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Formulas which are exact in the long-wave limit are derived for plasma oscillations damping due to 
collisions between charged particles. In a one-component plasma with a homogeneous compensating 
background the damping is ~k2 for k - 0, whereas in a two-component plasma with particles of un­
equal masses it is constant for k - O. The integrals defining the damping are calculated explicitly 
for the one and two-component models in the limiting cases of a hot and cold Boltzmann plasma. 

1. The purpose of the paper is an exact calculation, in 
the limit of long waves (small wave vectors k), of the 
damping of plasma oscillations by particle collisions. 
We consider a model of a system of electrons against 
the background of a homogeneous compensating charge, 
and also a more realistic model of a two-component 
plasma. In the first model, and also in a two-compon­
ent plasma of particles of equal mass, the calculated 
part of the damping decreases in proportion to k2 as 
k - O. On the other hand, if the masses of the positive 
and negative charges are different, then the damping 
tends to a constant yo as k - O. In any case, at k - 0 
the collision part of the damping is larger than the 
collisionless Landau damping P1 . 

In diagram perturbation theory (cf. f21 ), the problem 
reduces to finding the imaginary part of the polariza­
tion operator IT (k, E). In the one-component model, we 
express this function in terms of a vertex part that 
satisfies an equation of the kinetic type. In a multi­
component system it is necessary to consider several 
vertex parts and a system of kinetic equations. The 
sought damping is given by a second-approximation 
correction in the solution of the kinetic equation (sys­
tem). The cross sections for the scattering of the 
particles in the medium, which enter in the collision 
integrals, are taken in an approximation that takes into 
account the dynamic polarization of the mediumP1 . 

The kinetic equations and a general formula for the 
damping are obtained in Secs. 2 and 3 for a single­
component system, and are generalized then in Sec. 4 
to a two-component system. In Sec. 5 we calculate the 
integrals that determine the damping for one-component 
and two-component systems in the limiting cases of a 
"hot" and "cold" Boltzmann plasma. In the intermedi­
ate calculations we used a system of units 11 = kB = 1, 
where 11 and kB are the Planck and Boltzmann con­
stants, and we return to the ordinary units in the final 
answers. 

2. As is well known, the plasma-oscillation spectrum 
is determined by the poles of the density-oscillation 
Green's function Gp(k, E), which is expressed in 
terms of the polarization operator II (k, E) by the 
formula 

Gp(k,E)= TI(k,E) (1- 4:~2 TI(k,E») -'. (2.1) 

We consider first a system of electrons against the 
background of a uniform compensating charge. The 
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following exact diagram equations hold: 

11= <:]>; ]> = f +] If I" Iv (2.2) 

where the thick lines correspond to the exact electronic 
Green's function. The first of these equations makes it 
possible to express the function IT (k, E) in terms of 
the electronic Green's function and the vertex part D. 
The second is an equation for the vertex part, in which 
K denotes an irreducible four-pole diagram (the sum 
of the contribution of diagrams that cannot be cut 
vertically by breaking two lines). 

Equations of the type (2.2) were considered in[41 for 
an electron-phonon system. Following[41, we can reduce 
the second equation of (2.2) at small k and E ~ wo, 
where Wo is the plasma frequency, to an equation of 
the form 

(2.3) 

for a new unknown function h(k1' k, E). By I(h) we de­
note the expression 

(1 + e- "') 
I (h) ~ ----S d3k d"k d"k n n n e,("h,) (2n) ~ 2 3 ,,2. 3 4-

X [r['I5(k, + k, - k, - k,)I5(e, + e,- e,- eJ 
X (h, + h, - h3 - h,). (2.4) 

Here q == E (ki) = kif 2m - iJ. is the energy spectrum 
of the electrons (iJ. is the chemical potential), 
hi = h( ki, k, E), ni = (e (3Ei + 1)-1 is the Fermi distribu­
tion function. The factor [r [2 in (2.4) is the square of 
the modulus of the four-point diagram and is propor­
tional to the differential cross section for the scatter­
ing of two electrons in the medium. 

Equation (2.3) has the structure of an inhomogeneous 
linearized kinetic equation in which I( h) plays the role 
of the collision integral. The function IT (k, E) of inter­
est to us is expressed in terms of the solution h of 
Eq. (2.3) with the aid of the formula 

[3 S e'" Il(k,E)~--, d'k,. o(Eh,-1)~~<Eh-1>, 
(2Jl) , (e",+1)" 

(2.5) 

to which the first of the diagram equations in (2.2) re­
duces (see[41). 

3. Let us examine Eq. (2.3). At small k and 
E ~ Wo, the collision integral I(h) is small in com-
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parison with the other terms of the equation, so that in 
the first approximation we have 

h "'=' h"'(k" k, E) = (E-kk,/m)-t. (3.1) 

Substituting h( 1) in (2.5), we obtain an expression 
corresponding to the simplest second-order diagram, 
namely an electron loop 

C>' 
which will henceforth be denoted ITo. The imaginary 
part of ITo determines the Landau damping (cf, e.g.,[5]). 

The second approximation h( 2) for h is obtained by 
replacing h in the collision integral by its first ap­
proximation h( 1) 

h'" = (E-kk,/m)-'(1-i/(hC'))) =hc"_ihC!)[(hCl)). (3.2) 

Substitution of h( 2) in (2.5) yields the second approx­
imation for IT in the form 

(3.3) 

For the imaginary part of the correction .lIT, which 
is of interest to 11S, we obtain the expression 

IIm~nl = 4(~!)8 Sd'k,d'k,d'k,d'k. 

X e""+")n,n,n,n,1 r 1'6 (k, + k2 - k, - k.) 

x 6 (E, +" - E, - E.) (h,(!) + h,(t) - h,(t) _. h.(t)),. 
(3.4) 

where h~I) = h(l)(ki, k, E}. At small values of k we use 
the expahsion 

h(!)= (E.- .kki ) -, = E-' (1 + kki + (kk i )' + .. ) (3.5) 
, m mE (mE)" , 

the third term of which makes the main contribution to 
(hi 1) + h~ 1) - h~ 1) - h~ I)}, since the contribution of the 
first two terms vanishes identically. 

The damping y determined from (3.4) is given by 
the formula 

4ne' ~e' 

" 
= -EI 1m ~TI I ~ = k' S d'k d'k d'k d'k e""+") 

k' E w, 2(2n)'(mUl,)' '2" 

X n,n,n,n.1 r 1'1i (k, + k, - k, - k,) I) (Et + e, - E, - E.) . (3.6) 
X (nkt) 2 + (nk,) , - (nk.) , - (ok.) ')' 

where n is a unit vector parallel to k. The damping 
(3.6) is proportional to k2 and exceeds the Landau 
damping when k·- O. We shall see later on that for­
mula (3.6) holds true also for a two-component system 
of particles of equal mass. 

4. The genera.lization of the results to include a 
two-component system entails no difficulty. We have 
here two vertex parts in place of one, and accordingly 
two functions hand g in place of the function h; these 
functions satisfy a system of kinetic equations in the 
form 

(E - kk, / m,)h + i(I,,(h) + [,,(h, g» = 1, 

(E-kk,/m,)g+i(l2l(h, g) +[,,(g» = 1. (4.1) 

Here Iik are the collision integrals describing the 
scattering of particles of one sort at i = k and of dif­
ferent sorts at i;1! k. The formula for II (k, E) (the 
analog of (2.5) is 

~ e'" 
TI(k,E)=-(2n)' Sd'k, (e"'+1),(Eht -1) (4.2) 

~ ei~, 
+--Sd'k,-_-.-(Egt-n"" f}«Eh-1>, +<Eg-i>,), 

(2n)' (e'" .,-1)' 

where 

e, = k~/ 2m, - Il', i', = kif 2m, - Il', 
h, = h(k" k, E), g, = g(k" k, E). 

A solution of the system (4.1) in accordance with the 
scheme indicated in Sec. 3, gives an expression for 
I 1m All I in the form of a sum of integrals of the type 
(3.4). The integrands contain as factors the squares 

(h:') + h:!) - h,(!) - h l(!) " (g,(t) + g2(t) _ g!tl _ g~!) )' or 
(h,(l) + g,'!) _ h,(t' _ g.Ct»'. 

The functions 

are the first approximations in the solution of the sys­
tem (4.1). It follows from (4.3) that the expressions 
h\I) + h~l) _ h~I) _ h~I" g\I) + gkI) _ g~I) _ g~l\ are 
quadratic in k at small k, and the expression hi 1) 

+ g~I) _ h~I) _ g~I) is linear in k when mI;1! m2. There­
fore at mI;1! m2 the contribution of the integral with 
(hi I) + g~I) _ h~I) - g~I)}2 is predominant. Physically this 
means that the main contribution to the damping is 
made by collisions of particles of different masses. 
As k - 0, the damping tends to the limit 

On the other hand, if the masses of the positive and 
negative charges are equal, then y ~ k2. Formula (3.6) 
remains in force in this case if the cross sections for 
the stamping of particles having charges of one sign 
and of opposite signs can be regarded as equal. 

5. We consider in greater detail the case of a ~ 
Boltzmann plasma. In this case ni R: e-{:lfi, niR: e-{:lfi. 

For the one-component system, expression (3.6) in 
terms of the variables 

P = 1/2(k, + k,), Q = Ih(k, +k.), p = k,- k3, q = k t - k. (5.1) 

takes the form 

2me'~e"· S 
V = k' d'Pd'Qd'pd'qlrl'· 

(2n)' (mUlo)' (5.2) 

{ ~P' P (p' + q') } x exp - - - (np)2(nq)' 6(pq) I)(P - Q). 
m 4m 

For a "hot" plasma we use the approximation 

r",,- 1---TI, 4ne' ( 4ne' ) _t 

p' p' ' 
(5.3) 

which takes into account the dynamiC polarization of 
the mediumf3] and corresponds to the Born approxima­
tion for the amplitude for the scattering of two elec­
trons in a medium. The function (5.3) depends on the 
variables p and P I cos (p, P) I. 

The presence of the Ii-function Ii(P - Q} eliminates 
the integration with respect to Q, and the integral with 
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respect to q is equal to 

( ~q') n (4m)' J d'q (nq) '6 (pq) exp - 4m = '2 ~ p-' (p2 - (np) '). (5.4) 

The integral with respect to P reduces to a one­
dimensional one 

/'. (~P' ) J d'Plr (p, Plcos (p, P) I) I' exp --;;:-

2nm ~S ( PP') = -tl-, dPlr(p,p) I'exp --;;- , (5.5) 

and the integral with respect to the angular part of the 
momentum p is 

S dQ.(np)'(p' -(np)') = 8np'/15. (5.6) 

Expression (5.2) takes the form 

2e·e'~· ~ (PP' ) « ( pp' ) 
y=k' )' SdPexp -- Sp3dplr(p,P)12exp --4 . 

15(nwo ~'o mom 
(5.7) 

In terms of the approximation (5.3) we have 

(4ne')' 
1 r (p, P) !' = (p' + a (P)) 2 + b' (P) , (5.8) 

where the functions a and b are defined as the real and 
imaginary parts of the expression 

c = a + ib = a(O) {( 1- 2e-" j eU
' dU) 

o 

in which 
+ in'f,te-"} "" a(O) (!jl(t) + iljl(t», 

2 '. P 'I, 
a (0) = me'e'" ( n~) ,t = P ( 2m) . 

In the integral with respect to p we can replace 
exp (_/3p2/ 4m) by unity for small p (p < ko), and 
neglect a and bin (5.8) for large p (p> ko): 

00 P , f p'dp 1 r (p, P) I' exp (- 4~ ) 

.. 3d ~ d A , 

= (4ne') , (S . p p +S .-l!..-ex (-.:E..)) 
, (p' + a)' + b2 "P P 4m 

(5.9) 

(5.10 ) 

(4Jte')' ( 116m' a (n a)) 
=--2- 'TIn p'(a'+b') -'b 'T-arctgb -C , (5.11) 

where C = 0.577 ... is Euler's constant. 
In the remaining one-dimensional integral with re­

spect to P, we change over to the dimensionless 
t = P (/3/ 2m)l/2, and eliminate the factors e /3/1 and Wo 

by using the formulas 
, 411e'p 

0)0 =--. (5.12) 
m 

As the result we obtain an expression for the damping 
in the form 

= k'.. In~B __ _ 4e' [mk 'T' 
y 15 (1ImkB'T) j, ne'p/i2 C 2J] , (5.13) 

where 

J= .:. I e-U'[ 2Ql(t) (..':..-arctg Ql(t) \ + In({p2(t)+Ijl'(t»] dt. (5.14) 
1'2110 Ijl(t) 2 l\1(t) 

We consider now the case of a classical (cold) Boltz­
mann plasma. The right-hand side of (5.3), which has 
for a hot plasma the meaning of a scattering amplitude, 

now plays the role of a retarded interaction potential 
of two electrons in a medium in the Fourier representa­
tion. Without dwelling in detail on the calculation of 
the integral (5.2) in this case, we present the final 
result 

8e' [( 4rDk.T) 1 ] (5 15) 
y=k'15(nmkBT)'" In --e'- +2- 2C - J , • 

where rD = (41Te2 p/kBT)-l/2 is the Debye radius. 
Formulas (5.13) and (5.15) are given in ordinary 

units. We note that the damping (5.15) for a classical 
(cold) plasma, unlike (5.13), does not contain the 
quantum constant ti, as indeed it should not. 

Formulas {3.6) and the ensuing formulas (5.13) and 
(5.15) hold true also for a two-component plasma of 
particles with equal mass, if p is taken to mean the 
total particle density. 

We now obtain the damping (4.4) for a two-compon­
ent system under the condition 

(5.16) 

which is characteristic of a real electron-ion plasma. 
In the approximation (5.3) for r it is necessary to 

replace no (the electron loop) by the sum of electrons 
(ml = m) and ion (m2 = M) loops. In all other respects, 
the calculations for the Boltzmann plasma are analo­
gous to those for the one-component system and leads 
to the results 

Yo = 2wo (e'p'I' )'1,[ In 2i2kBT -...E.-I, ] 
3 kBT /iwo 2 

(5.17) 

for a hot plasma and 

Yo = 2;0 (~:~/') '/'[ In (4r:~BT ) - 2C - J, ] (5.18) 

for a cold plasma. Here p = Pl + f2 is the total parti­
cle density, rD = (41Te 2p l/kBTt l/ is the "electronic" 
Debye radius, and 

Jl=-1-S~e-"[ 2(1+!jl(t» arct l\1(t) 
2)fn, Ijl(t) g1+Ql(t) 

+lnW+Ql(t»'+I\1'(t» ]dt. (5.19) 

A numerical calculation yields J ~ 0.30 and J 1 ~ 0.69. 
The factor in the square brackets in (5.17) (the 

Coulomb logarithm for a hot plasma) coincides with 
that obtained by Perel' and Eliashberg[6] in the calcula­
tion of the absorption of electromagnetic waves in a 
plasma. 
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