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The Doppler-shifted cyclotron resonance in cadmium in a magnetic field H II 1[0001] is studied 
theoretically and experimentally in the radio-frequency region. The resonance is due to carriers 
with extreme displacements during the cyclotron period. Dispersion of the dielectric constant due 
to the resonance leads to the appearance of weakly damped waves-dopplerons. It is found that be­
side dopplerons due to lens electrons, there exist hole dopplerons related to orbits near the central 
cross section of the monster. Excitation of this type of doppleron in cadmium plates leads to sur­
face-resistance oscillations of the electron doppleron. The regions of existence of both types of 
doppleron are bounded from the weak magnetic field side. The effect of the shape of the Fermi 
surface on the doppleron spectrum and position of the boundary fields is studied. The shape of the 
electron lens is determined by comparing the theoretical and experimental results. The value of 
the derivative of the monster cross section area with respect to momentum derived from oscilla­
tion period measurements is in agreement with the monster model employed. 

1. INTRODUCTION 

WE have previously[l] investigated theoretically and 
experimentally the weakly-damped electromagnetic 
waves (dopplerons) that propagate in cadmium in a 
magnetic field parallel to the hexagonal axis. The pos­
sibility of propagation of these waves is connected with 
the Doppler-shifted cyclotron resonance (DSCR) of the 
electrons of the lens section of the Fermi surface in 
the third Brillouin zone. When the DSCR condition 
q == uoK/211 = 1 is satisfied (K is the wave vector and 
Uo is the displacement of the electrons at the limiting 
point of the lens along the magnetic field during the 
cyclotron period), the transverse nonlocal conductivity 
of the lens electrons has a singularity. Near the singu­
larity, the condueti vity of the electrons is much higher 
than its local limit, and consequently is not compen­
sated for by the conductivity of the holes. In the local 
limit, the hole conductivity of the metal is close to zero, 
since the electron and hole densities in cadmium are 
equal. With decreasing wavelength, the conductivity 
increases and has a Singularity at q - 1, and this 
makes the doppleron propagation possible. Wave exci­
tation in a plate leads to oscillations of the surface 
impedance as a function of the magnetic field. The 
period of the oscUlations corresponds to a unity change 
in the number of wavelengths subtended by the thick­
ness of the plate. The dopplerons observed in P ] exist 
in a limited field interval, and their distinguishing fea­
ture is the significant change in the period of the oscil­
lations with changing magnetic field. The period in­
creases monotonically with increasing magnetic field 
H, owing to the dependence of the wave vector on H. 
The field interval in which the doppleron is observed 
is restricted by the clearly defined lower limiting 
field, and a smooth decrease of the oscillation ampli­
tude takes place on the strong-field side. The limiting 
field is proportional to the cube root of the frequency, 
and its value is determined by the shape of the Fermi 
surface. In strong fields, the period of the oscillations 
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in the region where their amplitude decreases changes 
little with the magnetic field, and approaches the 
period of the radio-frequency size effect of Gantmakher 
and Kaner. 

The nonlocal conductivity can have resonant singu­
larities connected not only with the electrons of the 
limiting point, but also with carriers on other sections 
of the Fermi surface. The Doppler-shifted cyclotron 
resonance leads to singularities of the conductivity for 
any group of carriers that has an extremal displace­
ment in the cyclotron period[2-4]. We have investigated 
the propagation of a doppleron due to Doppler-shifted 
resonance of the electrons and the holes in cadmium in 
a magnetic field parallel to the hexagonal axis. The 
displacement of the holes is maximal in the immediate 
vicinity of the maximal cross section of the monster, 
and this group of carriers also gives rise to a singu­
larity of the nonlocal conductivity, just as the lens 
electrons. 

2. MEASUREMENT PROCEDURE 

We investigated the dependence of the derivative of 
the surface resistance aR/aH of single-crystal cad­
mium plates as a function of the magnetic field. The 
field was normal to the surface of the sample. The 
measurements were made at frequencies in the inter­
val from 0.6 to 3 MHz. The measurement procedure is 
described in detail in P ,5]. 

12 x 25 mm samples, 0.38, 0.57, and 0.91 mm thick 
were cut by the electric-spark method from a single 
crystal in such a way that the normal to the plate co­
incided with the direction of the hexagonal axis, and 
the large axis of the sample was parallel to the [1120] 
axis. The sample was oriented by x-ray diffraction l ). 

The resistance ratio was p(3000K)/p(4.2°K) = 3 x 104. 
A magnetic field up to 16 kOe was produced with the 

aid of an electromagnet which was fed from a motor-

I)The authors thank A. P. Naumkin for the x-ray diffraction measure­
ments. 
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generator. The field was electronically stabilized ac­
curate to 0.05%. The constant magnetic field was modu­
lated at a low frequency (10 Hz) and an amplitude up to 
150 Oe with the aid of additional coils. The coils were 
fed from a low-frequency generator and a power ampli­
fier. 

To perform the measurements, the sample was 
placed in a flat measuring coil and was secured in a 
polystyrene holder in such a way that the axes [0001] 
and [1010] were in the horizontal plane. The magnetic 
field direction relative to the crystallographic axes 
could be varied by rotating the magnet in the horizontal 
plane through 360° and in two vertical planes through 
± 5°, with accuracy ±15'. The orientation at which H 
was parallel to [0001] was determined from the sym­
metry of the plots of a R/ aH against the angle e be­
tween the direction of the magnetic field and the [0001] 
axis, and also from the angular dependence of the 
doppleron amplitude. All the measurements were per­
formed at temperatures from 1.6 to 4.2°K. A signal 
proportional to aR/ a H was fed to the Y coordinate of 
an automatic potentiometer; a voltage proportional to 
the magnetic field was fed to the X coordinate from a 
Hall pickup. We used a specially developed automatic­
plotting potentiometer with sensitivity up to 3.3 11 V / cm 
and with an approximate recording error 0.5% [61. Each 
a R/ aH plot against the magnetic field was calibrated 
directly during the measurements with the aid of an 
NMR magnetometer with running water, a modified 
variant of the instrument described in[71. The total 
X-coordinate measurement error did not exceed 1 %. 

3. MEASUREMENT RESULTS 

Impedance oscillations connected with the excitation 
of the doppleron by the lens electrons (electronic dop­
pleron) were observed for all the investigated samples, 
in agreement with the results of Pl. The oscillation 
amplitude was 3-5 times larger than before, owing to 
the better quality of the crystals (resistance ratio 
p( 3000 K)/p( 4.2°K) = 3 x 104 as against 1 x 104 of the 
previously employed crystals). The range of the oscil­
lations of the electronic doppleron extended to lower 
fields than observed in Pl . Thus, at a frequency 
f = 1 MHz, the lower limit of the electronic doppleron 
H~in turned out to be 6.2 kOe as against the 7.5 kOe 
obtained in r 11. This is apparently also due to the better 
quality of the crystals. In magnetic fields weaker than 
H~in we observed surface-impedance oscillations with 
small periods. Although the amplitude of these oscilla­
tions was approximately 1/50th the maximum amplitude 
of the electronic doppleron oscillations, they could be 
resolved by using higher gain. 

A typical plot of aR/aH against the field is shown 
in Fig. 1. The large-amplitude oscillations at H > 7.5 
kOe are connected with a propagation of the electronic 
doppleron, and at H < 7.5 kOe one can see weak oscil­
lations with a smaller period. The amplitude of the 
latter increased with decreasing temperature, and the 
measurements were therefore performed mainly at 
T = 1.6°K. 

A typical plot of aR/aH at a higher gain is shown in 
Fig. 2. We see that these oscillations are distinguished 
by the presence of a lower limit H~in = 5.9 kOe (for 

f = 1.91 MHZ). In fields stronger than 7.5 kOe, the 
signal due to the electronic doppleron increased 
sharply, and the short-period oscillations could not be 
seen against its background. At f = 1 MHz, the short­
period oscillations are observed in the field interval 
from 4.7 to 6.2 kOe. With increasing frequency, the 
limits of the interval shift towards stronger fields in 
proportion to f1/3. When the field is increased from 
H~in to H~in' the amplitude of the oscillations in­
creases, reaches a maximum, and then decreases. 

When the magnetic field is inclined to the [0001] 
axis, the amplitude of the oscillations decreases and 
the interval of magnetic fields in which the oscillations 
were observed inc reases. The broadening of the region 
of the short-period oscillations is due to the sharp de­
crease of the amplitude of the electronic doppleron 
with inc reasing angle and to the ensuing shifts of the 
observed boundary Hfu towards stronger fields. The 
maximum angle at which the short-period oscillations 
can still be seen is 12.5 0

• 

The observed oscillations are approximately periodi( 
in the direct magnetic field, although the period in­
creases by 20-30% when the field changes from H~in 
to H~in' Figure 3 shows the dependence of the period 
of the oscillations on the magnetic field for three sam­
ples of different thickness. As seen from the plots, the 
field dependence of the period t.H has the form of a 
curve with saturation, and the limiting values of the 
period are determined only by the sample thickness d 
(t.H ex: l/d). 

Thus, the characteristic features of the observed 
os cillations are: 1) the limited re gion of the fields in 
which they are observed, 2) the shift of this region 
towards s'tronger fields with increasing frequency f, in 
proportion to e/3 , and 3) the increase of the period of 
the oscillations with increasing field. Similar regulari­
ties hold for the oscillations due to the excitation of 
the electronic doppleron. This analogy suggests that 
the short-period oscillations are connected with the 
doppler-shifted cyclotron resonance of other carriers 
(holes). By starting from this assumption, we can ob­
tain the maximum displacement of the holes during the 
cyclotron period. The displacement is proportional to 
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FI G. 1. Dependence of the derivative of the surface resistance of a 
single-crystal cadmium plate on the constant magnetic field H. The 
normal to the surface of the plate and the vector H are parallel to the 
hexagonal axis; the plate thickness is d = 0.57 mm, the frequency of 
the alternating field is f = 1.74 MHz. 

FIG. 2. Short-period oscillations of the derivative aR/aH, obtained 
for a sample d = 0.91 mm thiCK at a frequency f = 1.91 MHz. 
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FIG. 3. Dependence of the period of the oscillations on the mag­
netic field for different samples and different frequencies: I) d = 0.38 
mm, f= 2.1 MHz; 2) d = 0.57 mm, f= 1.75 MHz; 3) d = U.57 mm, f= 
2.54 MHz; 4) d = 0.91 mm, f= 2.74 MHz. The period was determined 
from the maxima of the oscillations of aR/i}H, the position of the point 
along the absissa axis corresponds to the right-hand extremum of the 
pair from which the period was determined. 

the derivative cISh/akz, where Sh is the area of the 
hole orbit in wave-vector space, kz is the longitudinal 
component of the wave vector, and z II H. The limiting 
value of the doppleron oscillation period (aH)max' 
which coincides with the period of the Gantmakher­
Kaner size effect r81, makes it possible to determine 
the maximum value of the deri vati ve : 

( aSh) eHd --- = -. -AHmax, a k, max 2ncli 
(1) 

where e is the absolute value of the electron charge 
and c is the speed of light. The derivative calculated 
from this formula turned out to be 

(aSh jak,) max = 2.2 ± 0.1 A-'. (2) 

for all the investigated samples. We shall show below 
that the short-period oscillations are connected with 
the DSCR of the holes of the monster. To this end, we 
examine first the Fermi surface of cadmium. 

4. THE FERMI SURFACE OF CADMIUM 

The Fermi surface of cadmium was investigated by 
various methods r9-17]. Grassie r9] used the de Haas-
van Alphen effeet to measure the areas of the external 
sections of the Fermi surface at the different magnetic­
field orientations. The radio-frequency size effect was 
used to measure its geometrical dimensions[15-17]. 
Stark and Falicov[l8] calculated theoretically the shape 
of the Fermi surface on the basis of a model pseudo­
potential. According to the results of these calculations, 
it consists of three parts: a small hole "pyramid" in 
the first energy zone, a hole "monster" in the second 
zone, and an electron "lens" in the third zone. The 
forms of these surfaces and their pOSitions in the 
Brillouin zone are shown in Fig. 4. Figure 5 shows a 
three-dimensional picture of the monster drawn in the 
expanded zone scheme to demonstrate more clearly the 
intersection of the monster by planes perpendicular to 
the hexagonal axis. It should be borne in mind that the 
Brillouin zone contains two figures, each of which is 
made up of three pieces located at the corners of a 
six-face prism. Figure 6 shows plots of as/akz 
against kz for the lens, monster, and pyramid. These 
plots were calculated on the basiS of the graphic data 
of Jones, Goodrich, and Falicov[17]. The accuracy of 
such a construction is of the order of 10%. It is seen 

FIG. 4. Model of Fermi surface of cadmium in the almost-free 
electron approximation [17, 18 1: I-hole pyramid in the first Brillouin 
zone, II-hole monster in the second zone, III-electron lens in the third 
zone. 

FIG. 5. Hole monster in the ex­
panding-zone scheme. The axis of 
the figure coincides with the edge 
KH zone of the Brillouin zone. The 
upper surface is the section of the 
monster in the fKM plane. The 
dashed line shows the section in the 
AHL plane (convex triangle), and 
also two intermediate cross sec­
tions. 

from Fig. 6 that at H II [0001] there are in cadmium 
three maximal values of as/akz : (aSe/akz)max 
= 9.4 k 1 at the limiting point of the lens (kz = 0.28 k 1), 

(8Sh/8kz )max = 2.5 A-I near the maximum cross sec­
tion of the monster, and (aSh/8kz )max = 0.25 A-I at 
the pyramid. Thus, the maximum value of the deriva­
tive for the monster is close to the one given in (2), 
which characterizes the short-period oscillations of 
the impedance. This means that the latter are connected 
with the Doppler-shifted cyclotron resonance of the 
holes of the monster. 

5. THEORY 

The qualitative picture of the propagation of electro­
magnetic wave near the Doppler-shifted cyclotron 
resonance of the holes of the monster is fully analogous 
in general outline to the picture used by us to describe 
the electronic doppleron. In both cases, the wave 
propagation is possible because of the sharp increase 
of the non-dissipative part of the conductivity as the 
doppleron wavelength approaches the maximum dis­
placement of the carriers during the cyclotron period. 
The wavelength remains somewhat larger than the 
maximum displacement. The latter circumstance 
means that the electronic doppleron does not experi­
ence collisionless cyclotron absorption at all, and the 
hole doppleron is not subject to collisionless absorp­
tion by holes. The point is that the wavelength of this 
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FIG. 6. Plots of as/akz: I-for lens, 2-for monster, 3-for pyramid, 
The solid curves were obtained on the basis of the graphic data of [17] , 
and the dashed curves correspond to the models employed by us for the 
lens (n = 2) and monster. kz is reckoned from the fKM plane of the 
Brillouin zone for curves I and 2, and from the AHL plane for curve 3. 

dippleron is approximately one-quarter the displace­
ment of the electrons at the limiting point of the lens. 
If the edges of the lens are smoothly rounded off, there 
are always on the lens electrons whose displacement 
is one-quarter the displacement at the limiting point, 
and the conditions of the Doppler-shifted cyclotron 
resonance are satisfied for these electrons. As the 
result, these electrons cause collisionless damping of 
the hole doppleron. The value of the collisionless ab­
sorption depends on the shape of the lens. It is quite 
natural to expect the dispersion of the non-dissipative 
part of the electronic conductivity also to be depend­
ent on this shape. To study the properties of the wave 
it is therefore necessary to calculate the nonlocal con­
ductivities of the electrons and holes in such a way that 
variation of the shape of the Fermi surface is possible. 

1. Nonlocal conductivity of the anisitropic metal. A 
general expression for the nonlocal conductivity is 
given in the review[l9) (see p. 626) in the case of 
closed carrier orbits. This expression can be trans­
formed into 

() e' S dp. \'i PM·(PM~)· 
t1.~ X,W = 21t'Ii' Im(p.)1 ~ v+i(MQ+x(v,)-w) , (3) 

M=_oo 

(4) 

Here wand K are the frequency and the wave vector 
of the electromagnetic wave, pz is the projection of 
the electron momentum on the magnetic field, which in 
turn is directed along the z axis, m(pz) is the cyclo­
tron mass, 11 is the collision frequency, and O(pz) 
= eH/ mc is the cyclotron frequency. v a( cp) is the 
component of the electron velocity on the Fermi sur­
face, and < va) is the mean value of the velocity dur­
ing the cyclotron period. Obviously, the vector < v) is 
directed along the magnetic field. 

The general expression (3) can be greatly simplified 
if the wave vector K and the magnetic field Hare 
directed along one of the principal crystalographic 
axes. We shall henceforth confine ourselves only to 
this case. The simplification is due to the possibility 
of integrating in (4) with respect to the variable cp. 
The electron lens has rotational symmetry, and the 
variable cp has the meaning of the azimuthal angle, 
while the transverse projections va are proportional 
to the sine and the cosine of this angle. The longitudinal 
velocity is independent of the angle. Therefore the in­
tegral in (4) can be evaluated in elementary fashion. 
For a hole monster having a threefold symmetry, this 
calculation is more complicated. The variable cp no 
longer has so simple a geometrical meaning. It is 
connected with the individual time of revolution T of the 
electron on the closed orbit in the plane pz = const by 
the relation 

<p=Q(P.)"t, "t=S~, 
mv.L 

(5) 

where dPl is the element of the arc of the orbit and 
vl is the projection of the velocity on the plane of the 
orbit. It should be noted, however, that at symmetrical 
points of the orbit the values of the variable cp coincide 
as before with the azimuthal angles of these pOints. 
Thus, for example, if the orbit has the form of an 
equilateral triangle, then the values of the variable cp 
for its vertices (or for the midpoint of the sides, de­
pending on the choice of the origin) are 0, 21T/ 3, and 
41T/3. Using this circumstance, we can represent the 
velocity components in the form of the following 
Fourier series: 

v.(<p) = vo [cos <p + t s, cos(1- sl)cp + t 1], cos (1 + sl)cp] ,(6a) 
/; .. 1 1=1 

v.(cp) = Vo [ sincp +t 6, sin(1- sl)<p + t 1], sin (1 + Sl)cp] ,(6b) 
/=1 I=t 

v,(<p) = (v.) [ 1 + t~,sinSlcp]_ 
l=1 

Here s is the order of the symmetry (s = 3 for the 
monster). If one of the symmetrical directions is 
chosen as the reference for cp, then 

(6c) 

v.(O) = Vo [ 1 + t (6. + 1]')]. v.(O) = 0; (7) 
1·1 

It is easy to verify that for cp = 21T/ S 

v.(21t / s) = v.(O) cos (21t / s), v.(21t / s) = v.(O) sin (21t / s) _ (8) 

The expansions (6a) and (6b) were obtained on the basis 
of these properties. 

The quantities ~l' I'/l, and tl, which characterize 
the corrugation, are in general functions of pz. The 
meaning of the quantity Vo can be established by cal­
culating the area of the orbit in k-space: 

1 '" d 
S = Ii' S P. :. dcp_ (9) 

o <p 

The integral (9) can be calculated by using the equa­
tions of motion 

mv. = dp./ d<p, mv. = -dp./ d<p (10) 
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and expressions (6a) and (6b). The calculation yields 

S=n(~)'[l+ ~~+~~). (11) 
It ~ 1 - sl ~ 1 + sl 

/=1 1=1 

This relation connects the parameter Vo with the area 
of the orbit and with the corrugation parameters. The 
pulsations of the longitudinal velocity, which are de­
scribed by (6c), lead in the general case to a rather 
complicated dependence of the conductivity on the wave 
vector K. It is determined by the exponential factor in 
(4) 

1 • exp{ - i Q
h 
S dq/x[v(qr)- (V»)} 

11/2 . 

{ xUhE-·~ [ISn ]} = exp - i- - cos~-- coslslp 
2n Is 2 ' 

I=t 
(12) 

where uh = 21T( Vz )/Oh is the average displacement of 
the holes during the cyclotron period. 

We are interested here principally in the case 

(13) 

when the wavelength exceeds the average displacement 
during the period. One should expect the argument of 
the exponential (12) to be small in this case, since it 
contains the small factor Ills. The exponential (12) 
can be expanded in a series, retaining only terms of 
order KUh I 21T. Calculation shows that these terms 
give rise to terms of the type (KuhtzI41Tls)2 in the 
conductivity. In comparison with the terms ~i and 1) T' 
they contain the small factor (Kuhl 41TZS)2. We can 
therefore neglect the pulsations of the longitudinal 
velocity in comparison with the pulsations of Vx and 
Vy. 

Let us calculate the nonlocal conductivity for a 
circularly polarized electric field. 

(14) 

The conductivities a+ and a- pertain to the cases when 
the electric vector of the wave rotates in the direction of 
the cyclotron rotation of the holes and electrons, re­
specti vely. The expression for the conductivity a± 
takes the form 

e' ~ S dp, ( )'{ --:--:--~1 -:--:-~_ a±=-- - mvo ~ 
4n'/i' Iml v + i(± Q + X(v,)- w) 

~ 6' 
+ E[ V+i(+(1-IS)~+x<v,)-w) 

1=1 

+~+i(=t=(l+IS~~+X<V'>-W»)}' (15) 
where the symbol :6 in front of the integral denotes 
summation of the electron and hole contributions. The 
cyclotron mass m and the frequency 0 are positive 
for the electron sections of the Fermi surface and 
negative for the hole sections. The quantity (mvo)2 in 
(15) must be expressed with the aid of (11) in terms of 
the area of the cross section and the corrugation 
parameters. 

It was already noted above that wave propagation 
near the DSCR of the holes take place if K( vz) :S O. 
We can therefore neglect in (15) the spatial dispersion 
in the resonant denominators of all the terms except 
the first. We consider the case of low frequencies and 

strong magnetic fields, when w« 1/ «0. Under these 
conditions, the nonlocal conductivity a+, given by (15), 
can be transformed into 

(+)()_ <+)()+ (+)()_. ee [ N,(x) Nh(x») (16) a x - 0. X (Jh X -l.- -------
H 1 + iV, 1 - iVh ' 

" 
N ( ) - 1 S dk S (k ) 1 + iV, 

, x - 4n' '" 1 + iV, + (x/2n) u, (k,) , 
-', 

(17) 

Os 

Nh(x) = 2.. Sdk, Sh(k,) { 1- iV' w}, (18) 
4n' 1 - W 1 - iV' + (x/2n) Uh (k,) -', 

where the subscripts e and h pertain to electrons and 
holes, SO!{kz ) is the area of the intersection of the 
corresponding part of the Fermi surface with the plane 
kz = const in k-space; 

2n<v,.) he as. (19) u.(k,)=--=--. -.~ (a=e,h), 
Q. eH ak, 

UO! is the displacement of the carriers during the cy­
clotron period, 

~ t 2 , 

w- ~ (~' 1],) - ~ Is-1-ls+1 ' 
'~I 

(20) 

W is a parameter characterizing the corrugation of the 
Fermi surface, ke is half the thickness of the electron 
lens along the kz axis (ke = 0.28 A-I [l7), and kB 
= 0.57 A-I is half the height of the Brillouin zone. The 
first term in (16) describes the contribution of the 
electrons to the nonlocal conductivity, and the second 
the contribution of the holes. The expression (17) for 
Ne ( K) does not contain the corrugation parameter W, 
since the electron lens has rotational symmetry and 
~Z =1)l = I;:l = 0 for it. In the derivation of (18) we have 
assumed that the hole monster is SOlid, and disregarded 
the hole pyramid inside the monster. In addition, we 
took into account the fact that the Brillouin zone con­
tains two monsters (the factor 2 in the right hand side 
of (18)). 

In the local limit, formulas (17) and (18) go over into 
the expressions for the electron and hole densities as 
K - O. In cadmium they are equal, so that the follow­
ing condition should be satisfied: 

• 
1 ' 

N. (0) = N, (0) = ~ S s, (k,) dk, = No. (21) -. 
Formula (17), which describes the electronic con-

ducti vity, is valid for all values of the wave vector K, 

whereas expression (18) is valid only in the region (13), 
where the wavelength exceeds the hole displacement. 
We confine ourselves to just this region. In the calcu­
lation of N O!{ K) we assume that 'YO! do not depend on 
kz, since the carrier collisions are taken into account 
only qualitatively. In addition, we neglect the depend­
enc e of W on kz, since W ( kz ) cannot have any singu­
larities. 

2. Nonlocal conductivity of the lens electrons. To 
find the explicit form of the functions N O!{ K), it is 
necessary to know the dependence of the intersection 
area SO! on kz . To this end, we use plots of aSO!/akz 
based on the experimental data of Jones, Goodrich, and 
Falicov[l7) and shown in Fig. 6. We consider first 
curve 1, which characterizes the change of the area of 
the lens section. As seen from the figure, aSelakz 
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increases linearly at small kz and flattens out as kz 
- ke = 0.28 A-I. This curve can be approximated by a 
function in the form 

as, [( k') ']. k ~ = - 2nk, 1 - 1 - - sign " 
a~ ~ 

(22) 

where ko is the curvature radius of the lens at the 
limiting point, and n is an exponent that can be varied. 
We assume ko = 1.5 A-I. The value of the function (22) 
at kz = ke coincides here with the maximum value of 
as/akz for the curve of Fig. 6. The value of the radius 
of curvature is also in good agreement with the limit­
ing value of the oscillation period of the electronic 
doppleron f 1). 

Integrating (22), we obtain the dependence of the 
area Se on kz : 

Ik,1 1. Ik,l n+l] 
S,(k,)=2nk,k,[1-/4- n+1 (i- T ) . (23) 

Specification of the exponent n uniquely determines the 
shape of the lens. At n = 1, Eq. (23) describes an 
oblate ellipsoid of revolution, the section of which in 
the plane kx = 0 is represented by curve 1 of Fig. 7. 
Curve 2 and 3 of Fig. 7 correspond to n = 2 and n = 3. 
The same figure shows the experimental points from 
Fig. 7 of [17). We se.e that these pOints fit best the con­
tour 2. The corresponding value of the radius of the 
lens in the plane kz = 0 is kl = 0.75 A-I. This agrees 
with the radius of the lens on Fig. 7 off171, but differs 
from the value kl = 0.78 A-I given in Table III of the 
same paper. The value k 1 = 0.78 A -1 corresponds 
better to the case n = 3. An ellipsoid of revolution 
(n = 1) gives too small a lens radius and agrees poorly 
with the experimental points. We note that the area of 
the contour 2, namely 0.613 A -2, is in good agreement 
with the value Se( 0) = 0.608 A.-2 obtained by Grassie 
from measurements of the de Haas-van Alphen effect. 
Finally, at n = 2 the function (22) coincides almost ex­
actly with curve 2 of Fig. 6, which is based on the data 
off 17). 

Figure 7 shows also a dashed contour, which repre­
sents the lens produced by combining two spherical 
segments with radius ko = 1.5 A-I. In our earlier 
paper[l) we used the spherical-lens model to describe 
the properties of the electronic doppleron. The radius 
of curvature was assumed equal to the Fermi wave 
vector ko = 1.42 A-I of the free-electron sphere. This 
value of ko yields too low a value of the period of the 
doppleron oscillations. We shall discuss later on the 
results obtained with the model of a spherical lens with 
radius ko = 1.5 A.- 1 • 

"z, A-I 

FIG. 7. Shape of the section of the lens in the ArK plane for dif­
ferent models at ke = 0.28 A-I and ko = 1.5 KI. The dashed curve cor­
responds to a lens made up of two spherical segments. The experimental 
points from (17) agree best with the case n = 2. 

We now substitute (19), (22) and (23) in (17), intro­
duce a new integration variable x = 1 - I kz like in 
place of kz, and transform the expression for Ne into 

N (") _ k,k.' Sl [i 1] ( x.) 
, (q)- 2n' l+q(l-x") + i-q(l-xn) 1- n+l xdx, 

, (24) 
xu, 1 2nlik,c 

q=-2--1+' , u'=-H-' (25) 
n IY. e 

where Uo is the displacement of the limiting-point 
electrons during the cyclotron period. In the long-wave 
region, where I q I « 1, we have 

N(n)~N(n)[l+ ,. n'(3n+5) ] 
, - , q (n + i),(n + 3) (3n + 2) , 

(.) k,k.' n (n + 3) 
N, - ) ( . 2n' (n + 1 n + 2) 

(26) 

(27) 

At the values of ko and ke chosen by us and at n = 2, 
the electron density is N~2) = 0.5 X 1022 cm-3 • Calcula­
tion of the integral (24) for arbitrary values of q also 
entails no difficulty. For example, for n = 2 we obtain 

2N(') 1 + 1 
N;') (q) = -'-[In--q --In(1- q')]. 

5q 1- q 2q 
(28) 

This expression is almost real in the region where the 
wavelength 2111 K exceeds the maximum electron dis­
placement uo. At shorter wavelengths, where I KUol 
> 211, the logarithms in (28) have finite imaginary parts 
describing the cyclotron absorption of the wave by the 
electrons. 

3. Nonlocal hole conductivity. We proceed to calcu­
late the function Nh( K) given by (18). The form of this 
function is determined by the character of variation of 
the area of the intersection of the monster with kz . As 
seen from Fig. 6 (curve 2), the function -aSh/akz 
assumes a maximum value S' = 2.5 A-I at kz = 0 and 
decreases monotonically with increasing kz, vanishing 
on the boundary of the Brillouin zone at kz = kB. As a 
rough approximation of curve 2 we can choose a line 
segment (shown dashed in Fig. 6) corresponding to the 
function 

as. , ( I k, I ) ~-= -S 1--- signk" 
ak, kB 

(29) 

where S' = 2.5 A.-1 and kB = 0.57 A.- 1 • Integrating (29), 
we obtain 

S.(k,) =So-S'(lk,l-k,'/2kB), (30) 

where So = Sh( 0) is the area of the central section of 
the monster. The constant So should be found from the 
condition that double the volume of the monster is 
equal to the volume of the electron lens. Integrating 
(30) from -kB to kB and equating to half the volume 
of the lens, we get 

So = n'No / kB + l/skBS'. (31 ) 

The change of the area Sh on going from the central 
section of the monster at kz = 0 to the section kz = kB 
at the boundary of the Brillouin zone is S'kB/2. The 
relative decrease of the area is characterized by the 
parameter 

~ = S'k. /2So• (32) 

(We note that the monster is open if i3 < 1.) For the 
values of S' and No assumed by us, i3::::! 0.96. 
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We now substitute (29), (30), and (32) in (18) and 
integrate with respect to kz . As the result, the expres­
sion for Nh takes the form 

N.(q)=~~{[-~+~(~-1+~)ln lj+q]. (33) 
1 _. W q' 2q ~ q' lj - q 

. (-i-- 23)-'-W}, 
where I' 

2nk, 1 - iV' 1 - iv. 
1) =----- ~ 3.77---

S' 1 + iV. 1 + iV. 
(34) 

and q is given by the first formula of (25). In the region 
of relatively large wavelengths, where q« 11, we have 

N () N [1+ q' 1-2M5] (35) 
• q ~, 3(1- W)lj' 1- 2M3 . 

It is seen from formula (33) that the hole conductiv­
ity has a logarithmic singularity as q ~ ±1]. This 
singularity describes the Doppler-shifted cyclotron 
resonance due to the hole orbits near the central sec­
tion of the monster. In the region q2 < 1]2, the expres­
sion (33) is almost real, and its value tends logarith­
mically to infinity as q2 ~ 1]2. In the region q2 > 1]2 
there appears a finite imaginary part describing the 
cyclotron absorption by the holes. We shall henceforth 
be interested only in the region q2 $1] 2. 

4. Dispersion equation and its solution. For a 
circular ly-polarized wave, Maxwell's equations lead to 
the following dispersion equation: 

(36) 

Using expression (16) for the nonlocal conductivity a+ 
and formula (25) for q, we can rewrite (36) in the form 

a = <1>+(q), (37) 

( ) n(n+3) 1 [ N.(q) 
<1>+ q = --...,...,.---:-:-

(n + 1) (n + 2) q' (1- iV.)N, 
N.(q) ] 

(1 + iv.)N, ('38) 
neH' 1 ( H)' 

a = 2h'ck,'k.'w =, 90 ' (39) 

where Nh( q) in Ne ( q) are determined by the expres­
sions (24) and (33), the explicit form of Ne( q) for 
n = 2 is given by formula (28». The wave frequency f 
in (39) is in Herz, and the magnetic field H in Oersteds. 
The parameter 0' depends on the frequency and on the 
magnetic fields, and is equal to the ratio WL/ w, where 
wL ~ H3 is the limiting frequency of the helicon that 
would exist in cadmium in the absence of holes. 

We are interested in solutions of the dispersion 
equation (37) with almost real values of the wave vec­
tor q = q' + iq" (q" « q'), describing weakly damped 
waves. Such solutions can exist only in the case of 
strong magnetic fields and large mean free paths, when 
Ye, yh « 1. Even under these conditions, however, the 
function <I> can have a finite imaginary part connected 
with the collisionless cyclotron absorption that sets in 
when q2 > 1. For an explicit solution of (37) it is neces­
sary to separate the real and imaginary parts of the 
function <1>+. Such a separation is a simple matter in 
the case when the imaginary part of the function <1>+ is 
small compared with its real part: 

<1>+(q)=,¥+(q'Hi[qll ()~~ +f(q')]' (40) 

The function >It+( a') is obtained from (38) by putting 
yh = Y e = 0 and replacing q by q'. In addition, the 

functions under the logarithm sign in (28) should be 
replaced by their absolute values. The function (q') 
can be approximated by the following formula (for the 
case n = 2) 

f(q')=6:" [v.+v.+ 51~1 (1+21~'1 6(1q'I-1))],(41) 

where e(x)=Oatx<Oand e(x)=l at x>O. The 
first two terms in the square brackets describe the 
wave damping due to carrier scattering; they are im­
portant in the region I q' I < 1, where the last term of 
(41) is equal to zero. The small terms Ye and yh can 
be neglected in the region I q' I > 1 in comparison with 
the last term, which describes the cyclotron absorp­
tion by the lens electrons. The foregoing separation of 
the function <1>+ into real and imaginary parts (40) is 
not valid near the singular pOints (q' = O. I q' I = 1, 
Iq'l = 11]I)atwhichthe derivative a>lt.l8q' vanishes 
or becomes infinite. Far from these points, the spec­
trum and the damping of the wave are determined by 
the equations 

a = '¥+(q'), 

q" = - f(q')! ~:,+. 

Equation (42), with allowance for (39), can be re­
written in the form 

H = G+(q'), 

G+(q) = 90(f,¥+(q') ]'/" 

(42) 

(43) 

(44) 

(45) 

in which a graphic solution is convenient. The form of 
the function >It+, and consequently of G., depends on 
the number n which determines the shape of the lens 
(cf. (23». In addition, >It+ and G+ depend on the corru­
gation parameter W. This dependence is Significant 
near the DSCR of the holes at q' ~ 1] and is practically 
nonexistent in the vicinty of the DSCR of the electrons 
in the region q' ~ 1. We shall therefore first calculate 
G+( q') for different n in the absence of corrugation 
(W = 0), and then discuss the changes brought about by 
the corrugation. 

Plots of G+(q') at f = 106 Hz for n = 1, 2, 3 and for 
a spherical lens are shown in Fig. 8. We consider first 
curve 2, which corresponds to the case n = 2. At I q' I 
« 1, the function G+ is determined by formulas (45) 
and (38) and by the asymptotic expansions (26) and (35). 
This limiting value is equal to -5.8 kOe. With increas­
ing I q' I, the absolute value of G+ increases, and as 
I q' I - 1 it goes to - 00 logarithmically. The fact that 
1>+ and G+ are negative in the interval I q I < 1 means 
that the dielectric constant is negative for a wave 
whose field rotates in the same direction as the holes, 
and positive for a wave with opposite direction of field 
rotation. Thus, at the frequency f = 1 MHz in mag­
netic fields H> 5.8 kOe, the dispersion equation (44) 
has a real solution, Le., the wave due to DSCR of elec­
trons (electronic doppleron) can propagate in cadmium. 
At H < 5.8 kOe, the propagation of an electronic dop­
pIeron is impossible. 

Variation of the shape of the lens leads to a change 
in the spectrum of the electronic doppleron. First, the 
lower field limit changes. Thus, for n = 1 (curve 1 on 
Fig. 8) the lower limit is 4.3 kOe and for n = 3 (curve 
3 on Fig. 8) Hfuin = 6.6 kOe. The experimentally ob­
served limit is at H = 6.2 kOe, which agrees best with 
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FIG. 8. Plots of the function G+(q'). The dashed curve corresponds 
to the spherical lens. 

the case n = 2 (the observed value of He in should be 
somewhat larger than the theoretical on!;). In addition, 
the shape of the lens influences the spectrum of the 
doppleron in strong fields. Thus, at n = 1 there is an 
end point (upper limit) of the spectrum at H = 6.2 kOe. 
For n = 2 and n = 3, there is no end point of the spec­
trum, since >fl. and G. become infinite as q" - 1. In 
the experiments, the oscillations are observed up to 
fields H ~ 15 kOe, the maximum of the amplitude is 
reached in the region of 10 kOe. Thus, the case n = 1 
does not agree with the experimental data, and the 
cases n = 2 and n = 3 do not contradict the experiment. 
However, the behavior of the oscillations in strong 
fields does not permit a choice between these two 
cases. It is likewise impossible to ascertain whether 
an upper limit of the electronic doppleron exists, since 
the small-oscillation amplitudes observed in fields 
H > 15 kOe can be connected either with the doppleron 
or with the Gantmakher-Kaner size effect. 

In our earlier paper P1 we used a free-electron 
model in which the lens consisted of two spherical 
segments with a curvature radius 1.42 'A _1 and height 
0.28 'fi,.-1. This model gives a lower limiting field Hfuin 
= 7.5 kOe and a spectrum end point H~ax = 13.6 kOe, 
and agrees better with experiment than an ellipsoid of 
revolution (n = 1). It overestimates, however, the 
lower limits, underestimates the upper limit, and 
underestimates somewhat the limiting value of the 
period of the doppleron oscillations. In addition, this 
model has a major shortcoming in that the edge of the 
lens is sharp. This circumstance affects strongly the 
behavior of the dispersion function ~(q') in the region 
1 q' 1 > 1. The presence of a sharp edge leads to two 
consequences. First, the collisionless cyclotron ab­
sorption of the wave by the electrons, which appears at 
1 q' 1 > 1, exists only in a relatively narrow wavelength 
interval. In fact, for a lens with a sharp edge, all the 
electrons have displacements in the interval from Uo 
to 0.8uo. The cyclotron absorption therefore exists 
only in the interval 1 < 1 q' 1 < 1.25. At 1 q' 1 = 1.25, 
the cyclotron absorption vanishes jumpwise. This is 
the second consequence. In accordance with the 

Kramers-Kronig relations, the real part of ~ at the 
point q' = 1.25 has an infinite discontinuity (the dashed 
curve of Fig. 8 shows the corresponding function G). In 
the region 1 q' 1 > 1.25 the function G. is positive, 
meaning that a wave with positive circular polariza­
tion can propagate. When q' changes from 1.25 to 3.2, 
the function G. drops from plus infinity to a value 
Gmin = 5 kOe, and then again increases and becomes 
infinite as 1 q' 1 - 1 Tj 1 = 3.77. Thus, two solutions de-
scribing the propagating waves exist in magnetic fields 
H> Gmin = 5 kOe. The first, given by the left point of 
intersection of the dashed curve with the horizontal 
straight line G. = const > Gmin, describes a wave that 
can be called a "hole helicon." The second solution, 
given by the right-hand intersection point, describes a 
hole doppleron. 

The situation is different if the lens has a rounded 
edge. In this case there are electrons with arbitrary 
displacements smaller than uo, which lead to the 
existence of cyclotron absorption at any 1 q' 1 > 1. 
Accordingly, the function G. does not have an infinite 
discontinuity, but varies smoothly (curves 1-3 in 
Fig. 8). The smoothest edge is possessed by the ellip­
SOid, and accordingly the function G. has the smallest 
dispersion at n = 1. In this case there is no solution 
describing a hole helicon at all, and the hole doppleron 
does not have a clearly pronounced lower magnetic­
field limit. In the cases n = 2 and n = 3 there are 
solutions of the hole-helicon type, and this leads to the 
presence of a lower limit for the hole doppleron. 

As seen from (43), the wave damping is greater the 
smaller the slope of the dispersion curve. Therefore 
the hole helicon has a much larger damping than the 
hole doppleron in the region q' - 1 Tj I. The dependence 
of the damping length of the hole helicon and of the hole 
doppleron on the magnetic field is shown in Fig. 9. The 
curves were plotted for the case n = 2 and f = 1 MHz. 
We see that the damping length of the helicon does not 
exceed 0.02 mm, whereas the damping length of the 
doppleron increases rapidly with increasing field, ap­
proaching the mean free path of the holes, which was 
assumed equal to 0.4 mm. No oscillations that could be 
interpreted as helicons were observed in our experi­
ments, but the hole doppleron had a clearly pronounced 
lower limit H~in = 4.7 kOe. Thus, the Fermi-surface 
model considered by us gives good agreement with 
experiment. Allowance for the corrugation of the 
monster can modify somewhat the function G+ and the 

I,m m 

It 

V--
/' J 

/ z 

o. 

0, 

o. y 
1 

..,../ h 

o. 

Q.5 .5.0 5.5 i H,kOe 

FIG. 9. Damping lengths of hole helicon (curve h) and of hole 
doppleron (curve d) vs the m,!gnetic field for the case n =.2 and 
W=O. 
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vicinity of the DSCR of the holes (at q :s 1) ) and shift 
the lower limit H}kil,1 of the hole doppleron. It is seen 
from expression t20) for W that this value can be 
either positive or negative. In the case W> 0, the 
function Nh(q), defined by formula (33), increases, as 
the result of which G+ and the lower limit H~in shift 
upward. At W < 0, to the contrary, the function G+ and 
the limit H~in decrease. The larger I WI, the more 
appreciable these changes. Since expression (20) con­
tains both positive and negative terms, it is possible 
that I W I is small and the corrugation of the monster 
exerts a weak influence on the properties of the hole 
doppleron. 

The amplitude of the hole doppleron turns out to be 
much smaller than the amplitude of the electronic 
doppleron. Therefore the impedance oscillations due 
to the hole doppleron are observed only in the interval 
from H~in to H~in' Calculation shows that in the 
case n = 2 the ehange of the period of the oscillations 
of the hole doppleron in the field interval from 5.1 to 
6 kOe is about 30%. This estimate agrees with the 
experimental data (see Fig. 3). It should be noted that 
near H~in the slope of the dispersion curve of the 
hole doppleron i.s still not too large. Therefore the 
period of the doppleron oscillations in the region 
H < H~in should be smaller than the period of the 
Gantmakher-Kaner oscillations. This also agrees with 
experiment: the value of the derivative (2), obtained 
under the assumption that the limiting period is ob­
served, is smaller than the value S' = 2.5 A _1 assumed 
by us. One final remark. When the magnetic field is 
inclined, the observed lower limit of the electronic 
doppleron shifts towards strong fields and the oscilla­
tions of the hole doppleron can be seen up to the new 
limit Hfuin' Thi.s fact also indicates that there is no 
upper limit for the hole doppleron. 
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