PHASE TRANSITION IN SAMARIUM

A. S. BULATOV and V. A. FINKEL'

Physico-technical Institute, Ukrainian Academy of Sciences

Submitted February 2, 1972

Zh. Eksp. Teor. Fiz. 63, 213-216 (July, 1972)

The crystal structure of samarium at 77–300°K is studied by the low-temperature x-ray diffraction technique. It is shown that at T ~ 106°K there is a second-order phase transition which is apparently related to the paramagnetism-antiferromagnetism transformation. The discontinuous changes of the linear expansion coefficients at 106°K are pronouncedly anisotropic: $\Delta \alpha_{\perp} < 0$, $\Delta \alpha_{\parallel} > 0$. When the temperature drops below 106°K the period a of the nine-layer hexagonal compact lattice is found to increase.

 $\mathbf{S}_{\mathbf{A}\mathbf{M}\mathbf{A}\mathbf{R}\mathbf{I}\mathbf{U}\mathbf{M}}$ belongs to the cerium subgroup of rareearth metals (REM). Unlike other REM, this metal has at room temperature a unique rhombohedral lattice $(a_r = 8.966 \text{ Å}, \alpha = 23^{\circ} 13^{\prime [1]})$, equivalent to nine-layer hexagonal packing ($a_h = 3.621$ Å, $c_h = 26.178$ Å, c/a = 7.23). A structure of the α -Sm type is observed in heavy REM subjected to hydrostatic compression^[2] and also in certain alloys of heavy and light $\text{REM}^{[3]}$. The low-temperature crystal structure of samarium has not been investigated before. Investigations of various physical properties of polycrystalline samarium, such as the specific heat^[4], magnetic susceptibility^[5-10], thermal expansion^[8], electric conductivity^[9,11], and elastic constants^[12] have revealed the presence of anomalies both at T $\sim 15^{\circ}$ K and at T $\sim 106^{\circ}$ K. The magnetic structure of samarium was not investigated by neutron diffraction^[13]; no significant differences</sup> were observed in the Mossbauer spectra obtained at 80 and $300^{\circ} K^{[14]}$.

There are two points of view regarding the nature of the anomaly of the physical properties of samarium at $T \sim 106^{\circ}$ K: (i) the temperature 106° K is the Neel point of α -Sm, and further ordering of the magnetic moments takes place at 15° K; (ii) an electronic phase transition takes place at 106° K and can be accompanied by a change in the crystal-lattice Symmetry^[7,12]. In the latter case, one has in mind a transfer of one valence electron to the 4f level ($4f^{5}5d^{4}6s^{2} \rightarrow 4f^{6}6s^{2}$). In this case, since $V_{at}(Sm^{2+}) \sim 1.5V_{at}(Sm^{3+})^{[3]}$, an increase in the atomic volume should be observed. In the REM series, electronic first-order phase transitions were observed in cerium (FCC I \rightarrow FCC II, 110° K)^[15] and in ytterbium (FCC \rightarrow HCP, 290° K)^[16].

The purpose of the present study was to determine the crystal structure of samarium at $T = 77-300^{\circ}$ K by low-temperature x-ray diffraction. We investigated polycrystalline metal 99.8% pure. The samples were annealed in a vacuum of 2×10^{-7} mm Hg at 700° C for two hours and were cooled slowly to relieve the internal stresses and to obtain a large-grain structure. The x-ray diffraction procedure at $77 - 300^{\circ}$ K did not differ significantly from that described earlier^[17]. In view of the complexity of the structure of α -Sm, in addition to the diffractometric measurement of the lattice parameters, we obtained x-ray photographs in the investigated temperature interval; these have revealed the absence of any qualitative structure changes. The crystal-lattice parameters were measured using the single-crystal (110) $(2\theta \sim 78.5^{\circ})$ and (0.0.18) $(2\theta \sim 104^{\circ})$ reflections in Cr K_{α} radiation with accuracy $\Delta a = \pm 3 \cdot 10^{-4}$ Å, $\Delta c = \pm 8 \cdot 10^{-4}$ Å. The results of the measurement of the parameters a and c and the ratio c/a of the axes in α -Sm (in the hexagonal setting) are shown in Fig. 1. Clearly pronounced inflections are seen on the plots of a, c, and c/a against T near T = 106° K. At T < 106° K the period a increases, whereas the c(T) curve becomes much steeper than at T > 106° K. This leads to a sharp decrease of the ratio of the axes with decreasing temperature. Graphical differentiation of the a(T) and c(T) curves yielded the following temperature dependences of the linear-expansion coefficients:

$$a_{\perp} = a^{-i}da / dT, \qquad a_{\parallel} = c^{-i}dc / dT.$$

At $T \sim 106^{\circ}$ K, a negative anomaly is observed on the $\alpha(T)$ curve, and a positive one on the $\alpha(T)$ curve (Fig. 2). The absence of a change in symmetry and of discontinuities of the lattice parameters at $T \sim 106^{\circ}$ K indicates that the anomaly of the properties of samarium is not connected with a structural transformation. The $\alpha(T)$ curves had forms typical of second-order phase transitions (see^[16]). An important confirmation of the

FIG. 1. Temperature dependence of the parameters a and c and of the axial ratio c/a in α -Sm (in the hexagonal setting).

FIG. 2. Temperature dependence of the coefficients of linear expansion of α -Sm (α_1 and α_{11}).

FIG. 3. Temperature dependence of the atomic volume of α -Sm.

fact that the transition at T $\sim 106^\circ$ K in samarium is a second-order phase transition is the absence of hysteresis of the transformation temperature both in the results of the present structure investigations and in the results of magnetic measurements $^{[7]}$.

The character of the temperature dependence of the atomic volume ($V_{at} = a^2 c \times 3^{1/2}/18$), i.e., the presence of an inflection on the $V_{at}(T)$ curve at $T = 106^{\circ}K$ (Fig. 3) correlates qualitatively with the results of dilatometric measurements^[8]. With such a $V_{at}(T)$ curve, a negative "jump" of the coefficient of thermal volume expansion should take place at the anomaly temperature ($\Delta \alpha_V = 2\Delta \alpha_{\perp} + \Delta \alpha_{\parallel} \sim 31 \cdot 10^{-6} \text{ deg}^{-1}$). In accordance with the relation of the Landau theory of second-order phase transitions^[18]

$$\Delta \alpha_{\rm v} = \frac{\Delta C_{\rm p} \, dT_{\rm A}}{V_{\rm at} T \, dp}$$

the known value of the jump of the specific heat ΔC_l at the anomaly temperature $T_A^{[4]}$ and the values of V_{at} and $\Delta \alpha_V$ measured by us yield the estimate dT_A/dp ~ -0.4 deg/kbar. Direct measurements of the shift of T_A under pressure were not performed. The most probable cause of the second-order phase

transition in samarium at $\sim 106^{\circ}$ K is the magnetic paramagnetism-antiferromagnetism transformation. Unlike the heavy REM (Gd - Er), which are characterized in the magnetically-ordered state by a negative expansion along the c axis^[19,17], which correlates well with their magnetic structures^[20], an increase of the parameter a is observed in samarium below T_N . This points to a significant difference between the magnetic structure of α -Sm and the structures of the heavy REM. Apparently in samarium, in analogy with the investigated light REM (Pr and Nd), there can be observed a magnetic structure with sinusoidal modulation of the magnetic moments along the a axis. The assumed presence of an electronic transition in samarium^[7,12] contradicts the results, since such a transition should be of first order^[15].

The authors thank Academician B. G. Lazarev, V. S. Kogan, V. V. Slezov, and V. M. Tsukernik for a discussion of the present results.

¹ F. H. Ellinger and W. H. Zachariasen, J. Am. Chem. Soc. 75, 5650, 1953. A. H. Daane, R. E. Rundle, H. S.

Smith and F. H. Spedding, Acta cryst., 7, 532, 1954.

²D. B. McWhan and A. L. Stevens, Phys. Rev. 139A, 682, 1965.

³ K. N. R. Taylor, Contemporary Physics 11, 423,

1970. C. C. Koch, R. G. Mardon and C. J. McHargue,

Met. Trans. 2, 1095, 1971.

⁴L. Jennings, D. Hill and F. H. Spedding, J. Chem.

Phys. 31, 1240, 1959; O. V. Lounasmaa and L. J.

Sundström, Phys. Rev. 158, 591, 1967.

⁵ J. Lock, Proc. Phys. Soc. 70B, 566, 1957.

⁶ P. Graf, Zs. Angew. Phys. 13, 534, 1961.

⁷ F. J. Jelinek, E. D. Hill and B. C. Gerstein, J. Phys. Chem. Solids **26**, 1475, 1965.

⁸C. H. La Blanchetais, C. R. Acad. Sci., **261**, 3423, 1965.

⁹S. Arajs and G. K. Dunmyre, Zs. Naturforsch., **21A**, 1856, 1966.

¹⁰M. Schieber, S. Foner, R. Doclo and E. J. McNiff, J. Appl. Phys. **39**, 885, 1968.

¹¹J. K. Alstad, R. V. Colvin, S. Legvold and F. H. Spedding, Phys. Rev. **121**, 137, 1961.

¹² M. Rosen, Phys. Rev. 180, 540, 1969.

¹³ K. P. Belov, M. A. Belyanchikova, R. Z. Levitin and S. A. Nikitin, Redkozemel'nye ferro- i antiferromagnetiki (Rare-earth Ferro- and Antiferromagnets), Nauka, 1965.

¹⁴ S. Ofer, E. Segal, I. Nowick, E. R. Bauminger,

L. Grodzins, A. J. Freeman and M. Schiber, Phys. Rev. 137A, 627, 1965.

¹⁵ I. L. Aptekar' and E. G. Ponyatovskiĭ, Fiz. Met. Metallov. **25**, 777, 1048 (1968).

¹⁶ E. Bucher, P. H. Schmidt, A. Jayaraman, K. Andres, J. P. Maita, K. Nassau and P. D. Dernier, Phys. Rev. **B2**, 3911, 1970.

¹⁷ V. V. Vorob'ev, Yu. I. Smirnov, and V. A. Finkel', Zh. Eksp. Teor. Fiz. 49, 1774 (1965); 51, 32 (1966) [Sov. Phys.-JETP 22, 1212 (1966), 24, (1967)]. V. A. Finkel' and M. I. Palatnik, ibid. 59, 1518 (1970) [32, 21 (1971)].

¹⁸ L. D. Landau and E. M. Lifshitz, Statisticheskaya fizika (Statistical Physics), Nauka, 1964 [Addison-Wesley, 1969].

¹⁹ V. A. Finkel' and V. V. Vorob'ev, Zh. Eksp. Teor. Fiz. **51**, 786 (1966) [Sov. Phys.-JETP **24**, 524 (1967)]. ²⁰ P. C. Landry, Phys. Rev. **156**, 578, 1967.

Translated by J. G. Adashko 24