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Two problems concerning the conductivity of randomly inhomogeneous media in a strong magnetic field 
are studied in the case when the dimensions of the inhomogeneities are larger than the mean free path 
of the carriers. In the first problem the effect of inhomogeneity of the carrier concentration is inves
tigated. It is shown that the transverse components of the effective conductivity tensor in a strong mag
netic field H are proportional to H-4/3; the inhomogeneities have no appreciable effect on the other com
ponents. The other problem concerns the magnetoresistance of polycrystals of metals with open Fermi 
surfaces (of the "space-mesh" and "goffered-cylinder" types). The asymptotic forms of the transverse 
magnetoresistance in strong magnetic fields are found. The existence of a size effect in the magnetore
sistance of polycrystals is noted (this occurs for sample thicknesses that exceed not only the mean free 
path but also the dimensions of the crystallites). 

1. INTRODUCTION 

IN a number of physical Situations, the problem arises 
of calculating the effective conductivity of a randomly 
inhomogeneous medium, Le., the conductivity connecting 
the volume averages of the current and field: 

<j> = ~'<E>. (1) 
A more detailed formulation of this problem in the case 
when the dimensions of the inhomogeneities are greater 
than the mean free path will be described below. The 
"classical" objects of this problem are mixtures and 
polycrystals. As a rule, in these cases the inhomogene
ities are not too great and, in order of magnitude, oe 
does not differ, e.g., from (o. > (so that the problem of 
the theory is to determine ae more exactly than in order 
of magnitude). 

In certain situations, however, the presence of inho
mogeneities leads to a radical rearrangement of the cur
rent flow pattern, a characteristic feature being the 
presence of a large parameter to which this rearrange
ment is related. The class of problems of this type also 
includes the problems, considered in the present paper, 
of the calculation of the effective conductivity of an in
homogeneous medium in a strong magnetic field, when 
(3 '" wH /v » 1 (WH is the Larmor frequency and v is the 
collision frequency). One of these problems (described 
in Secs. 2 and 3) arises in the study of an isotropic me
dium with a nonuniform concentration of carriers; an
other (Secs. 4 and 5) arises in the study of the galvano
magnetic properties of polycrystals of metals with open 
Fermi surfaces. We note that the reasons for the anom
alous conductivity (Le., the sharp difference between 
o.e and (a» are completely different in the two cases 
and, to a considerable extent, these problems will be 
treated independently. 

It is well known that in an isotropic medium, e.g., in 
a plasma, the conductivity tensor for (3 » 1 has the form 
(the z-axis is along H) 

( 

~-. ~-l 0) 
a = cr. - ~-l ~~2 ~ • (2) 

The important point is that axy » axx and ayy '" a 1. 
Therefore, even for small inhomogeneities, when ao and 
(3 fluctuate weakly (Bao/ao « 1 and B(3/(3 « 1), the fluc
tuation ofaxy can be large compared with axx. Pertur
bation theory is then inapplicable (the results of papers 
[1-4], in which the treatment of this problem was con
fined to the first perturbation-theory correction, are 
valid only if this correction is small). We note that, 
since for (3 » 1 the quantity axy = nec/H, where n is the 
carrier concentration, e the carrier charge and c the 
speed of light, the fluctuations ofaxy are induced by 
fluctuations of the carrier concentration. 

The problem of the effective conductivity arises, 
e.g., in the study of the ionization instability in a low
temperature plasma. [5,6] Because of the development 
of this instability, the degree of ionization, and with it 
& also, depends on the coordinates. This leads to a 
sharply inhomogeneous current flow (in their turn, the 
current inhomogeneities maintain the nonuniform ioni
zation). The case of layer inhomogeneities was consid·· 
ered by Velikhov[7] and Rose. [8] In paper [9], an exact 
solution was obtained (under certain additional model 
assumptions) of the problem of the effective conductiv
ity for the case of two-dimensional inhomogeneities 
lying along H (the assumption of two-dimensionality is 
justified, for example, by the fact that the thermal con
duction and diffusion along the magnetic field smooth 
the inhomogeneities in this direction). 

In the present paper, we examine the problem of the 
conductivity of a medium with three-dimensional inho
mogeneities. As well as the application to a plasma, 
this problem is characteristic, e.g., for inhomogene
ously alloyed semiconductors. [1,3,4] 

The problem of the effective conductivity in a strong 
magnetic field also arises in the study of polycrystals, 
where the inhomogeneity is due to the random orienta
tion of the crystallites. However, since for (3 » 1 the 
quantity axy = (ne '- nh) ec/H, where ne and nh are the 
concentrations of electrons and holes, axy does not de
pend on the orientation of the crystallites with respect 
to the magnetic field. At the same time, in studying 
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polycrystals, it is necessary to take into account spe
cific features connected with the complicated dispersion 
law of the electrons. Namely, in the case of metals with 
an open Fermi surface, for certain orientations of the 
crystallites with respect to the magnetic field, the com
ponents O'xx and O'yy are appreciably greater than 0'0(3-2 
(for most orientations, 0'1 ~ 0'0(3-2). This is connected 
with the appearance for such orientations of open (or 
almost open) paths. [10] 

Crystallites oriented in this way play an important 
role in the flow of current in strong magnetic fields, 
although the fraction C of such crystallites (for brevity, 
we shall call them the special crystallites) is usually 
small. 

The problem of the magnetoresistance of polycrys
tals with allowance for open paths has been considered 
by a number of authors. [11-14] In the paper by Lifshits 
and PeschanskH, this problem was solved for a thin 
sample (a wire) with one crystallite placed across a 
section. This makes it possible to average the resis
tance. In the paper by Stachowiak, [12J the problem was 
solved by a self-consistency method, the application of 
which, however, was in no way justified by the author. 
The same can be said of the paper by Ziman, in which, 
to determine &e, a simple volume averaging of a was 
performed. In the paper by Kox:zh, [14] an expansion was 
performed in the small concentration C of crystallites 
with open paths, only the first term of the expansion be
ing taken into aecount. For the effective conductivity, 
he obtained the result <1 = 0'0f3-2 (1 + (3C). It was as
sumed that this result is also valid in the region (3C 
»1. It is not difficult to show, however, that the ex
pansion parameter is effectively (3C. Therefore, in the 
region (3C » 1, it is necessary also to take into account 
the next terms. We shall be interested principally in 
the case of very strong magnetic fields, when (3C » 1. 
In this case, the distribution of current is sharply non
uniform. In Sec. 4, we find, to within a numerical fac
tor, the effective conductivity of a polycrystalline me
dium for different types of Fermi surface. We point out 
that we treated a particular case of this problem in a 
preliminary communication [15J by a method different 
from that applied in the present paper. 

However, perhaps the greatest interest attaches to 
an unusual size effect, namely, the fact that the resis
tance of a polycrystalline sample displays a sharp de
pendence on its thickness in the direction of the mag
netic field. The characteristic thicknesses at which the 
size effect appears exceed not only the mean free path, 
but also the dimensions of the crystallites. This effect 
is considered in Sec. 5. 

Before proceeding to the main part of the paper, we 
shall formulate the problem of the effective conductivity 
more precisely. 

We consider a stationary current flow through a con
ducting medium, at each point of which the conductivity 
tensor a(r) is given (a(r) is a random function of the co
ordinates); this tensor connects the local current den
sity j(r) and the local electric field E(r) 

j(r) = ;(r)E(r), 

and j and E satisfy the equations 

div j = 0, rot E = O. 

(3) 

(4) 

Equations (3) and (4) can be combined into one equation 
for the potential: 

(5) 

Finding E and j from (3) and (4) and averaging them over 
the volume (or over an ensemble of the random functions 
a(r)), from (1) we find ae. 

We shall now discuss the restrictions under which 
our formulation of the problem of the effective conduc
tivity is valid. If the conductivity depends only on the 
coordinates, then we must require that the mean free 
path 1 be much smaller than the characteristic dimen
sions a of the inhomogeneities in the conductivity. But 
if a also depends on time (with a characteristic fre
quency w), then to this we must add the conditions 

c· 
w~-4--" nooa 

(6) 

where Wo is the characteristic dispersion frequency of 
the conductivity and c is the speed of light. The first of 
these conditions (together with 1 « a) enables us to use 
Eq. (3), and the second and third enable us to use Eq. (4). 
We emphasize that the specific conduction mechanism 
is not important for us, if the conditions enumerated 
above are fulfilled: in particular, in the case of a plas
ma, the mechanism may be due to micro-turbulence. 
We note also that, although we shall everywhere speak 
of the conductivity, our treatment is also applicable to 
other analogous transport problems-thermal conduction 
and diffusion in an inhomogeneous medium, and so on. 

2. FLUCTUATIONS OF THE HALL COMPONENTS 

As we have already indicated, for small fluctuations 
of the components, only the fluctuations of O'xy are im
portant and these can be large compared with 0'1 (in (2) 
there is an even larger component, O'zz, but its small 
fluctuations are unimportant). In the following, there
fore, we shall assume that only O'xy fluctuates. If O'ik 
is a symmetric tensor, then Eq. (5) can also be re
garded as the equation of stationary diffUSion, with cp 
corresponding to the density of diffusing material and 
O'ik corresponding to the diffusion tensor. The advan
tage of this interpretation consists in the fact that dif
fusion in an inhomogeneous medium can be represented 
in a highly visualizable way by "following" the diffusion 
(the "Brownian motion") of one particle of the material 
(from a formal point of View, we are concerned with the 
well-known method of representing the solution of Eq. 
(5) in the form of a path integral[16J). If, however, there 
is an antisymmetric part in a (as is the case in a mag
netic field), then this interpretation is not applicable 
directly. In this case, we proceed as follows: we sepa
rate in a the symmetric and antisymmetric parts and 
write (5) in the form 

o ( oep ) 0 ( oep ) - a,,'-- +- a,,'- =0. ox, ox, ox, ox, (7) 

Performing the differentiation in the second term and 
noting that O'rk a2cp / aXi aXk = 0 (as a contraction of an 
antisymmetric and a symmetriC tensor), we can re
write this in the form 

o ( oep) oep 
- O'R'"- -v,-=o, ox, ox, ox, (8) 
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where 

(9) 

We see that if the antisymmetric part does not depend 
on the coordinates, then vk == 0 and its presence is not 
manifested at all in the equation for the potential. But 
if v *" 0, then, making use of the fact that 

div v = o'<J"," / ox,ox, == 0, 

we can write (8) in the form 

~ (<J;k~) - ~(v,<p) = O. 
OX; aX, aX, 

(10) 

This equation has the form div Q = 0, where the flux 
Qi = - O'rk ocp / oXk + vi cp, and it can now be interpreted 
in the language of diffusion. Namely, it describes sta
tionary transport under the influence of diffusion (the 
tensor of the diffusion coefficients is O'rk) and of convec
tion (with velocity v). It is precisely the presence of the 
convective transport which leads, as we shall see, to the 
result that the transverse components of the tensor &e 
will differ appreciably from the corresponding compo
nents of < &). The reason for this lies in the fact that, 
as follows from (9) and (2), the velocity is proportional 
to rr\ whereas 0' 1 ~ (3-2. Therefore, transport across 
the magnetic field proceeds for (3 »1 (and for not too 
weak inhomogeneity) as a result of the convection. 

We shall trace a more formal connection between the 
problem of calculating &e and its diffusion analog. We 
write the average current density in the form 

<i.)= ~ f [- 0,. + «0,.")_ <J,.")] ::. dV -~ f (0,."> ::, dV. (11) 

In the first integral, we integrate the term 
«O'rk) - O'lk)OCP/OXk by parts; the surface integral is 
small compared with the volume integral, and therefore 

<j) =~S (- o;,,~+v,<p) dV+ (0,."> <E.>. (12) 
V ax, 

The second term here gives the Hall current, which 
changes sign on change of direction of the magnetic 
field. As regards the first term, it cannot be asserted, 
generally speaking, that it gives only a conduction cur
rent. If, however, 0' fluctuates symmetrically about its 
average value, then the integral term in (12) does in
deed give only the conduction current. In fact, v be
comes - v not only when H - - H, but also when liO'tk 
- - liO'rk (DO'rk == O'rk - < O'rk »), and, therefore, this latter 
transformation, which, by assumption, does not change 
the properties of the medium, can be used to compen
sate a change of direction of the magnetic field. In the 
general case, we can show that, for small fluctuations, 
the correction to the Hall current due to the first term 
is small compared with < O'rk ) < Ek), i.e., O'rka ~ < ark) 
(this can be shown by means of perturbation theory; see 
Sec. 3). We also make the following remark. The di
mensions of &S and v do not correspond to the dimen
sions of the physical diffusion coefficient and velocity 
(the same also applies to the "time" t; see below). 
However, no attention need be given to this, since in 
the end we shall obtain quantities of the correct dimen
sions, as we should. 

We turn to the calculation of 0'1. If in the right-hand 
side of Eq. (8) we replace the zero by ocp/ot, thereby 

going over from the study of stationary diffUSion to the 
study of the situation in time, then the effective diffu
sion coefficient can be found by "following" the diffu
sional motion of a particle over long times. Indeed, the 
effective diffusion coefficient can be found from the 
well-known formula 

• l' (rJ.' (t) 
GJ. = :'~-4-t-' (13) 

where r 1 (t) is the displacement of the particle across 
the magnetic field in time t, and the brackets denote 
averaging over all possible diffusion paths. We shall 
study the case of three-dimensional isotropic fluctua
tions. Let a be the characteristic dimensions (corre
lation length) of the fluctuations, and let ~ == 

== ({ DO'xy)2) 1/2/ < O'xy) give the relative magnitude of the 
fluctuations. Then from (9) and (2) we obtain an esti
mate for the velocity 

v - (J'oi\/~a. (14) 

We note that, in the case under conSideration, despite 
the fact that the fluctuations are three-dimensional, the 
velocity v has only the components Vx and Vy, since &a 
contains only O'xy and O'yx. Then the current lines of the 
velocity field coincide with the intersections of the 
planes O'xy = const with planes perpendicular to the 
magnetic field. 

Thus, we must study the following picture: the par
ticle moves under the influence of sharply anisotropic 
diffusion (the diffusion coefficient along the magnetic 
field is 0'0 and across the magnetic field is 0'0(3-2) and of 
a random field of velocities, the magnitude of which is 
determined by formula (14). If there were no transverse 
diffUSion, then an effective transverse diffusion would be 
established as a result of the velocity field. If this ef
fective diffusion turns out to be greater than the "bare" 
transverse diffusion, we can, in fact, disregard the lat
ter. As we shall see, precisely such a situation is re
alized for suffiCiently large (3; therefore, below, we shall 
not take the bare transverse diffusion into account. 

It might appear that the result for the effective dif
fusion could be written, in order of magnitude, in the 
form of a product of the velocity with the correlation 
length. This would give va ~ 0'0~/(3. This estimate is 
derived from the fact that, until the particle has moved 
through the correlation length, its path has a regular 
character and becomes similar to a random walk when 
its length appreciably exceeds the correlation length. 
In the case we are studying, these arguments are, how
ever, incorrect, since, because of the rapid diffusion 
along z, the particle moves rapidly outside the corre
lation cell without having had time to be displaced ap
preciably in the transverse direction. In order of mag
nitude, the distance it succeeds in being displaced in the 
time of passage through the correlation cell is s ~ V7'o, 
where 7'0 ~ a 2/0'0; thus, s ~ va2/0'0 ~ a~(3-1 «a. There
fore, va is an upper bound for the effective diffusion. 

This discussion prompts the idea of estimating 0'1 as 
S2/7'0 ~ 0'0~2(3-2, since the path (or, more preCisely, its 
projection on the xy-plane) conserves its regular char
acter along lengths ~ s, and then ''becomes tangled." 
However, as we shall show now, this estimate is also 
incorrect (in fact, it is a, lower bound). The point is that, 
so long as the transverse displacement r 1 (t) of the par-
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ticle is less than a, the particle, even though it passes 
rapidly through the correlation cell in its diffusion along 
z (so that the resulting displacement is small), then re
peatedly returns to this cell. In this case, its displace
ments within the same cell should be added together 
"coherently," since they are strongly correlated. Fre
quent returns to the same cell will be repeated until the 
transverse displacement of the particle exceeds the cor
relation length. 

We shall study in more detail the first stage of the 
motion of the particle (while r 1 (t) «a). We can then 
neglect the dependence of the velocity on the transverse 
coordinates (I.e., put v = v(z)). This makes it possible 
to calculate in explicit form the dependence of (r~) on 
time. In fact, for a given motion z(t), we have for r 1 (t) 

t 

r.dt) = f v(z(t,»dt,. (15) 
o 

Squaring this equality and 3.veraging, we obtain 

t t 

(rL'(t»= f f (v(z(t,»v(z(t,»)dt,dt,. (16) 
•• 

Here, the angular brackets denote averaging both over 
all possible diffusion paths z(t) and over an ensemble of 
random fields of v. Since (V(Zl)V(Z2) depends only on 
Zl - Z2' we have 

J () () exp{-z'/20".lt,- t,1} (17) <v(z(t,»v(z(t,») = <v 0 v z ) !Ddz,!D 
1"2nO".lt, - t,l 

(<I> dz gives the fraction of paths from the point z = 0 ar
riving at the segment (z, z +dz) in time It1- t2 1). Substi
tuting this result into (16), we obtain 

t t ~ 

(rL'(t»= f f f (v(O)v(z»!Ddt,dt,dz. (18) 
o 0_00 

The correlator (v(O)v(z) differs essentially from zero 
for z ;; a. We shall be interested in (r~ (t) for t »a 2/(Jo. 

In the integral (18), as we shall now convince ourselves, 
It1-t2 1 »a2/(Jo are important, and in this region the ex
ponential can be replaced by unity. We then obtain 

f~ , , dt, dt, t'l, ~ 
(r.L'(t»- (v(O)v(z»dz f f . - -=-S (v(O)v(z»dz. 

_~ •• 1"2nO".lt,-t,1 1"0"._~ 
(19) 

The integral in the latter expression, generally speak
ing, is of order v2a, and therefore 

(20) 

We have found that, if v depends only on z, the mean 
square transverse displacement of the particle in
creases with time more rapidly than for diffusion (for 
diffusion, we would have (ri (t) - t). 

This result can be given a simple interpretation. For 
simpliCity, let the velocities have only an x-component 
and be equal in absolute magnitude, so that the pattern 
of the velocities has the form depicted in Fig. 1, where 
the layers have equal thickness, so that the velocity 
certainly does not change over the extent of one layer, 
and, in neighboring layers, can be oriented in either the 
same or opposite directions (I.e., in each layer, one or 
the other direction of the velocity is selected indepen
dently, with probability i-). If all the velocities were in 
the same direction, the particle would be displaced by 

FIG. I 

a distance vt in time t. Since, however, the average ve
locity is equal to zero, the displacements in different 
layers are well compensated, and only a certain number 
oN of "uncompensated" layers contribute effectively. 
Therefore, the displacement of the particle is of order 
vt oN/N, where N is the total number of layers passed 
through in time t, N - ..j (Jot/a. Since the velocities in 
the layers are random~ distributed, we have oN - N1/2 
and r 1 (t) - vtj{N - l' 4 va(J-;,1/" or, squaring, we obtain 
r~ (t) - v 2 at'/2/..ra;;, which coincides with (20). We note 
that, if the velocities in the layers alternated, then, as 
is easily seen, this would lead to (r~ (t) - t, since in 
this case oN - 1, independently of t. 

We return to the question of the calculation of (JI' 
The above treatment is valid so long as r 1 ;; a, or, from 
(20), so long as t ;; 7', where 7' - (J~/3a2/3/v"/3. For longer 
times, the returns of the particle can be neglected (un
like one-dimensional diffusional motion, which is recur
rent, three-dimensional diffusion is non-recurrent[16]). 
Therefore, the effective diffusion coefficient can be es
timated as 

O".L' - a' IT: - v'l'a't'l 0"0,1, - 0"0(6. I Il)'t,. (21) 

It remains to "recall" that, in fact, the calculated quan
tity is the effective conductivity. Comparing (21) with 
the bare transverse conductivity (Jo{3-2, we find that (21) 
is valid for {3t. 2 »1. In the opposite limiting case, the 
inhomogeneities do not lead to anomalous conductivity, 

d e a-2 an (J 1 - (JOI-' • 

The derivation given cannot, of course, pretend to be 
rigorous. We shall give an account here of certain con
siderations which reinforce the result obtained. We as
sumed in deriving (21) that the random function a(r) can 
be crudely characterized by the magnitude and scale of 
the fluctuations. But if a(r) has a more complicated 
structure, e.g., possesses an entire spectrum of scales, 
then it is not clear in advance whether the result ob
tained is conserved in this case. We shall show that the 
result is stable to such a modification. For Simplicity, 
let there be two scales: a1 and a 2, with a1 «a2• Then it 
is natural to proceed in the following way, namely, to 
find the effective conductivity Ge' first with respect to 
the scales L, a1 « L «a2• The inhomogeneities of Ge' 
will now have only the scale a 2• Then, treating Ge' as 
the local conductivity tensor, we find Ge (with respect 
to scales greater than a 2). For fluctuations of (Jxy that 
are not too small on the scales aI' the diagonal compo
nents of Ge' will be _{3-4/3, while the Hall components 
of Ge' will be equal to the averages (over the scale L) 
of the Hall components of a(r). The important point is, 
as can be seen from the derivation of (21), that the 
transverse diffusion is unimportant. Therefore, the 
effective diffusion due to the scales a 2 will also be 
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~{3-4/S. As a result, the convective diffusion will pro
ceed as a result of coarse or fine scales (depending on 
where the magnitude of the inhomogeneities is greater), 
but in every case the asymptotic form for sufficiently 
large {3 will be ~ {3 -4/3 . 

A further remark concerns the calculation of the 
characteristic time T in which the particle is displaced 
over the correlation length in the transverse direction. 
We have found T from the equality (ri (T) ~ a 2, where 
(ri (t) is determined by formula (20). It is not clear 
in advance, however, whether the same order of magni
tude for T will be obtained if we determine it, e.g., from 
the equality (r1 (T) ~ a4. Calculations (for brevity, we 
shall not give them) analogous to those carried through 
in the derivation of (20) give a positive answer to this 
question (the same applies to the higher moments 
(rT(t) also). 

The diffusion analogy can also be used in the case 
when the inhomogeneities are two-dimensional (ex
tended along the magnetic field). A study of this case 
leads to the formula 

(22) 

This result coincides with that obtained in (9) on the 
basis of an exact solution for a two-phase system with 
equal concentrations of the two phases. 

3. DIAGRAM TECHNIQUE IN THE EFFECTIVE 
CONDUCTIVITY PROBLEM 

Since the treatment based on the diffusion analogy 
was of a largely qualitative nature, it is of interest to 
obtain a solution by using a perturbation-theory diagram 
technique. However, in the region of interest to us, the 
perturbation-theory series diverges. As we shall see, 
the so-called strong-coupling case is realized, in which 
diagrams of different topological structures are equally 
important. Nevertheless, it is possible to confirm (21) 
and (22) from an examination of the diagrammatic series. 

The diagram technique for the effective conductivity 
problem is obtained if in Eq. (5) we represent the poten
tial in the form cp = - (Ei)xi + $ «$) = 0) and O"ik in the 
form O"ik = (O"ik) + <Tik. Then, assuming Uik to be the 
perturbation and solving (6) for q; by successive itera
tions in <Tik' we obtain an expression for Cj5 in the form 
of a series. Substituting this series into the formula 

1 S ilrp 
<j,)= - If a" Ox. ilV 

and averaging over an ensemble of random fields of 0", 
we find an expansion for &e, which can be written con
veniently in the form of a diagram series: 

A 

"e ... A..... ... ...... 1'............ ... ...... ;;A,~.......... ... .. ,.A"v:.A.......... .... ......... :~ .............. 
<~ik)-5 :::~+ ~:k~x+~_x~ ... x+ ~x~x+X"---~~+ ••• 

,\, 'I, '12 'I, '12 'I, 'I, 'I, 'Ii 'I, 'I, 'I, 'I, 
(23) 

The correspondence rules here are as follows: a line 
with wave vector q corresponds to the factor 

q,q, q;q, 
~== 
(q(a)q) ao(q,' + Il-'q1-') 

and a cross between lines ql and q2 corresponds to the 
factor (- <Ti~2-ql). The dashed lines linking several 

crosses and converging at the unshaded circles imply 

that the factors ~-ql corresponding to these crosses 

appear in the irreducible correlator (cL, e.g., [17J). In
tegrations are performed over all the intermediate wave 
vectors, and contractions over repeated tensor indices. 
Thus, (23) has the following expanded form: 

< )- • _ S <iJiP q'iJ •• -q'),q,pq,. d' 
a,. a,. - a,(q,,' + B 'gu') q, 

- S <eJfP ql6'!~;ql ".'II!. -qz)oqtpQlmQ2nQ2s 

x [a, (g,,' + B-'g'1-') ao (q,,' + f -'q'1-') a, (q,,' + V'q'1-') ]-' d'q, d'g, d'q, 

+ S «j",q, iJ,~q, >, (iJ!,;q, (j:~-q, >0 q"g,,,,q,,,q,, (q,q - q,q) (q" - q,,) 

Here, the angular brackets with the zero subscript 
( ... )0 denote an irreducible correlator. We note that 
reducible diagrams do not appear in the expansion (23). 
In (23), in all the diagrams, the incoming wave vector 
is equal to zero. In the following, we shall need the 
quantity &e(q) (&e = &e(O)), which is introduced formally 
and defined by the expansion (23) with the incoming wave 
vector equal to q in the diagrams. 

We proceed to select and estimate the diagrams. We 
shall consider the simplest diagram (the first in (23)). 
We shall be interested in 0"1 (e.g., aexx)' The correspond
ing expression has the form 

(24) 

We shall study the terms corresponding to different i 
and j separately. We start from the fluctuations of <Txy 
~ O"oLlI {3 (Ll « 1 is the relative magnitude of the fluctua
tions). We shall define the function D(q) from the rela
tion (&'i\r~j)o = 0"~Ll2{3-2D(q). If a is the correlation 

length of the fluctuations, then D(q) f'::' as for q :( a-I and 
D(q) f'::' 0 for q »a-1. The integral (24) is equal to 

1 = _ aotl' D (q) q,'d3g 
[J 2 S (q,' + 11-'q1-') . (25) 

For {3 » 1, the small qz ~ a-I {3-1 are important. There
fore, the integration over qz can be performed explicitly, 
after which we obtain 

the remaining integral is of order unity, and, omitting 
numerical factors, we obtain I ~ 0"0Ll 2 I {3. For (3Ll 2 » 1, 
this correction is greater than (O"xx)' Since the fluctua
tions of O"xx are {3 times smaller than the fluctuations of 
O"xy, for small fluctuati0,Es the c,£rrection due to axx is 
small. We note that, if O"xz and O"yz are non-zero (as, 
e.g., in metals, where in order of magnitude O"xz ~ O"yz 
~ 0"0{3-1), then the correction to O"~ due to the fluctua
tions of O"xz and O"yz is also -small. Indeed, this correc
tion differs from (25) in that q~ appears together with 
qy in the numerator; then the integration over qz is no 
longer singular and the correction is ~ {3-2. For the 
same reason, small fluctuations of O"zz are unimportant. 
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It is not difficult to convince oneself that these conclu
sions are also valid for corrections of higher orders. 
In addition, by estimating the last two diagrams in (23) 
(they are both ~ O"o.:l4), we convince ourselves that the 
intersection of the dashed lines has no effect on the es
timation of the diagrams. We shall show that diagrams 
containing irreducible correlators of higher orders are 
small compared with diagrams containing pair corre
lators (e.g., the third term in (23) is smaller than both 
the following terms). In fact, the number of "singular" 
denominators in diagrams of both types is the same, 
whereas the number of integrations (over qz) is greater 
in the diagrams with irreducible correlators of higher 
orders, and this leads to the appearance of extra factors 
{3-1. 

Thus, retaining in each order only the principal 
terms, arrive at an expansion in which uxy (and uyx ) 
corresponds to the crosses and all the correlators are 
pair correlators. For the following, it is convenient to 
redefine the factors associated with the crosses and 
lines. For this we multiply the expansion of (O"ik) 
- O"~k(q) by qiqk and assume that with each line is asso-

I A 

ciated a factor Go(q) = 1/(q(0")q), and with a cross be-
tween the lines ql and q2' a factor (qlXq2Y - qlyq2X)U~-ql 
(we are not changing the notation in the diagrams). Thus, 
for 

we obtain 

(26) 

Further, we shall introduce the exact Green's function 
G(q), defining it by means of a series in which reducible 
diagrams also occur: 

G and II are related by Dyson's equation G-1(q) = G~l(q) 
- II(q), whence, from the definitions of II and Go' we ob
tain G-1(q) = (qiO"rk(q) qk)' 

We can now set up a closed equation for O"e(q) (even 
if with an infinite number of terms). For this, we pos
tulate that in the series for II only the compact diagrams, 
from which it is impossible to cut off part of the dia
gram by means of two cuts through Go-lines, are re
tained. It is easy to understand that the discarded dia
grams will be taken into account exactly if in the re
maining diagrams we associate not Go but the exact 
Green's function G, with all solid lines (in the diagrams, 
G will be depicted by a double line). Thus, we obtain 

(q,a,.'(q)q.) = (q,(aik>q.) 
(27) 

We shall first study an abbreviated equation, which we 
obtain by retaining only the first diagram in the whole 
series in the brackets. Written out explicitly, this equa
tion has the form * 

Since we are not taking fluctuations of O"zz into account, 
we have O"~z(q) = (O"zz) = 0"0' so that only the function 
O"I(q) remains unknown. Substituting (qae(q)q) = O"oq~ 
+ O"i(q)qi into (27), we obtain 

'( )- < >+ Sd' qu'sin'IjJ<O'x~-q'O'x~-q >0 (28) 
ai q - ai q, aoq,,'+ai(q,)q'i' ' 

where ljI is the angle between q and ql' 
We shall study Eq. (28) for qz = O. We shall assume 

(confirming it later by the result) that O"~Uq) «0"0' Then 
the small qlZ ~ qll(0"1/0"0)1/2 are important in the inte
gration over qlZ' Therefore, the integration over qlZ 
can be performed explicitly. This gives 

(29) 

Since 

(O'"",-q'O'x.q,-q> = ao't.'~-'D(q - q,l .. 

Equation (29) connects 0"1(0) with the values of O"i(q), 
q :\: a-I. In order to determine the order of magnitude 
of O"I(q) in this region, we shall assume that O"l(q) 
~ const for q :\: a-I. Bearing in mind that 

we obtain 
Sd'ququ Sin'IjJD(qil- 1: 

ai' ~ (ai> + ao'/,t.' / ~'l'ai" 

For {3.:l2 » 1, the first term in the right-hand side can 
be neglected and, finally, 

ai' ~ ao(t. / M'I,. 
This result was obtained earlier from a qualitative 
treatment of the problem. 

(30) 

We recall that (30) was obtained as the result of 
solving the "truncated" equation (27). We must now 
show that this result is not changed by taking the re
maining terms of the series in (27) into account. For 
this, we rewrite (27) in a somewhat different form: 

(31 ) 
where with the dashed double line we associate the fac
tor r(q, ql) (the exact vertex), which in diagrammatic 
notation has the following form: 

". 

X(O':;-q,O':;-q')o[q,q,L[q,. q, + q - q,],(q,'+ q - q,. q], 

x [(q,~'(q2)q2) «q, + q - q,) ~'(q, + q - q,) (q, + q - q,» ]-' d'q, + ... 
Our approximation consisted in using the bare vertex 
(the first term in (32)) in place of the exact vertex in 
the exact equation (31). But, in deriving (30), we used 
only the "coarse" properties of the vertex, namely, 
the dimensions of the region in which it is appreciably 
non-zero and its order of magnitude in this region. If 
these "coarse" properties do not change when the next 
terms of the expansion are taken into account, then for
mula (30) also remains true. We note that, as can be 
seen from the derivation of (29), it is sufficient to con
fine ourselves to the study of r(q, ql) for qz, q1Z '" O. 
We shall estimate the correction r(2) to r(q, q1) due to 

*[qqd = q X q!. 
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the second term in (32). Omitting factors of order unity, 
we obtain for it 

a4il4 S r l " ~ 7 d3q,D(q - q,)D(q, - q,) [qq,L[q,q,], 

xl q" q - qd, I q, - q" q],{ (<Joq,! + <J.c'qu') . (<Joq,! + <J.c' (q, + q - q,) .c'}-', 

Here the integration over q2Z is singular (the small q2Z 
are important) and can be performed as previously. 
Since we are interested only in an estimate, and the 
subsequent integration over q21 is non-singular (q21 
~ a-1 are important), we obtain, putting all ql ~ a-t, 

Here we have used formula (30) for aI. On the other 
hand, by estimating the bare vertex in the region q, q1 
~ a-1, we obtain that r(2) has the same order of magni
tude as the bare vertex. It is not difficult to show that 
the situation remains the same in the next approxima
tions. We shall see that, although the corrections to the 
bare vertex are not small, being of the same order they 
do not change the "coarse" properties of the vertex. 
Therefore, (30) also remains valid. 

We shall also study the case of two-dimensional in
homogeneities extended along the magnetic field (along 
the z-axis). The two-dimensionality means that all the 
correlators (in x-space) are independent of z, and in the 
Fourier representation contain o(qz). Therefore, in the 
diagrams, the integration over qz is performed automat
ically and reduces to the result that we must put qz = 0 
everywhere (and perform the integration only over ql)' 
Then Go(q) = (32/aoq~. As before, the fluctuations ofaxy 
are the most important. We note that in the diagrams 
there are no singular integrations. Because of this, 
generally speaking, we cannot neglect diagrams con
taining irreducible many-point correlators. However, 
allowance for these correlators presents essentially 
no difficulties (cf. [17]) and does not change the results. 
Therefore, we confine ourselves for simplicity to the 
case of a Gaussian field, for which the irreducible many
point correlators are equal to zero. As previously, the 
order of a diagram does not depend on the way in which 
the dashed lines intersect. We note that, as is shown by 
an estimate of the diagrams, the expansion is made in 
the parameter (32t. 2 (and not, as before, in (3t. 2 » 1). 
For (32t. 2 » 1, it is necessary to take all the diagrams 
into account. By analogy with the derivation of (30), we 
study the abbreviated equation (27). In explicit form (we 
omit the symbols 1 from q) it is 

(34) 

In order to find the order of magnitude of uI(q) for 
q,,: a-1 (in particular, the quantity U}(O) of interest to 
us), we shall estimate the integral in (34), assuming 
that a1 ~ const in this region. We obtain al = < u 1 ) 
+ agt.2/(32aI , whence, for (3t. » 1,we have a1 ~ aoD./(3. 
We must now check that the discarded terms in (27) do 
not change this estimate. For this, we must estimate 
the correction to the vertex. This estimate (which is 
performed completely analogously to that of (33)) shows 
that the situation remains the same as in the case of 
three-dimensional fluctuations-the corrections to the 

vertex are found to be of the same order as the bare 
vertex. 

4. PATTERN OF THE CURRENTS IN A POLYCRYSTAL 
AND CALCULATION OF THE EFFECTIVE CONDUC
TIVITY 

It is known [10) that in a strong magnetic field «(3 » 1) 
the form of the conductivity tensor of a crystal in the 
case of a metal with an open Fermi surface depends 
substantially on the orientation of the crystallite with 
respect to the magnetic field. Namely, if the orientation 
is such that the open paths make no contribution to the 
conductivity, the asymptotic form is (the z-axis is along 
H): 

(35) 

But if the orientation is such that the open paths con
tribute to the conductivity, the asymptotic form of & is 

( 
all' a12'~-l al;~-l) 

a = 0'0 - a12'~-1 a 22 ' a 'l3/~-1 • 

.- a13'~-l - a23'~-1 a3S' 

(36) 

I (A In these formulas, aik, aik - const as (3 - 00 a has the 
form (36) if there are two directions of the open paths; 
if, as is more often the case, there is only one direction 
of openness, then one of the transverse diagonal compo
nents of & tends to a constant as (3 - 00, and the other is 
~ (3-2. As will be clear from the following, both these 
cases lead to qualitatively equivalent results.) 

The fraction C of the special crystallites, in which & 
has the form (36), is determined by that fraction of the 
area on the stereographic projection which corresponds 
to magnetic-field directions leading to open paths, and, 
as mentioned in the Introduction, is usually small. 

Thus, because of the appearance of open paths, axx 
and ayy can fluctuate strongly, and this leads to a 
sharply inhomogeneous current pattern and, as will be 
shown below, to a significant difference between &e and 
<a). In addition to these sharp fluctuations, there are 
also fluctuations induced by the ordinary anisotropy. 
We shall neglect the latter, however, since we are in
terested only in estimating &e. 

The fluctuations of the remaining components of & 
are small. As was shown in Sec. 3, the small fluctua
tions ofaxz, ayz and uzz are unimportant in the esti
mation of &e. As regards the component axy, of which 
even small fluctuations could turn out to be important 
in the estimation of &e, since it is determined by the 
quantity ne - nh, which does not depend on the orienta
tion, fluctuations ofaxy are absent. More preCisely, 
the situation is as follows: for orientations for which 
open paths do not appear, the value ofaxy does not de
pend on the orientation and is equal to (ne - nh) ec/H; 
in the special crystallites, however, uxy differs from 
this value, but since a 1 » axy in the special crystallites, 
the quantity axy plays no role in them, and we shall as
sume for simpli~ity that axy = (ne - nh) ec/H every
where. Therefore, we shall consider a model of a poly
crystalline medium in which the conductivity tensor has 
the form: 
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a) in the special crystallites 

( 

(Jl 

a = .- (n,;; n,,) ec/H (37) 

b) in the other crystallites forming the ''background,'' 

( 

(J.~-2 (n. - nh) ec/H 0) 
a = - (n, - nh)ec/H (J.~-2 0 • 

o lO (J. 

(38) 

We note also that the smallness of C is governed by 
the narrowness of the connecting necks linking portions 
of the Fermi surface in neighboring cells of the reCip
rocal lattice. The narrowness of the connecting necks 
also leads to the result that the transverse conductivity 
of the special crystallites a1 « ao, Since, even when 
there are special paths, they form a small fraction of 
all the paths. A more detailed treatment shows that 
a1 ~ aoC (so that the asymptotic form (36) starts from 
{3 ~ C-1/ 2). 

Up to this point, we have been concerned with the 
case when there is a finite fraction of directions corre
sponding to open paths. This case corresponds, e.g., to 
a Fermi surface of the "space-mesh" type. But if the 
Fermi surface is a "goffered cylinder," then, in this 
case, there are only separate lines corresponding to 
open paths on the stereographic projection. However, 
if the direction of H is close to these lines, then the 
paths, although closed, are of great length, and the con
ductivity is anomalously large. As we shall see, in this 
case, ai also differs significantly from (a 1)' 

It follows from Eq. (5) that, if the antisymmetric part 
ark is constant, it drops out completely from the equa
tion for the potential, so that (5) can be rewritten in the 
form 

(39) 

Moreover, since 
. 1 S aQJ 1 S aQJ <li>= -1', (Jik-a dV= -- (J"'-dV+(J,,a<E,>, 

• x" V ax, 
the antisymmetric part of the effective conductivity ten
sor is equal to ark' and in determining arks we can as
sume the local conductivity tensor to be symmetric (this 
remark is due to Korzh[14J). 

We shall begin the calculation of ae from an exami
nation of the situation arising in the limit {3 = 00. In this 
case, the transverse conductivity of the background is 
equal to zero. It is clear, however, that the effective 
transverse conductivity of the polycrystalline medium 
is then non-zero. We shall elucidate this statement by 
describing the form of a typical current line. Since the 
transverse conductivity of the ''background'' is equal 
to zero, the current line passes through the background 
parallel to H, until it "encounters" one of the special 
crystallites, at which it proceeds in the direction of (E) 
«E) 1 H). Having passed through the special crystallite, 
through a distance of the order of the dimensions a of 
the crystallites, the current line again goes through the 
background parallel to H, until it again encounters one 
of the special crystallites. The current line goes equally 
often along H and against H, so that the mean current 
flows in the direction of (E). 

To estimate ai, we shall make use of the diffusion 

analogy-the technique described at the beginning of 
Sec. 3. Namely, we shall consider a particle diffusing 
through an inhomogeneous medium, with as (given by 
the formulas (37) and (38) with ne = nh) playing the role 
of the diffusion coefficient, so that the transverse diffu
sion coefficient is non-zero only in the special crystal
lites. For an estimate of the effective transverse diffu
sion coefficient, we must find lim (r~(t)/t for t - 00, 

where r l(t) is the displacement of the particle in the 
transverse direction in time t, and the angular brackets 
denote averaging over all possible diffusion paths. 

It is clear that, however much time the particle 
spends in one special crystallite, its transverse dis
placement will be limited by the dimensions of this 
crystallite. In order to be displaced by a large distance 
in the transverse direction, the particle must, in dif
fusing along the magnetic field, reach the next special 
crystallite. The distance, between the two special crys
tallites, through which the particle must pass can be es
timated (by analogy with the mean free path) as 

IE ~ 1ina' ~ a/G, (40) 

where n is the number of special crystallites in 1 cm3 

(clearly, C ~ na3). The time T in which the particle dif
fuses over this distance can be estimated from the for
mula T ~ :;£2 lao ~ a 2/C 2ao' In this time, the particle will 
repeatedly return to the crystallite from which it began 
its motion. The total time T1 spent in this crystallite is 
estimated from the formula 

(41) 

Here, the first estimate corresponds to the fact that the 
particle spends an apprOXimately equal time in each of 
the segments of length a (within the limits of the "mean 
fr ee path" Sl'). 

It is then necessary to distinguish two cases, accord
ing to the magnitude of ap If a1 is not too small, then, 
by the time T, the transverse displacement of the par
ticle, estimated from the formula r l(T) ~ va1TU will be 
greater than the dimensions a of the crystallite. This 
means that the transverse displacement of the particle 
in time T will really be of order a. As can be seen from 
(41) this case is realized for a1 ;;, aoC. But if the oppo
site inequality is fulfilled, the particle, not having had 
time to "feel" the boundaries of one special crystallite, 
goes on to the next. We shall estimate the effective dif
fusion coefficient (effective conductivity) from the for
mula al ~ r~(T)/T; this gives 

(J.L' - (JoG' for (Jt;;? (JoG, (42) 
(J.L' - (JtG for (Jt ~ (JoG. 

If {3 '* 00 (but {3 » 1), then, along with the transverse 
diffusion through the special crystallites, transverse 
diffusion through the background also occurs, with dif
fusion coefficient ao{3-2. Comparing this with (42), we 
find that conduction through the special crystallites is 
the principal mechanism for {3C » 1 in the case a1 

;;, aoC and for C{32a1 / aO »1 in the case a1 'i= aoC. We 
also give simple interpolation formulas valid in the 
whole region {3 » 1 : 

'(J.L' - (JoG' + (Jo! ~', (Jt;;? (JoG, 

(J.L' ~ (JtG + (Jo / ~', (Jt ~ (JoG. 

(43) 
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In the case when the Fermi surface is a "corrugated 
cylinder," the situation is more complicated. If the 
magnetic-field direction lies close to the plane perpen
dicular to the openness direction and forms an angle ,90 
with it, the length of the paths is increased by a factor 
of ,90-1 compared with the length of the paths correspond
ing to a magnetic field along the openness direction. The 
conductivity then increases as the square of the path 
length, until this length becomes comparable with the 
mean free path; therefore, 

(44) 

The fraction of crystallites oriented such that the 
magnetic-field direction forms an angle between ,90 and 
,90 +dJ. with the plane perpendicular to the openness di
rection is equal to ~ d,9o. We shall study the diffusional 
motion of a particle in such a medium. Since the par
ticle diffuses rapidly along z, the fraction of time spent 
by the particle in crystallites with angles between ,90 and 
,90 +d,9o is proportional to their concentration d,9o. There
fore, in time t, the particle will spend a time ~ t d,9o in 
crystallites with angles between ,90 and ,90 +d,9o. It would 
seem that we could write ri(t, ,90) ~ a l(,9o)td,9o for the 
square of the transverse displacement obtained in these 
crystallites, and, since all the displacements are inde
pendent, find the square of the total displacement in 

7T/2 
time t as t J a 1(,90) d,9o. This argument, however, does not 

o 
take into account the fact that in crystallites with suffi-
ciently small angles (with large conductivity), a particle 
diffusing rapidly across the magnetic field "feels" the 
boundaries of this crystallite before it reaches the next 
crystallite with a sufficiently good conductivity. Thus, 
the square of its transverse displacement will not in
crease linearly with the time spent in this crystallite, 
but will be limited by the square of the crystallite di
mensions. We therefore proceed as follows. We divide 
all the crystallites into two classes: those in which the 
particle does not have time to "feel" the boundary, and 
the remainder, in which the displacement is limited by 
the dimensions of the crystallite. Let ,900 be the angle 
delimiting these classes, so that ,90 ~ ,900 corresponds to 
the first class and ,90 ~ ,900 to the second (of course, this 
division is only nominal, and ,900 is determined only to 
within a factor of order unity). Then, for the square of 
the particle displacement after time t, we can write 

r.L2 (t)-t'T U.L(tt)dtt+(contribUtiOn from the 
~. crystallites with tt;:::;;: tto). 

We shall assume (this will be confirmed by the result) 
that {3-1 « ,900« 1, so that a1 (,90) ~ aol{32,90 2 (cf. (44)). 
Dividing ri(t) by t and writing down the contribution to 
ai from the crystallites with ,90 ~ ,900 as aoC2 where C 
~ ,900 is their concentration, we obtain 

(45) 

It remains to find ,900. We note that it follows from the 
derivation of (45) that crystallites with ,90 ~ ,900 play the 
prinCipal role. We can find ,900 by requiring that our di
vision indeed correspond to the fact that at ,90 ~ ,900 the 
effect of the poundaries of the crystallites on the diffu
sion begins to appear. This gives (cf. the derivation of 
(42)) a 1(,900) ~ aoC(,9oo), where C(,9oo) ~ ,900 is the concentra-

tion of crystallites with ,90 ~ ,900, whence, using (44), we 
find ,900 ~ {3-2/3. Finally, we obtain 

(46) 

Up to this point, we have considered the case of a 
slightly goffered cylinder. The results are easily ex
tended to the case when the neck of the goffered cylinder 
is narrow, so that the ratio v of the neck diameter to the 
dimensions of the reciprocal-lattice cell is small, v 
« 1. We give the result for this case: 

(47) 

By analogy with (43), by adding ao{3-2 to this expression, 
we obtain an interpolation formula valid in the whole re
gion {3 » 1. 

The usual experimental setup in the study of the gal
vanomagnetic characteristics of metals (in a long sam
ple, the current direction is fixed and the field along the 
current is measured) corresponds to the measurement 
of P 1 -the transverse component of the resistivity ten
sor. To determine pi, we must invert the tensor &e: 

pJ.' = (J"ol' I [(Uol')' + (ux/)'). 

The result depends on whether we are dealing with the 
case axy = 0 (for an equal number of electrons and 
holes) or with the case axy ~ aol{3 (for ne * nh). We 
give a series of results for P'l in the various cases 
({3» 1, Po == a;l): 

a) a "three-dimensional grid" Fermi surface, a1 
~ aoC, ne * nh: 

pJ.' ~ pol 1 + (,~C)'), I~;o;;; c-', (48) 
Pol' ~ poc-', ~ ~C-'; 

b) the same, but with ne = nh: 

Pol' ~ Po I (C' + ~_2); (49) 

c) a "three-dimensional grid" Fermi surface, a1 
~ aoC, ne * nh: 

Pol·~po(UtCP'+1), p::s;;~, 
Uo (J",C 

(50) 

Pl.' ~ (U,C)-', ~~UO/(J"IC; 

d) the same, but with ne = nh: 

(51) 

e) a "corrugated-cylinder" Fermi surface, ne * nh: 

f) the same, but with ne = nh: 

5. SIZE EFFECT IN THE MAGNETORESISTANCE 
OF POLYCRYSTALLINE SAMPLES 

(52) 

(53) 

It follows from the current-flow pattern in a poly
crystalline sample, which was discussed in the deriva
tion of (42), that a typical current line consists mainly 
of parts parallel to the magnetic field, the length 9! 
~ a/C of these parts being greater than the dimensions 
of the crystallites. What happens when the sample thick 
ness in the direction of the magnetic field is less than 
IE? 
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We again start from the case {3 = 00. Obviously, for 
the mechanism described above for conduction in a poly
crystalline sample to be possible, it is necessary that 
the projections of the special crystallites on the plane 
perpendicular to H overlap on average sufficiently for 
paths to exist whj.ch pass through the projections of the 
special crystallites and go from one electrode to the 
other. For a small sample thickness d, the fractional 
area occupied by projections of the special crystallites 
is small, there are no such paths, and uI = 0 (Fig. 2a). 
For large thickness, the projections of the special crys
tallites begin to overlap, the conductivity is non-zero 
(Fig. 2b) and, finally, for d » P is given by formula 
(42). To make such a conclusion, it is important that 
both the transverse dimensions be large; if one of them 
(the sample width) were small, then over a large dis
tance we would certainly find a fluctuation in the distri
bution of the crystallites which would serve as a break 
in the chain formed by the special crystallites. The de
pendence of ul (for (3 = 00) on the thickness is shown in 
Fig. 3. The change of conductivity with thickness has 
the character of a phase transition: the conductivity is 
equal to zero for d s do ~ P ~ a/C and is non-zero for 
d > do. Here, do is the thickness at which overlap of the 
projections of the special crystallites first occurs. The 
thickness at which ul takes up the asymptotic form (42) 
is also of order P. For (3 "* 00 {but (3C » 1), the change 
of the conductivity loses its sharp character and is 
finally smeared out for {3C ~ 1. 

The size effect has somewhat different features in 
the case when the Fermi surface is a "corrugated cy
linder." As we have seen in Sec. 4, in this case the 
principal role is played by crystallites with angles J 
~ {3-2/3, of which the concentration C ~ (3-2/3. Therefore, 

2 ~ a/C ~ a(32/3. So long as 2« d, the sample can be 
regarded as an infinite medium. With increase of the 
magnetic field 2 becomes comparable with the sample 
thickness. This occurs for (30 ~ (d/a)3/2. For (3 » (30, 
the main role is played by crystallites with angles Jo 
~ (3-2/3, since there are few crystallites with Jo~ (3-2/3 
(which dominate in the conductivity of an infinite medi
um) over the sample thickness. The conductivity of the 
sample can now be estimated from the second of the 
formulas (42) with C ~ {3~2/3 and ul ~ uo/J~(32 ~ uo(3~/3/{32. 
This gives 

(11.' - (1o~o'/' / ~'. ~ > ~o - (d / a) 1/,. I 

We note that, for II R< 1 (as was assumed here), the size 
effect can be observed for {3 » 1. 
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