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The surface impedance of bismuth plates in which magneto-plasma and cyclotron waves are excited 
is investigated theoretically and experimentally. The case when the direction of the magnetic field 
is perpendicular to the trigonal axis of the crystal along which the waves propagate (H 1 C3, C3 II k) 
is considered in detail. It is shown that nonlocal conductivity effects result in the appearance of 
cyclotron waves (CW) near hole cyclotron resonances (CR). In contrast to previously observed CW 
the ones under consideration are elliptically polarized in a plane perpendicular to the stationary mag­
netic field (TM type waves) and for small values of kR (k is the wave number and R the cyclotron 
radius) the spectrum possesses normal dispersion and is compressed to the cyclotron resonance lines 
from the weak magnetic field side. Another consequence of the nonlocal effects is the appreciable 
change in the spectrum of a fast magnetosonic wave (MSW). As a result the MSW spectrum does not 
terminate at a hybrid resonance, as predicted by the local theory, but at the first hole resonance. The 
experimental investigation of the properties of the electromagnetic waves was carried out with 
20-114 J1. thick bismuth plates. By employing thin samples it was possible to observe surface imped­
ance oscillations related to standing wave excitation not only in strong fields but also in the region of 
the first four CR harmonics for holes. The experimental and theoretical results are in both qualitative 
and quantitative agreement. 

INTRODUCTION 

I T is well known that high- frequency magnetoplasma 
waves (Alfven and fast magnetosonic waves) can propa­
gate in compensated metals with equal numbers of elec­
trons and holes (nl = n2), in the presence of a constant 
magnetic field. By now these waves have been the sub­
ject of a considerable number of both theoretical [1-3J 
and experimental studies [3-8J . According to the theory, 
the spectrum and polarization of the magnetoplasma 
waves are linear (w ~ kH) in strong magnetic fields 
Q »w (Q is the cyclotron frequency and w is the wave 
frequency). In weak magnetic fields, the spectrum may 
become nonlinear and the polarization elliptic. In par­
ticular, in a model in which the cyclotron masses of the 
different carriers differ strongly, as is the case, e.g., 
in bismuth, the spectrum of the Alfven wave ends at the 
frequency of the first cyclotron resonance (CR) if allow­
ance is made for the time dispersion and for the differ­
ence between the Hall components of the conductivity 
tensor from zero, while the spectrum of a fast magneto­
sonic wave (MSW) propagating strictly in a transverse 
direction ends at the hybrid-resonance frequency 
Q = v'Q1Q2 [2J. This picture of the spectrum was ob­
tained without allowance for the spatial dispersion. At 
the same time, in a magnetic field parallel to the sur­
face of the metal, nonlocal effects and the conductivity 
of the metal should play an appreciable role near the 
resonance frequencies. One must therefore assume that 
the spatial dispersion can considerably alter the spec­
trum of the MSW at k 1 H in the region of the cyclotron 
resonances. The experimental investigations performed 
to date were devoted mainly to the properties of mag­
netoplasma waves in the strong-field limit. Although in 
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weak fields deviations from linearity were observed 
and were correctly interpreted as being due to the pres­
ence of spatial and temporal dispersion [7J , no detailed 
study of the spectrum in the region of the cyclotron 
resonance was carried out. Another even more signifi­
cant result, due to the spatial dispersion near the reson­
ant frequenCies, is the existence of cyclotron waves 
(CW). Theoretical investigations of CW[9,lOJ have shown 
that in metals with spherical Fermi surface in a mag­
netic field parallel to the surface of the metal there 
can propagate both short CW (kR »1) and long ones 
(kR « 1). 

The short-wave part of the spectrum has three 
branches and determines the propagation of linearly 
polarized waves. The spectra of the ordinary wave 
(E II H, E II k) and of extraordinary wave (E 1 H, Elk) 
have normal dispersion (positive phase velocity) and lie 
near the CR lines on the side of the strong magnetic 
fields. The third branch, pertaining to the longitudinal 
wave (E II k), has anomalous dispersion and tends to­
wards the CR lines from the weak-magnetic-field side. 

In the long- wave part of the spectrum, only the ordin­
ary wave has linear polarization, while the other two 
are elliptically polarized in a plane perpendicular to the 
magnetic field. All three long-wave branches have 
anomalous dispersion and lie near the CR on the side 
of the strong magnetic field. A similar picture was ob­
tained for the ordinary CW in bismuth near the hole CR 
for those magnetic-field directions at which the cyclo­
tron masses of the hole greatly exceed the electron 
masses[uJ. 

The most experimental studies were made on the 
long-wave ordinary CW, which were observed in alkali 
metals[loJ and in bismuth near the electron CR[12J. 
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Good qualitative, and sometimes also quantitative agree­
ment with the conclusions of the theory was obtained. 

An entirely different situation, as shown in the pres­
ent paper, arises in bismuth for CW with elliptic polar­
ization (type TM wave). 

Since an MSW with a polarization linear in strong 
fields but elliptic in weak fields can propagate in the CR 
region, an interaction between the MSW and the CW sets 
in. This leads 1.0 a strong change in the spectra of both 
the MSW and the CWo In particular, the MSW can end 
already at the frequency of the first full CR, and one of 
the CW branches has a normal dispersion and comes 
close to the CR lines on the weak-field side. 

This singularity of the propagation of MSW in the 
region of hole CR was noted in [13-lsJ. However, the 
simplifications assumed in the description of the elec­
tronic spectrum of bismuth and of the dispersion equa­
tion did not permit the authors of these papers to obtain 
the correct picture of the spectrum in the resonance 
region. 

The purpose of the present paper is to report a de­
tailed theoretical and experimental study of the MSW 
and CW spectra near hole cyclotron resonances in bis­
muth and the conditions for the excitation of these waves 
in a plate 1) • We chose here the most interesting case 
(k II C3; H II Cl), when the spatial dispersion exerts a 
particularly strong influence. 

THEORY 

We consider the case when a bismuth sample is 
placed in a constant magnetic field H parallel to the 
surface of the metal, and an electromagnetic wave of 
frequency W is :incident on its surface. The electromag­
netic field in the metal is described by Maxwell's equa­
tions, which can be written, after eliminating the alter­
nating magnetic field and changing over to Fourier 
representations, in the form 

~ 00' 
k'E: - k (kE) = 4niwc-'oE + -;;- 8.E, 

c 
(1) 

where k is the wave vector, E is the Fourier represen­
tation of the intensity of the high- frequency electric 
field, and a is the Fourier representation of the conduc­
tivity tensor. The dispersion equation of the electro­
magnetic wave :is obtained from the compatibility condi­
tions of the system of homogeneous equations (1) by 
setting its determinant equal to zero. The last term in 
(1), which describes the displacement current, can be 
neglected in deriving the dispersion equation at w « (.e'o 
(wo is the plasma frequency of the metal). To solve the 
dispersion equation it is necessary to know the explicit 
dependence of the conductivity tensor on the wave vec­
tor and on the f:requency of the electromagnetic field; 
this dependence is obtained by solving the kinetic equa­
tion for the carrier dist~ibution function. 

In a coordinate system in which the z axis is directed 
along H and the y axis coincides with the normal to the 
surface, the conductivity tensor O"jk(w, k), a general ex-

pression for which was obtained by Azbel' and Kaner for 
an arbitrary carrier dispersion[16], can be reduced to 
the form 

1) Preliminary results were published earlier [13]. 

(2) 

1 ,. . ikp. 
where an; = ~S d,;v;(T)exp(--- im:). (3) 

2n , . mQ 

Here e is the electron charge, v is the carrier collision 
frequency, Px and pz are the components of the momen­
tum vector, Vj are the components of the velocity vector 

on the Fermi surface, and T is the phase shift of the 
motion in a magnetic field. The first sum denotes sum­
mation over all types of carrier. 

The Fermi surface of bismuth consists of three 
strongly elongated electronic ellipsoids, which are 
turned through 120 0 relative to each other around the 
trigonal axis of the crystal, and one hole ellipsoid. The 
energy of the hole ellipsoid is described by the equation 

p,' p.' p? 
Sh(P) = 2M, + 2M, + 2M3' (4) 

where PI, P2 and P3 are the components of the momen­
tum vector p along the bisector, binary, and trigonal 
axes, respectively, and the masses, according to[17J , 
are Nl = 0.063mo and Ma = 0.65mo, where mo is the free­
electron mass. The energy of one of the electronic 
ellipsoids can be represented in the form 

8e(P)=-21 (a,p,'+a,p,"+ a,p? + 2a,p,p,) , (5) 
m. 

and the expressions for the two other electronic ellip­
soids can be obtained by rotating the first through 1200 

about the trigonal axis. According to[18J , al = 1.81, 
a 2 = 167, a3 = 89.7, a4 = 7.8. 

If the magnetic-field vector lies in a plane perpen­
dicular to the trigonal axis, and the wave vector is 
directed along this axiS, then we have for the hole ellip­
soid in the chosen coordinate system 

p. = l'2M, (s, - p.' 12M,) sin T, 

py = l'2M3(s, - p; 12M,) COST, 

v. = p.1 M" Vy = Pul M s, M = l'M,M" 
(6) 

where M is the cyclotron mass of the holes. 
Substituting (6) in (2) and (3), we obtain for the trans­

verse components of the hole conductivity 
3Ne' 1 • 

oxxh=-M ~. S d8sin'8Jn"(kRsin8), 
2 ,k.J v - !(w - nQ) 

" 0 

3Ne' 1 n" 
Oyyh= 2M, (kR) , ~ v -i(w-nQ) S d8sin8Jn'(kRsin8), 

n • 

h_ h 3Ne' i ~ n 
o.y --OY' =- 2M kR~ v-i(,.)-nQ) 

. 
)( S d8sin'8Jn (kRsin 8) In' (kR sin 8), 

• (7) 

where N is the hole concentration and R is the effective 
cyclotron radius of the holes of the central cross sec­
tion (pz = 0). 

We now consider the conductivity due to the electron 
ellipsoids. 

We denote the angle between the direction of the 
magnetic field and the major axis of the electron ellip­
soid by cpo At cp = 0, the cyclotron mass of the electrons 
m = mONa2a~ (where a2 and a~ are the principal values 
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of the reciprocal-mass tensor) is much less than the 
cyclotron mass, and the effective radius of the electrons 
(k 1 H) is smaller than the radius of the holes. At non­
zero qJ, neglecting terms of order QlUQl2Q13 in compar­
ison with unity, we readily obtain 

m = [a,(a, cos' <p, + a, sin'<p,) ]-V'm" 

m, = [a,cos'<p, + a, sin'{{"j-'m" 

m, = m,/a" 
(8) 

where qJ 1 is the angle between the maj or axis of the 
ellipsoid and the direction of the magnetic field in the 
plane perpendicular to the trigonal axis. The conductiv­
ity of the electron ellipSOid is also described by form­
ulas (7) with the substitutions N - N /3, M1 - mb 
M - m, M3 - m3 and with the Hall components of the 
conductivity taken with opposite sign. The cyclotron 
mass of the electrons at all angles not too close to 
1T/2 (1T/2 - qJ »Ql1/Ql2), remains much smaller than 
the cyclotron mass of the holes, and at kR < 1 the elec­
trons "feel" the spatial dispersion much less than the 
holes. 

The spectrum of the electromagnetic waves polarized 
in a plane perpendicular to the magnetic field is deter­
mined, according to (1), by the equation 

(9) 

Here a jk is the summary conductivity of the electron 
and hole ellipsoids. In the general case, it is difficult to 
obtain an analytic solution of (9), in view of the complex­
ity of the expressions, and we shall therefore consider 
first, by way of example, the solution of this equation 
near the first two hole CR and the region of long wave­
lengths (kR « 1), where the expressions for the ele­
ments of the conductivity tensor can be replaced by their 
asymptotic expansion. At H II C1, the elements of the 
conductivity tensor have the following asymptotic forms: 

tJ =iNe'[ __ w_(1_(kR)' (kR)') 
'" M, w' - Sl' 5 + 56 

_1_ (kR)' (1- (kR)' (kR)')] 
+ 10 w - 2~~ 7 + 108 ' 

_iNe'[ w ( 3(kR)' 37(kR)') 3m,w 
tJ .. - M, w'-Q' 1--5-+ 280 - a,M,Q2 

+_1_. (kR)' (1_2(kR)2 25(kR)')] 
1\) lu - 2~l 7 + 756 ' 

tJ = Ne'f __ w_(1_2(kR)2 3(kR)') ~ ~ 
yx M l,v' - Q' 5 + 56 + Q + 10 

X (kR)2 (1- 3(kR)' + (kR)' )] . 
w - 2Q 14 54 (10) 

Since the cyclotron mass of the electrons is much 
less than the cyclotron mass of the holes, the strong­
magnetic-field condition (w « ne) is satisfied for the 
electrons near the first hole CR. 

The solution of the dispersion equation takes in this 
case, near the frequencies of the first hole CR, the form 

k2c' ( 3m, w' - Q') w' (kR)' 
- 1 - - --- - - = 0006 --:-:--'--:­
wo' a,M, ~l' Q2 ' w/Q - 1 ' 

(11) 

and near the frequencies of the second hole resonance 
k 2c2 (0)2 3mo (2) w' - --------
w,' (,,' - Q2 a,M,Sl' Q'(w' - Q') 

w(kR)' [ 2w' 
= 10(01-20) (w+Q)Q 

k'c' ] _ 1,9 .10-·w' (kR) 8 

wo' (w - 2Q)' (12) 

where Wo = v'41TNe2,lM1 is the plasma frequency of the 
holes. 

The left-hand sides of (11) and (12) describe the MSW 
spectrum, which in the absence of spatial dispersion 
(kR - 0) terminates at the hybrid resonance frequency 
(w2/n2 = 1 + Ql1M1/3mO)' When the spatial dispersion is 
taken into account, the MSW no longer crosses the lines 
of the first CR, and it goes over into a DW near this 
point with increaSing k. The long-wave part of the CW 
spectrum has a normal dispersion near the fundamental 
harmonic of the hole resonance, and lies on the weak­
field side. With increasing k, its spectrum moves 
sharply away from the resonance line and has the same 
character as the MSW spectrum in the absence of spa­
tial dispersion; subsequently, however, as follows from 
(12) its spectrum, without reaching the second harmonic 
of the resonance, bends towards larger k. Near the 
second hole resonance (Eq. (12)) there are two branches 
of the CW spectrum, one of which has an anomalous dis­
persion and comes close to the resonance line on the 
side of the strong magnetic field, while the other be­
haves in analogy to the wave near the first resonance. 

In the case of strong spatial dispersion, the asymp­
totic product of the Hall elements of the conductivity 
tensor is smaller by a factor kR than the product of the 
diagonal elements. The CW spectrum in bismuth at large 
kR is analogous to the spectrum in uncompensated me­
tals; the latter was investigated by Kaner and Skobov[9J 
The spectrum of electromagnetic waves at arbitrary kR 
was calculated with an electronic computer. We took 
into account the spatial disperSion of both the hole and 
the electrons of all three ellipsoids at the first nine 
harmonics of the cyclotron resonance. The expreSSions 
for the components of the conductivity tensor were ex­
panded in powers of kR up to terms of order (kR)40. The 
remaining terms (with larger n and of higher order in 
kR) do not exceed 10-10 at kR < 5 (a decrease in accur­
acy would not simplify the computation program). The 
error in the calculation of the spectrum does not ex­
ceed 0.01% in terms of win. 

The calculated MSW spectrum and one of the CW 
branches near the first free hole resonances at kR S' 4 
are shown in Fig. 1. The second CW branch lies very 
close to the cyclotron- resonance line and is not shown 
in t he figure. 

We consider now the excitation of electromagnetic 
waves in a metal plate of thickness d and with infinite 
dimensions in the other two directions. If there is no 
electric field on the surface of the plate, then the plate 
acts as a resonator and the wave vector k assumes dis­
crete values. The eigensolutions of Maxwell's equations 
can be both symmetrical and antisymmetrical,19J 

FIG. I. Calculated spectrum J l-----~-=--:-:-::-~-=--:::-::-::.=-­
of electromagnetic waves in bis-
muth in the region of the first 
three (1-3) harmonics of the 
hole cyclotron resonance, k II 
C3, H II c/o 

2 

I~ 
z J " Irf? 
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E(') (y) = E(') (0) cos k'<')y, k~') = 2rrd-' (l + i/2), 

E( ) ( .. lkW·)j i(,) . k(.) k(/.) = nl , 
a y)=--- sm ( y, d 

k ckla) (13)* 
-d / 2 < y < d / 2. 

If an electromagnetic wave is incident on one side of 
the plate and only x- and z- components of the electric 
field are excited" then the fields E(s) and E(a) will exist 
in the place to equal degrees and the resonance will set 
in when half the wavelength is an exact multiple of the 
plate thickness. If the excited wave has also a y-com­
ponent of the field, then, besides taking into account the 
ordinary boundary conditions (Ex(d/2) = Ex(- d/2) 
= Ey(d/2) = Ey(-d/2)), it is important to take into ac­
count the conditions of quasineutrality of the metal and 
of the charge conservation 

JpdV=O, 8p/8t=-diuj, (14) 
" pi 

which were previously satisfied automatically. Here p 
is the charge density, j is the conduction current, and 
V pI is the volume of the plate. 

Recognizing that all the quantities vary harmonically 
in time and the conductivity current, directed along k, 
is equal to displacement current W2C-2E y' as follows 
from (1), we get from (14) 

~/' dE 
S -d' dy=O. (15) 

_d/2 Y 

In other words, the longitudinal electric field should 
satisfy the condition E(-d/2) = E(d/2) and its distribu­
tion over the plate should be antisymmetrical. This 
means that the second of the two solutions in (13) will 
be realized, and Ithe resonance will set in at a plate 
thickness which is a multiple of the wavelength or kZ 
= 21TZ/ d. 

In the considered case of wave propagation in bis­
muth, the longitudinal component of the electric field is 
equal to Ey = i(uxy/uyy)Ex and varies with the magnetic 
field. Ey is small in strong fields, so that the wave is 
practically linearly polarized along x, while on the sec­
tions of the spectrum with anomalous dispersion 
(kR »1) is almost purely longitudinal. Such a depen­
dence of the degree of ellipticity of the polarization on 
the magnetic field can cause the excitation of both sym­
metrical and antisymmetrical fields in the region of 
strong fields. With decreasing magnetic field and in­
creaSing Ey ' the symmetrical fields will attenuate more 
strongly, so that starting with a certain magnetic field, 
the plate will resonate only for antisymmetrical field, 
and its impedance will be described by the formula 

Z 4nico kd (16) 
=kTtg -2-' 

where the relation k = k'(w) + ik"(w) is determined from 
the dispersion equation (9). Since the mechanism 
whereby the electromagnetic waves are damped at 
k 1 H is purely collisional, we can write in the first ap­
proximation in ll/W (ll/W « 1 is the necessary condition 
for the existence of weakly-damped waves) 

k(co, w + iv) ~ k(co) + iv~. 
d(iv) 

*[kHl =k X H. 

(17) 

In that part of the spectrum where the greatest im­
portance is played by the frequency dependence of the 
conductivity tensor (k2c2/41Tw «u) we have dk/d(ill) 
~ dk/dw, and in the linear part of the magnetostatic­
wave spectrum we have dk/d(ill) = % dk/dw. It follows 
therefore that the relative amplitude of the spikes of 
surface impedance is determined by the inclination of 
the spectral lines of the electromagnetic waves. Figure 
2 shows the graphically constructed dependence of the 
maximum value of the surface-impedance spikes on the 
reciprocal magnetic field when standing electromagnetic 
waves whose spectrum is shown in Fig. 1 are excited in 
a plate 64 J-I. thick (v/w R< 10-2). 

EXPERIMENTS 
The experimental study of the electromagnetic-wave 

spectrum in bismuth of strong spatial dispersion was 
carried out a frequency f = 36 GHz in the temperature 
interval 1.5-4.2° K. The samples where plane-parallel 
plates of bismuth 0.02, 0.064, 0.09, and 0.146 mm thick, 
in the shape of disks of 8 mm diameter. The flat sur­
faces of all the samples coincided with the trigonal plane 
of the crystal. The technology of sample preparation 
consisted of the following. A single crystal rod of 8 mm 
diameter with trigonal axis coinciding with the rod axis 
was grown from the initial ingot of bismuth with a 
room-to-helium-temperature resistance ratio ~ 150. 
After cleaving the rod in liquid nitrogen into several 
parts, polished brass disks were fastened to the mirror­
finished surfaces with GKZh- 94 oil. Repeated cooling 
and cleaving has made it possible to obtain thin plates 
frozen to the brass disks. 

After heating and drying, the bismuth samples to­
gether with the disks were placed in a cartridge in a 
special rectangular resonator, the construction of which 
is described in [20J. A feature of this resonator is that 
the sample, while serving as the bottom of the resona­
tor has no mechanical contact with it. The sample can 
be ~otated relative to the polarization of the high­
frequency current; this polarization is linear in the 
resonator. The fastening of the sample to the bottom of 
the cartridge with oil did not greatly influence the mag­
nitude of the effect. 

To be able to prepare the samples successfully by 
this method, it is necessary that the bismuth rod be a 
high-grade single crystal, for only when a perfect single 
crystal is broken up by cleavage are the cleaved sur­
faces ideal planes. 

.s.z 
I 
I 
\ 
\ 
\ 
\ 
\ 
\ 

\ 

oL--~~~L+~1--+~-. 
f 2 J S1d /R 

FIG. 2. Amplitude of surface-impedance oscillations when standing 
electromagnetic waves are excited in a bismuth plate 0.064 mm thick 
at v/w = 10-2 in relative units. The numbers 1,2, and 3 denote the 
envelopes of the impedence oscillations upon excitation of parts of the 
wave spectrum with normal dispersion, and the numbers 4, 5, and 6 
pertain to anomalous dispersion. The dashed line shows (in a scale 
I: 100) amplitude of the oscillations of the surface impedance upon 
excitation of a magnetosonic wave. 
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dR/dH 

13 2 I I 

o Z J H,kOe 

FIG. 3. Experimental plots of the derivative of the surface im­
pedence against the magnetic field upon excitation of standing electro­
magnetic waves in a bismuth plate 0.064 mm thick at I.SoK, H II C1 

'and j II C2 . The numbers I, 2, and 3 denote the first hole cyclotron 
resonances. 

The sample thickness was measured with a vertical 
optimeter accurate to 2 J..I.. Since the contact method 
spoils the samples, the thicknesses were measured 
after the experiments. During the time of the experi­
ment, the magnetic field was in the plane of the sample, 
and the direction of the high-frequency current was per­
pendicular to H. The magnetic field was made parallel 
to the surface of the sample by setting the CR lines to 
maximum. The magnetic field intensity was measured 
by a Hall pickup calibrated by nuclear resonance. 

The existence of standing waves in the bismuth sam­
ple was revealed by oscillations of the derivative of the 
surface resistance with respect to the magnetic field. 
A typical plot of dR/dH against H is shown in Fig. 3. In 
strong fields one observes intense oscillations, which 
should be attributed, according to the universally accep­
ted concepts, to excitation of standing waves due to the 
MSW. However, as will be shown in the discussion 
some of them are due to MSW and some to CWo The 
shown dependence of their amplitude on a magnetic field 
is not the true one, since large changes of the plate im­
pedance lead to a strong change in the coupling of the 
resonator with the waveguide line, and this could cause 
considerable detuning when abridge circuit and a 
reflecting resonator are used. The amplitude of the 
oscillations can be estimated from the fact that the first 
hole CR line is hardly visible against their background. 

Near the hole CR lines, starting with the second, 
there are observed oscillations due to the CW. Their 
amplitude depends very strongly on the temperature. As 
seen from Fig. 4, which shows the experimental plots of 

dR/dH 

0.5 1.0 1,5 H, kOe 

FIG. 4. Plot of oscillations of 
dR/dH upon excitation of cyclotron 
waves in a bismuth plate 0.064 mm 
thick at different temperatures: a­
I.SoK, b-3.SoK. 

dR/dH 

FIG. 5. Plot of oscillations of 
dR/dH upon excitation of cyclotron 
waves near the second hole cyclo­
tron resonance in bismuth plates 
with different thicknesses at 1.5°K. 
H II C1,j II C2 . a-0.09 mm, b-
0.064 mm, c-0.02 mm. 

a 

b 

c 

1,5 H, kOe 

the oscillations near the second, third, and fourth CR 
lines at different temperatures, an increase of the tem­
perature from 1.5 to 3.5 0 K causes oscillations of notice­
able amplitude to remain only near the second line. If 
the CR amplitude is decreased by a factor 1.5, then the 
oscillation amplitude is decreased by a factor of 18. 
Figure 5 shows the amplitude of the oscillations near 
the second CR with changing sample thickness at 
T = 1.5°K. We see that the ratio of the amplitudes of 
the CR lines and oscillations, equal to 1.5 at a thickness 
0.02 mm, increases to ~ 25 at a thickness 0.09 mm. 
When the magnetic field is rotated in the plane of the 
sample, the amplitude and the period of the oscillations 
change. They are most intense when H II C1 and H 1 j. 

In weaker fields near the first electron CR line there 
are also observed oscillations at H 1 j, due apparently 
to a CW of another type. The properties of these waves 
were not investigated in the present study and will be 
dealt with in a separate article. 

DISCUSSION OF RESULTS 

Summarizing the conclusions of the theory, we can 
state that in bismuth in strong magnetic fields, and also 
in the region of hole CR, there can propagate an entire 
series of transverse-magnetic waves of the TM type, 
whose electric field vector lies in a plane perpendicular 
to H. The ellipticity of their polarization depends sig­
nificantly on the magnetic-field region, so that the 
waves can go over from transverse TEM to purely 
longitudinal ones. 

These waves can be arbitrarily broken up into three 
types: magnetosonic wave, whose spectra begins in very 
strong fields and terminates at the frequency of the first 
hole CR, long-wave cyclotron waves with normal dis­
persion, and short-wave cyclotron waves with anomalous 
dispersion. 

In turn, the spectrum of some CW lies in the cyclo­
tron-frequency region on the side of the weak magnetic 
field and deviates strongly from them, and the spectrum 
of others lies on the strong-field side and stays close 
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FIG. 6 FIG. 7 

FIG. 6. Comparison of calculated and experimental spectra in the 
region of the first hole resonance. Solid line-calculated spectrum. The 
points show the experimental data obtained with a sample 0.144 mm 
thick. 

FIG. 7. Comparison of calculated and experimental spectra of cyclo­
tron waves near the second and third hole resonances. <p = 0 at H /I C1 , 

H 1 C3 , d = 0.064 mm. 

to resonance over its entire extent. The spectrum of 
the magnetosonic wave is very close to the long-wave 
CW spectrum in the region of the first hole resonance, 
so that when damping is taken into account the two spec­
tra practically merge. An impression is therefore 
gained that it is not always possible to verify experi­
mentally that the MSW continues beyond the first hole 
resonance. Figure 6 shows the calculated spectrum of 
the MSW and CW together with the experimental points 
obtained with a sample 0.064 mm thick. The error bars 
denote the absolute errors due to the inaccuracy with 
which the sample thickness, the magnetic field, and its 
orientation with respect to the axes were measured. We 
see that the theory agrees well with experiment. 

The experimental plot of dR/dH (see Fig. 3) near the 
first CR line indicates the presence of oscillations of 
two types, with equal periods but with different ampli­
tudes. In accordance with the theory, these oscillations 
are due to excitation in the plate of symmetrical and 
antisymmetrical fields, the former being more damped 
with increasing longitudinal component of the electric 
field on approaehing the turning point of the spectrum. 
Each successive oscillation of one type corresponds to 
a change of unity in the integer number of waves spanned 
by the thickness of the plate. Only under this condition 
does the experimental dispersion curve agree with the 
theoretical ones, and its slope in the limit of the strong 
field corresponds to the data given in the literature 
(see(8]). The experimental spectra for all the CW were 
constructed in similar fashion. 

In accordance with Fig. 1, in the magnetic field in­
terval defined by 1 < nh/n < 1.71 there should exist 
also a short-wave CW with anomalous dispersion. How­
ever, as seen f:rom Fig. 2, the oscillation amplitude 
corresponding to this CW is much smaller than for the 
long-wave CWo To observe this amplitude it is neces­
sary to have much thinner samples (several microns), 
which would make it possible to reduce the influence of 
the oscillation background of the long-wave CWo In ad­
dition, the short-wave CW are apparently easier to 
excite and a resonator in which there is an electric­
field component perpendicular to the surface of the 
sample. 

A comparison of the experimental and theoretical 
CW spectra near the second and third CR harmonics is 
shown in Fig. 7. Here, too, there is good qualitative and 
quantitative agreement. 

There is also agreement between the calculated and 
experimental amplitude characteristics of the oscilla­
tions due to the CW for different CR harmonics. Unfor­
tunately, the oscillation amplitude for the first reson­
ance line is not known exactly, owing to the already 
mentioned apparatus effects, but the ratio of the ampli­
tudes of the second and third lines, which is equal to 
approximately six (cf. Fig. 5), is the same as obtained 
by calculation (cf. Fig. 2). The shape of the envelope of 
the oscillations also agrees with the predictions. For 
example, it is asymmetrical for the second harmonic 
and the damping is stronger on the side of the resonance 
line. 

No short-wave CW with anomalous disperSion were 
observed for the higher CR harmonics, just as in the 
case of the first harmonic; this is due to the much 
smaller contribution they make to the impedance and to 
the worse excitation conditions, due to the smaller 
transverse electric-field component. 

Rotation of the magnetic field in the trigonal plane 
changes the period and the amplitude of the oscillations. 
As the direction of H deviates from that of C l , the spec­
tral lines become steeper and come closer to the reson­
ant frequencies. Figure 7 shows the theoretical and ex­
perimental CW spectra for the second CR harmonic at 
an angle 10° between Hand C l • At larger angles the 
calculation in the present paper no longer holds, since 
one of the electronic effective masses begins to in­
crease strongly (as does also the radius of the orbit), 
and electronic CR begin to fall into the region of the 
hole CR. 

This circumstance calls for an exact account of the 
spatial dispersion not only in the hole part of the con­
ductivity but also in the electronic part. Experiment 
shows, on the other hand, that when H II C2, the magneto­
sonic wave (without allowance for its separation from 
the CW) no longer reaches the first hole CR, or in other 
words, the CW spectrum practically coincides with the 
resonance line. A detailed investigation of this question 
will be the subject of a separate article. 

In conclUSion, the authors thank A. A. Galkin for 
interest in the work and E. A. Kaner for a useful dis­
cussion. 
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