q(nllQ(nll' exp[i(k - k,) (rf- r,) 1 
+ PIn); Q(n)~' p,' II;' exp[i (k - 21>, + k,)rj - i (k - k,)r,j + 

+ Q,nll P(nW II,"' fI,' exp[i(k -k,)rj - i(k - 2k, + k,)r,]) 

x exp{i[t - tn -(26 -1hMWj - i[t - tn -(26' -1)Tj~W'}; 

6, 6' = -n + 2, -n + 3, -n + 4, ... , n - 1. (25) 

p(n)~ and Q(n)~ are dimensionless real numerical co-
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efficients and can be calculated from the following 
formulas: 

p(.a = (-1) I [ .E (-1)"2-"/(1], £ -1) + (-1)"-'2- n +'/(n - 2, £ - 1) l 
T1==lt-11 

Q(n)l = (_1)'-' [ t' (-1)"2-"/(1], S - 1)+ (-1)n2-n+'/(n - 2, S - 2) ]; 
11-1&-11 

[ A.-It ] r=O,1,2, ... , -2- ; 

1] = Is - 11, Is -- 11 + 1, 1£- 11 + 2, ... ; (26) 

where Cy is the number of combinations of y taken x 
at a time, [x] is the integer part of x, Le., the largest 
integer not exceeding x, p(n)~ = 0 at 1 ~ - 11> n - 2, 

and Q(n)~ = 0 at 1 ~ I> n - 2. 
It is seen from (25) that the coherent part of the 

spontaneous-emission power h(k, t) will have a maxi­
mum when t and k assume simultaneously the follow­
ing values: 

t = tn + (2£ - 1)-t; k = 2k, - k" k,; 

s = 1, 2, ... , n - 1, 
(27) 

for when t = tn + (2~ - 1 hand k = 2k2 - ki in the 
expression contained in (25) after the two signs of 
summation over the particles, the term proportional 
to p(n)~ will have a maximum value and will not de-

pend on the indices of the summation with respect to 
the particles j and l; at t = tn + (2~ - 1 hand k = kl, 
the same can be stated with respect to the term pro­
portional to Q(n)~' Of course, if p(n)~ = 0 or Q(n)~ 
= 0, then I2(k, t) will not have corresponding maxima. 
The presence of maxima of the coherent part of the 
spontaneous-emission power means that the system 
produces super radiant coherent echo signals, the ap­
pearance times and the propagation directions of which 
are determined by relations (27). 

The number of echo Signals that appear after the 
n-th pulse and propagate in the direction k = 2k2 - ki 
cannot be larger than n - 1. The number of echo Sig­
nals that appear after the n-th pulse and propagate in 
the direction k = ki cannot be larger than n - 2, since 
Q(n)n -1 = 0 always. 

If we replace n by v = 2, 3, .•. ,n - 1 in all the 
preceding relations and arguments of the present sec­
tion, and consider instants of time t satisfying the 
condition tv :s t :s tov + I = tv + 2 T, then we can analy ze 
the echo Signals that appear between the v-th and the 
v + 1-st pulses. Obviously, two echo signals will ap­
pear between the v-th and v + 1-st pulses for v 2: 3 at 
the instant t = tv + T; one of them will propagate in the 
direction k = 2k2 - kl, and the other in the direction 
k = kl . Only one echo signal in the direction k = 2k2 
- kl will appear between the second and third pulses, 
since Q(v)1 = 0 at v = 2. 

If the relaxation times characterizing a real excited 
system satisfy the inequalities T2rev < T2 < T l, then 
we can assume on the basis of[9] and the reasoning 
given in the introduction that when such a system is 
acted upon by a sequence of the WW type consisting of 
n:» 2 optical and acoustic pulses, the effective phase­
memory time of the system T2eff will lengthen and will 
tend to T 1 when T is decreased. The presence or the 

absence of this phenomenon can be verified experi­
mentally by studying the character of the decrease of 
the intensities of the echo signals that appear between 
the pulses of a sequence of the WW type, in compari­
son with the values that can be obtained for these in­
tensities with the aid of (25), by integrating h( k, t) 
over all the angles that determine the direction of the 
wave vector k [2]. 

5. THREE-PULSE SCHEME FOR ACOUSTIC EXCITA­
TION OF ELECTROMAGNETIC SPIN ECHO 

It was shown in[S] that a two-pUlse scheme of 
acoustic excitation of ordinary spin echo is possible if 
the splitting of the unperturbed spin-system spectrum 
is abruptly altered in the time interval between the 
acoustic pulses; this is not easy to do. On the other 
hand, the use of three acoustic pulses immediately 
eliminates all the difficulties that lie in the path of ob­
taining an effective wave vector equal to the wave vec­
tor k of the radiated electromagnetic field. In our case 
the frequencies of the sound and of the electromagnetic 
field should coincide. 

In the NMR region, and in practice also in the EPR 
region, 1 k I ~ O. Therefore, according to (23), we 
should direct the vectors kl' k2, and k3 of the traveling 
sound waves in such a way as to have 

2(k2 -k,) -k,=O. (28) 

If 1 kil = I k21 = I k31, then the condition (28) can be 
satisfied in the following manner. We locate all three 
vectors in one plane: if kl makes an angle 0 0 with the 
coordinate axis, then k2 and k3 should naturally make 
angles 75° 30' and 104 0 30' with this axis. The condi­
tion (28) is obviously satisfied also in the case of not 
too different moduli of the wave vectors. On the other 
hand, if one of the quantities 1 kl I, 1 k2 I ,and I k31 
greatly exceeds each of the remaining ones, then it is 
necessary to use a scheme conSisting of more exciting 
pulses, the minimum number n again being determined 
with the aid of formula (23). 

The theory developed here is applicable to cases in 
which the spin-phonon interaction operator is linear in 
the effective spin (C02+ ions in MgO, rare-earth ions 
in CaF2). The conditions for setting up such experi­
ments were discussed in detail in[S]. To realize this 
scheme, it is necessary to have a single crystal in the 
form of a trihedral prism with lateral surfaces 
polished and making the angles indicated by us. 

CONCLUSION 

The formulas obtained by us illustrate the promising 
nature of the technique of multi pulse excitation of 
quantum systems. Insofar as we know, the presently 
eXisting pulse technique of optical and hypersonic ex­
citation of a medium is perfectly suitable for the per­
formance of the experiments considered in the present 
paper. It seems to us that the most promiSing realiza­
tion of our theoretical relations will be the development 
of an optical computer. From the point of view of 
physical research, the important conclusion is that it 
is possible to lengthen the effective time of the optical 
transverse relaxation. Such an effect can be used to 

'I, 
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produce a "time magnifier," which makes it possible 
to investigate rapid physical processes of picosecond 
and shorter durations. 

Finally, the multiples technique of optical and hyper­
sonic (and in perspective also terasonic) excitation can 
be used to generate coherent beams of x rays, 'Y 
quanta, and elementary particles. 
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