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Effects due to nonlinear interaction between resonant particles and quasimonochromatic wave packets 
of circularly polarized waves propagating in a plasma along a magnetic field are considered. It is 
shown that the finiteness of the packet results in some new interesting phenomena which are not 
manifest in a constant amplitude wave, viz., steepening of the packet fronts in a stable plasma and 
its compression, expansion of the packet in an unstable plasma, periodic amplitude modulation of a 
packet with a sufficiently steep leading front. The results are compared with experiments on the 
propagation of monochromatic whistlers in a magnetosphere. 

1. INTRODUCTION 

THE interaction of monochromatic helical waves with 
resonant particles and the ensuing nonlinear effects 
were discussed in a number of papers (cf., e.g.,[l-7]). 
In all these papers, they considered unbounded plane 
waves. Yet in many cases (this pertains, for example, 
to the propagation of whistlers in the magnetosphere) 
one deals with quasimonochromatic wave packets. This 
gi ves rise to new physical factors that can cause ef
fects greatly different from those that follow from the 
theory of unbounded waves. A numerical investigation 
of the trajectories of particles in a packet of whistlers 
was carried out in[S]. In the present paper we use 
analytic methods that make it possible to explain a 
number of interesting features of the nonlinear evolu
tion of a packet propagated in a stable or unstable 
plasma. This evolution depends on the shape of the 
leading front of the packet: the effects will be different 
for abrupt and for gradual fronts. 

We assume that the results obtained in the present 
paper can be useful, in particular, for the interpreta
tion of experiments on large-amplitudes whistlers 
emitted by terrestrial transmitters and received in 
magnetically-conjugated points (cf.[9] and a large num
ber of analogous papers). 

2. EVOLUTION OF WAVE PACKET 

We consider a quasimonochromatic wave packet of 
circularly polarized waves (whistlers, to be specific) 
propagating in a collisionless plasma along an external 
magnetic field I): 

Bx = Bsin (kZ - wt), By = B cos (kZ - wt), (2.0 

k'c' / 00' = 00.' / 00(00, - 00), (2.2) 

where wp and wc are the plasma and cyclotron fre
quencies of the electrons. Here B(Z, t) is a suffic
iently slowly varying function, such that the interaction 
between the waves and the particles can be considered 

l)The extension of the corresponding results of the case of ion
cyclotron waves is obvious. 
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on the basis of the theory of a monochromatic wave. 
Packets of this type will be called quasi monochromatic . 
The electric field of the wave is determined from 
Maxwell's equation 

rot E = -c-'oB / at (2.3) 

and can be written in the form 

Ex= ~By+ {jEx, Ey = -~Bx+ {jEy , 

kc kc 

where 5Ex or 6Ey is the part of the electric field 
connected with the variation of the amplitude of the 
wave packet in space and in time. In reaches the maxi
mum value at the boundaries of the packet (if the latter 
are sufficiently abrupt). However, in this case, just as 
for a packet with gradual shape, the terms 6E can be 
neglected, since they lead to effects ~B, whereas the 
prinCipal effect of interest to us are ~B1/2. 

We start from the kinetic equation 

of 8f e I)t 
-I) +v-R --{eE+[v(B+Bo)]}-:-= 0, 

t a me iJv 
(2.4) 

where Bo is the intensity of the constant magnetic 
field. We introduce cylindrical variables in velocity 
space: 

Vr = W cos <p, Vy = W sin!p, v" 

and then change over in (2.4) to the independent vari
ables that are most convenient for our problem 

t, z = -(Z-v,t), 2£=kZ-wt+<p-'/,rr, 
(2.5) 

U = v, - ((,) - wcl / k, w' = W' - 2uw, / k. 

The quantity z is the coordinate of the particle in a 
system where the wave packet is at rest, reckoned 
from the leading edge inside the packet, and Vg is the 
group velocity. The variable u is the deviation of the 
particle velocity Vz from the exact resonant value 
vR = (w - wc)/k, Le., particles with sufficiently small 
u interact resonantly with the wave. The wave acts on 
them with a longitudinal force that varies slowly over 
distances on the order of the wavelength. An analysis 
of the motion of the particle in the wave field (2.1) 
(cfy-71) shows that the characteristic time of variation 
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of the velocity u for the resonant particles is 

,= (hkw,W)-'I" (2.6) 

where h is the amplitude of the wave field in units of 
the constant field h = B/Bo. In order for the particle 
to have a velocity in the resonant region, it is neces
sary that u satisfy the condition u ::; l/kT. We shall 
henceforth be interested only in the motion of resonant 
particles. For such particles, the kinetic equation in 
terms of the variables (2.5) is given by 

al + v,!l + ku al _ sin 2s I!L = 0, 
at az 2 as k,' au 

(2.7) 

where 
v, = v,- VR = v.(1 + w,/2ro). (2.8) 

In the derivation of (2.7) from (2.4) it was assumed 
that the wave amplitude is sufficiently small, namely 

~ == (hw( / k'WT') 'k ~ 1 

(WT is the average transverse thermal velocity of the 
particle). Outside the wave packet, the kinetic equation 
is obtained from (2.7) by assuming there T = 00. 

The characteristics of Eq. (2.7) are determined by 
the following system of ordinary differential equations: 

dz 2 h' 
dt = - = -ds = - -- du 

Vo ku sin2s 
(2.9) 

and coincide formally with the equations of motion of 
the electron in the field of a longitudinal electrostatic 
wave E = Eo sin (kx - wt), if the following correspond
ence is established: 

dx w 
2s-+kx, U-+---, z-+v,t, (hkw,W)-'k-+(eEok/m)-'k. 

dt k 

After finding the characteristic particle trajectories 
from the system (2.9), we obtain the general solution of 
the kinetic equation. As a simple example, but one of 
importance in what follows, we present the solution for 
a packet of rectangular form and of length l: 

t = t(t -..:.-, am [F(s,x)- _Z_,x], 
Vo voxt' 

~dn[F(s,x)--Z-,X]' w), O<z<l, (2.10) 
kx, vox, 

where f is an arbitrary function of its arguments, 
F ( ~, /() is an incomplete elliptic integral of the first 
kind, and am[F, /(] and dn[F, K] are elliptic functions 
with modulus K; the variable K( u, ~) is defined by the 
expression 

x',' = ('j,k'u' + ,;-' sin's)-" (2.11 ) 

and w is defined in (2.5). Outside the limits of the 
packet we should put T - 00. Then K - 0, but the 
product KT remains finite and tends to the value KT 

- 2/ku (z - 0, z - l). 
The quantity 1/ K2T2, apart from a constant factor, 

is the total "energy" of the particle; it remains con
stant when the particle moves in the field of the packet 
(if the amplitude of the latter is constant). By analogy 
with the motion in the field of an electrostatic wave, 
we call the particle trapped if it has I K I > 1. In this 
case the angle variable ~ takes on values in the range 
- arc sin I 1/ K I < ~,< arc sin I 1/ K I, and the mean 
value of the velocity u is equal to zero. Accordingly, 
a particle for which I K I < 1 will be called untrapped. 
For such particles u ~ 2/kT ,.. 0 and - 00 < ~ < 00. 

To determine the distribution function inside the 
packet, it suffices to know its value at the right-hand 
boundary, i.e., at z - -0. We confine ourselves here 
to the simplest case when the distribution function 
fo(t, ~, u, w) in front of the packet is stationary, i.e., 
it does not depend on t, and furthermore, does not de
pend on the angle variable ~. We assume also that the 
distribution function in the resonant region ahead of 
the packet, expressed in terms of u and w, can be 
expanded in powers of u and we can confine ourselves 
only to the term linear in u (this is valid if the distri
bution function is sufficiently smooth and the width of 
the resonant region is sufficiently smooth and the width 
of the resonant region is sufficiently small, i.e., 2/kT 
« vT, where vT is the longitudinal thermal velocity). 
Taking into account the connection between wand W, 
which is determined by the last formula in (2.5), we 
obtain 

I,(u. w) = f, + f,'u, 

where 

1,=/o(v" W).,-'n' I' - ( at + w, a/ ) 
, - ~ kW aw "-'R' (2.12) 

Bearing in mind expression (2.10), we obtain the distri
bution function in the resonant region inside the rectang
ular packet in the following form: 

21' [ z] f=I,+-' dn F(s,x)--,x , 
kx, Vox, 

(2.13 ) 

where T = T(W) is determined by expression (2.6). 
This distribution function does not depend on the time 
t, by virtue of the assumption that the amplitude h of 
the wave field and the distribution function ahead of the 
packet are stationary. It is seen from (2.13) that the 
distribution function is an oscillating function on the 
coordinate z. The character of these oscillations can 
be visualized by expanding the function dn [ F, K] in a 
Fourier series (see[lOl). A contribution independent of 
z is made to the distribution function by its ergodic 
part[lll. It determines the main properties of the dis
tribution function inside the packet at sufficiently large 
z (z ~ VoT). Denoting the ergodic distribution function 
by fE, we obtain after averaging (2.13) over z: 

IE (x. W) = f,(W) + n/o'(W) j hxK(x), Ixl < 1, 

/E('I'., W) = I,(W), Ixl > 1, (2.14) 

which accordingly coincides with the ergodic distribu
tion function in an unbounded wave [7b 1 (K ( K) is a com
plete elliptic integral of the first kind: K( K) 
= F( 1T/2, K». 

3. PACKET WITH SLOWLY VARYING AMPLITUDE 

We consider a packet with an amplitude that varies 
sufficiently slowly, such that 

&r;at~ 1, voa,/az~ 1. (3.0 

Then the ergodic distribution function of the resonant 
particle at the beginning of the packet is given by 

Mz) = {/o + nj,'/k"x,K(x,) , 

f" 
(3.2) 

where Ko and To correspond to the initial amplitude 
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h02l • To determine the distribution function for arbi
trary z, we consider first the variation of the quantity 
K, which is an integral of the motion at constant am
plitude (T = const). 

Differentiating (2.11) with respect to the coordinate 
Z and using the equation of motion (2.9), we obtain 

1 dx d't k'u.' 
--;'-7z= 't7z-4-' 

where K is a certain slowly-varying function. Averag
ing the quantity u2 over the rapid variations we obtain 
(for untrapped particles) 

u., __ 4_ E(x) 
- k'x''t' K(x) , 

where E( K) is a complete elliptic integral of the 
second kind. Substituting u2 in the preceding equation, 
we obtain after simple transformations 

~[E(X)]· =0. (3.3) 
dz XT 

From (3.3) we get, in particular, a connection between 
K, T, and the corresponding quantities Ko, To at the 
beginning of the packet: 

E(K) IK't = E(xo) IKoTo (ixi < 1, Ixol < 1). (3.4) 

The left-hand side of (3.4) is an adiabatic invariant for 
the untrapped particles. Similar reasoning yields for 
the trapped particles the relation 

T-'[E(1/x) - (1-x-')K(1/x)] =const (ixi > 1), (3.5) 

which is the condition for the conservation of the adia
batic invariant for the trapped particles. Formula (3.5) 
was obtained earlier by Laval and Pellat (12]. It will 
not do for us, however. It should be noted that the con
servation of the adiabatic invariants is violated when 
the particles go over, with changing amplitude, from 
the untrapped region to the trapped region and vice 
versa. It is therefore important to apply relation (3.4) 
only to particles which remain untrapped during the 
entire time of field variation. 

To write down the distribution function for arbitrary 
Z with the aid of (3.2) and (3.4), it is convenient to 
change over from K to a new independent variable 

~ =E(x) Ix (Ixl < 1). (3.6) 

It is easy to verify that Jl ( K) is a monotonically de
creasing function. Obviously, Jl increases to take over 
the particle energy, and assumes for the untrapped 
particles values in the interval 1 < I Jl I < 00 (the sign 
of Jl coincides with the Sign of the velocity). 

We now use the function R( Jl) introduced in[l3] and 
defined in parametric form by the relation 

R(fA) = 1/xK(x), (3.7) 

where K( Jl) is uniquely defined in (3.6). It is easy to 
verify that R(j.L) is a monotonically growing odd func
tion, R( 1) = 0, and R( 00) = DO. The asymptotic repre
sentations for R(Jl) are as follows: 

R(~) =-2/ln(fA-1) + ... , ~-1<1, 
(3.8) 

2)Of course, in order for the use of the ergodic distribution function 
to be valid at the beginning of the packet, the distance from the point 
z to the beginning of the packet should be large in comparison with 
VoTo· 

Relation (3.4) now takes the form 

fA l't = ~o I 'to. (3.9) 

It follows from it, in particular, that if the field ampli
tude increases and T decreases accordingly, then Jl 
decreases (the particle goes over to a lower energy 
level). Some of the untrapped particles then become 
trapped. The distribution function of the untrapped 
particles at the point Z is expressed in terms of the 
corresponding distribution function at the start of the 
packet (3.2) in accordance with the Liuville theorem 

( ( rt/o'(W) ('t.) (3 10) I ~,W,z)=I. W)+ k R -( -~ , • 'to T h) 

Ixl<1, Ifll>1, h=h(z), 

where we have used relation (3.9). 
As to the trapped particles, it is obvious that their 

distribution function should not depend on the direction 
of the velocity and consequently on the sign of K. The 
following condition should therefore be satisfied on the 
boundary between the regions of the trapped and un
trapped partic les; 

IT( Ixl-+ 1) = '/dIUT(X-+ 1) + IUT(X-+ -1)], 

where the distribution function of the trapped particles 
is on the left and that of the untrapped ones on the right 
(cf.[l4J). Substituting (3.10) in the right-hand side of 
this relation and recognizing that R( Jl) is an odd func
tion of Jl and consequently of K, we find that in the 
vicinity of the separatrix, meaning everywhere, the 
distribution function of the trapped particles does not 
depend on il: 

IT(K, W, z) = I.(W), Ixl > 1, (3.11 ) 

Formulas (3.10) and (3.11) determine, however, the 
distribution function only in the front part of the packet, 
where the resonant particle, which always moves in a 
direction of increasing z, "sees" a field that increases 
in amplitude. Thus, (3.10) and (3.11) hold when 

Z<Zm, h(zm)=hm (hm=hm~), (3.12) 
We now determine the distribution function in the 

real part of the packet (z > zm), where the field de
creases in the direction of motion of the resonant elec
tron. In this case j.L increases when the particle moves 
in accordance with the relation Jl (h)/T( h) 
= Jl (hm)/T(hm ), so that the particles that were un
trapped at h = hm have at Z > zm values of the 
parameter Jl in the interval . 

1 < 't(h) l't(hm ) < I~I < 00. 

Obviously, the distribution function of the untrapped 
particles has in this interval the same form as (3.10). 
The remaining untrapped particles, which at Z > zm 
have values of Jl in the interval 

1 < I~I < T(h) IT(hm ), 

rt/o' (W) (To ) I(~, W,z)= !o(WH R --~ 
kTo T(h) 

3)This, however, is connected with the fact that we take into ac
count only the linear term in the expansion of the distribution func
tion with respect to u (see the formula preceding (2.12)). In the next 
approximation we would obtain in the right-hand side of (3.11) an ad
ditional term that depends on ,,2. 
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were trapped at Z '" zm, and consequently their distri
bution function is the same as for the trapped particles, 
i.e., it coincides with (3.11). Thus, behind the maximum 
of the packet (z > zm) the distribution function of the 
untrapped particles is given by 

for 1111 > -r;(h) /'r:(hm ) > 1, 

1(11, W, z) = 10(W) for 1 < 1111 < T(h) j-r:(hm ). (3.13) 

For the trapped particles we have as before 

I ('X, W, z) = 10(W), I'XI > 1. (3.14) 

The irreversibility that appears in the difference of 
the distribution functions in the front part of the packet, 
where the particle moves in an increasing field, and in 
the rear part, where the field decreases, is connected 
with the fact that when the field varies the particles 
cross the boundary between the regions of the trapped 
and untrapped particles. The adiabatic invariant is not 
conserved for this crossing. 

4. ENERGY CONSERVATION EQUATION 

We consider first the difference between the average 
kinetic energy of the particles in the field of the wave 
and in the absence of the wave. This difference is given 
by the formula 

mns 15T = -9- dv(v.' + W')15I, (4.1) 

where /if is the change induced in the distribution func
tion by the wave. The variation of /if is significant only 
in the resonant region, i.e., for particles having a 
velocity Vz,:::j vR, u ::5 l/k T. Outside the resonant 
region, it vanishes rapidly. 

If we now denote the average density of the electro
magnetic energy in the whistler by 

(4.2) 

then U and /iT are connected by the following equation: 

iJU iJU iJ15T iJ15T ( 3) -at+v.az+-at+VRaz=O. 4. 

Equation (4.3) takes into account the fact that U propa
gates with the group velocity Vg of the packet, whereas 
/iT propagates with the average velocity vR of the 
resonant particles. Changing over to a reference 
frame that moves together with a packet, we obtain in 
place of (4.3) 

iJ(U + 15T) /iJt + voiJfJT /iJz = 0, (4.4) 

where the coordinate Z is defined in (2.5). Relations 
(4.3), (4.2), and (4.1), together with the expression for 
Of, determine in principle the evolution of the packet 
due to the interaction of the wave with the resonant 
particles. 

5. EVOLUTION OF A PACKET WITH SMOOTHLY 
VARYING AMPLIT\.TDE 

Using the expressions (3.10), (3.11), and (3.13), 
(3.14) for the distribution function, we obtain from 
(4.1) after simple calculations 

15T = - Ah'l, 1289~nw ( :' )'" j 10' (W) WI, dW, (5.1) 
o 

where A(h) is defined by 

A = 1 - ~ ~o ~ dy R (V- ~: y)[ :2 R (y) - YJ-' 
(h,ho)lJ 

(5.2) 

at Z < zm and 
(h,hm )_l/S 

9 \" A=1+ Z J dyyR(y) 
1 

9ho ~ (!Il;;)[n2 -
-Zk J dyR \V k Y TR(y)-yJ 

(hm lho//2 

(5.3) 

at Z > zm' 
The expression (5.2) is valid in the front part of the 

packet, where the field increases, and (5.3) is valid in 
the region where the field decreases. 

We shall consider henceforth the case of greatest 
interset, when h ~ ho. We can then neglect in the inte
grals of (5.2) and (5.3) the terms containing ho, and 
(4.4) yields 

iJh iJh 
[1-IjJ(h) ]-- v.ljJ(h)- = 0 

iJt iJz' 
(5.4) 

where we have ahead of the maximum of the packet 

ljJ(h) =a(hm/h) 'I, 

and behind the maximum of the packet 
(h /h)'h. 

( h )'I'{ 9 m 3 h (11k 
ljJ(h)=a; 1+2 S dyyR(y)-Z ;R f ;)}. 

1 

(5.5) 

(5.6) 

The constant a is determined in this case by the ex
pression 

64 '/ 1 ~ ~ 

a= - YL (~) '-Sfo'(W)W'I'dW/Sf.'(W)W'dW (5.7) 
3n' w, k h:!: 0 0 ' 

where yL is the increment (decrement) of the wave in 
the linear approximation: 

n'w.'w ( (J) ) ~ 
YL =---w- 1--;;- S fo'(W)W'dW. 

o 

If we introduce the characteristic nonlinear time 

which differs from (2.6) in that the variables Wand h 
are replaced by constant values WT and hm, then we 
can easily verify from (5.7) that 

(5.8) 

Relation (5.4) has the form of the equation of a sim
ple wave in hydrodynamics, where the propagation 
velocity C(h) is given by 

C(h) =voljJ(h)f(1-IjJ(h)]. (5.9) 

The solution of (5.4) is 

h = <I>[z + C(h)t], (5.10 ) 

where the function <I>(z) describes the profile of the 
wave at t '" O. In the investigation of the evolution of the 
the packet we assume that (h/hm )1/2 ~ a(a« 1), so 
that ljJ(h)« 1, and we can write in place of (5.9) 

C(h) = voljJ(h). (5.11 ) 

The general character of the evolution is determined 
by the sign of the derivative dC/dh. It follows from 
(5.5), (5.6), and (5.7) that 
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. dC . 
slgn"dh = - sIgn YL, Z < Zm; 

. dC 
slgn"dh = sign YL; Z > Zm. 

A plot of C(h) is shown in Fig. 1. 
Assume now that the medium is stable (YL < 0). It 

follows then from (5.5) and (5.6) that both the leading 
front and the "tail" of the packet should become 
steeper in time. When the leading front becomes suf
ficiently steep, relation (3.4), which is valid only in the 
adiabatic approximation, no longer holds. Accordingly, 
Eq. (5.4) ceases to be valid. In this case we must use 
for the description of the packet evolution a different 
model, which will be discussed qualitatively in the next 
section. 

In an unstable medium (yL > 0), the evolution of 
the packet will be opposite that considered above, and 
the packet will stretch out. 

We consider now certain important details of the 
described processes. Integrating the equation ht 
- C(h)hz = 0 over the entire length of the packet, we 
obtain 

h 

!:.. j h(t,z)dz = j C,(h)dh+ j C,(h)dh, 
dt_ oo 0 hm 

(5.12) 

where C1(h) and C2(h) are the propagation velocities 
of the perturbations ahead and behind the maximum of 
the amplitude. Owing to the irreversibility that leads 
to different expressions for C1(h) and C2(h) ahead of 
the maximum hm and behind it, the integrals in the 
right-hand sides of (5.12) do not cancel each other, so 
that the area of the profile of the packet envelope is not 
conserved. It is easy to verify that 

d w <0 
-Sh(t,z)dz{. 0' 
dt _00 > , 

YL<O 
YL>O' 

Le., the area of the profile of the envelope decreases 
in a stable medium and increases in an unstable one. 
It is easy to verify here that the value of the maximum 
amplitude is conserved. Indeed, it follows from (5.4) 
and from the equation ahm/azm = 0 that 

dhm _ ahm dZm ..j... ah,. _ 0 
--;u-- aZm at Tt"- . 

This, however, is valid only until the fronts of the 
packet become sufficiently steep. 

The order of magnitude of the characteristic time 
of steepening of the leading front in a stable medium is 

t ~ l(voYL't"m)-', (5.13) 

where I is the length of the packet. The packet can 

/.5 

Of 

z 

FIG. I. Plot of the function 
C(h): I-z < zm' 2-z > zm. 

then become so steep, that we can regard it as rectangu
lar with sufficient accuracy. 

6. EVOLUTION OF A RECTANGULAR PACKET 

We consider the following simple model. Assume 
that at the initial instant of time the envelope of the 
packet has a rectangular form, and the distribution 
function ahead of the packet is stationary. Then the 
distribution function in the resonant region, for the 
time interval until the amplitude of th;e packet manages 
to be significantly altered by the interaction with the 
resonant particles, is determined by expression (2.13), 
and at large distances from the leading front by expres
sion (2.14) (if the length of the packet is l» VoT). 
Substituting (2.13) in (4.1), we obtain the following ex
pression for the change of the particle energy OT as 
a result of their interaction with the wave: 

6T = 16mnw ~S to'WdW SS{ dn[ F - _z_, x] (6.1) 
k~ 0 'fa s _ VoXT 

} dn(F, x) 
- dn[F, xl dFdx, 

x' 

where the integration region S is shown in Fig. 2. We 
see that a oT/ at = 0 in the reference frame in which 
the packet is at rest, so that (4.4) takes the form 

au a6T 
-+vo--=O, 

at i}z 
(6.2) 

where U is determined by (4.2). Introducing the quan
tity 

Vo a{JT 
y(z)= - 2UD;:' 

we obtain from (6.2) 

(6.3) 

h(t,z) = hexp [y(z)tl (0 < Z < I). (6.4) 

Substituting (4.2) and (6.1) in (6.3) we obtain for the 
increment the following expression: 

8 SSSin(2am[F-Z!VoxT,x]) 
Y(Z)=--;:;ZYL x3 • 

S 

8 SS sin(2"m[F, xl) Xdn[F,xldFdX==-YL 3 
JtZ X 

s 

Xdn[F--Z-,X]dFdx. (6.5) 
vox'! 

We see that (6.5) coincides with the well known expres
sion obtained by O'Neil [11] for an unbounded plane wave, 
where t is replaced by z/vo. The main contribution to 
the integral (6.5) is made by the region in which 

FIG. 2 FIG. 3 

FIG. 2. Integration region Sin Eqs. (6.1) and (6.S). 
FIG. 3. Dependence of wave increment 'Y(z) in a rectangular packet 

on the distance z reckoned from its leading edge; IN ~ VoT. 
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K $ z/ Vo T. At small z, i.e., near the leading front of 
the packet, the last expression in (6.5) can be easily 
integrated, and we obtain y(z) =YL (z« VoT). When 
z ? VoT, the increment oscillates (with a period on the 
order of voT) and tends to zero at z:;$> VoT (see Fig. 
3). These results have a simple physical meaning. The 
resonant particles moving with velocity Vo towards the 
packet from the unperturbed region ahead of the packet 
enter into the wave region. At distances z« VoT, 
their distribution function varies in accordance with 
the linear-approximation formulas, so that the change 
of the wave amplitude is determined by the linear in
crement Y L. At large distances z:;$> VoT, the charac
ter of the motion of the resonant particles is signifi
cantly altered and their distribution function comes 
close to being ergodic in the means; the increment 
Y (z) then vanishes. It is seen from the foregoing that 
in the course of time there should appear in the region 
z $ VoT quasiperiodic oscillations of the amplitude 
with a characteristic period VoT. At large t(t2: l/YL), 
when the amplitude has become noticeably modulated, 
the expressions (6.4) and (6.5) are no longer valid. It 
is clear, however, that as the modulation develops in 
the front part of the packet, the latter should propagate 
with time and into the interior of the packet. A more 
detailed investigation of these processes at Y Lt 2: 1 
requires, however, numerical simulation[4]. 

For a strongly modulated packet, the period of the 
modulation is determined by the time T corresponding 
to a certain effedive value of the amplitude of the 
packet envelope, and this value is generally speaking 
several times smaller than the maximum amplitude. 
Indeed, the deviation from the average resonant 
velocity of the particles interacting with the wave is of 
the order of (kT tl so that the particles for which T is 
calculated from the maximum amplitude are relatively 
rarely at resonance with the wave. 

In addition to amplitude modulation, there should 
take place naturally also frequency modulation char-, , 1 
acterized by the quantity af ~ T- , where T corre-
sponds to the local amplitude (see [7]). This modula
tion is due to the broadening of the spectrum as a re
sult of the oscillations of the resonant particles with 
period T. Thus, the period T of the amplitude-fre
quency modulation observed when Signals are received 

4)ln the numerical calculations of (8), Z and t were not large enough 
to observe these phenomena. 

on earth should be connected with the effective broad
ening of the spectrum in the packet (af) eff by the 
following relation: 

T(M)'I/ ~ vo/v, = 1 +(0,/2(0 (6.6) 

(generally speaking, (af)eff is several times smaller 
than (M)max). Relation (6.6) is in perfectly satisfac-

. t d 'b d . (l5) tory agreement with the expenmen escrl e III 

(see also [16)). 
In conclusion, the authors thank R. Z. Sagdeev for an 

interesting discussion of this work. 
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