
SOVIET PHYSICS JETP VOLUME 36, NUMBER 1 JANUARY, 1973 

KINETIC PROCESSES IN A LASER PLASMA 

Yu. V. AFANAS'EV, E. M. BELENOV, O. N. KROKHIN and I. A. POLUEKTOV 

P. N. Lebedev Institute of Physics, USSR Academy of Sciences 

Submitted February 1, 1972 

Zh. Eksp. Teor. Fiz. 63, 121-130 (July, 1972) 

Kinetic processes in a high-temperature (Te :?: 1 keY) laser plasma are investigated theoretically. 
The criterion for a strong field in which the plasma state deviates from the equilibrium state is 
derived. The kinetic equation for the plasma electron distribution function is investigated under 
strong-field conditions. The distribution function for electrons in a multiply- charged plasma (z » 1) 
is computed analytically and expressions are obtained for its parameters (temperature, ionization 
multiplicity, the self- radiation spectra) as functions of the intensity and duration of the laser pulse. 

1. One of the most effective methods for the experi
mental investigation of a laser plasma consists in the 
determination of its macroscopic parameters from the 
emitted radiation and the characteristics of the state of 
ionization (ionization multiplicity, degree of ionization, 
etc. f 1J. For this reason, the determination of the 
kinetic processes in the plasma which govern the energy 
distribution of the electrons under strong laser-field 
conditions is important. This is necessary, since the 
interpretation of the experimental data obtained by the 
indicated method depends on the form of the electron 
distribution function. 

In this paper we investigate the kinetic processes in 
a multiply ionized plasma under the conditions of suffi
ciently high radiation flux densities, when nonequilibrium 
ionization obtains[2J. The conditions under which ioniza
tion equilibrium is destroyed and the electron distribu
tion function substantially differs from Maxwellian are 
obtained. The macroscopic parameters of the plasma 
are computed: the electron temperature Te , the effec
tive ionization multiplicity z as a function of the radia
tion flux density qo, the time t, and the properties of the 
material. Expressions are given for the bremsstrahlung 
and recombination spectra of the plasma radiation in the 
case of a non- Maxwellian distribution function. The 
question of the radiation spectra of a fully ionized 
plasma (e.g., of the hydrogen plasma) is also discussed. 

2. It is convenient to characterize the ionization 
state produced under the action of the laser radiation 
of the plasma by the parameter 170 = Te/I(z), i.e., by the 
ratio of electron temperature Te to the ionization poten
tial I(z) for an ion of ionization multiplicity z. (It is as
sumed here and below that the plasma contains at each 
given monent of time ions with a narrow distribution 
over z}:3J , and under the quantity z will be meant its 
mean value.) As in the case of the optical breakdown of 
a gas, this ratio depends on the parameter 

~o = l(z)vi(z) jeov,,,(z), 

where !li(z) and vefr(z) are the inelastic and elastic 
collision rates of an electron with the ions, 

C eo = e'Eo' / 2mfJ)' = 4ne'qo / emCil' 

is the oscillation energy of an electron in the field of a 
light wave of amplitude Eo and angular frequency w. In 
the region of relatively small radiation flux densities 
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qo:::; 1012 watt/cm2 the quantity Eo :s 0.1 eV, {:30 > 1, the 
ratio' 170 < 1, and the plasma is in a quasi- equilibrium 
ionization state. Physically, this is connected with the 
fact that the electron distribution function is cut off in 
this case at energies E close to the threshold of the in
elastic processes (E ~ I(z), as in the case of thermo
dynamic equilibrium), so that the ionization takes place 
owing to the" tail" of the distribution function. The dis
tribution of the plasma ions over z is then described at 
each given moment of time either by the Saha equation 
if triple recombination is the principal inverse process 
(170"" 1/7 - 1/10), or by the coronal distribution[4] in 
the case when photorecombination predominates 
(170"" 1/4 - 1/5). However, at large qo ({:30 < 1), because 
of the rapid "diffusion" of electrons into the region of 
energies exceeding I(z), we can expect a substantial 
disruption of the ionization equilibrium in the plasma. 
As a result, the electron temperature increases and the 
parameter 170 may become larger than unity. The in
crease of 170 leads to a sharp growth of the ionization 
rate (Vi ~ exp{-l/17o}), which for 170 > 1 considerably 
exceeds the recombination rate, i.e., the process be
comes unidirectional. Under these conditions the final 
state of the plasma (after the action of the laser pulse) 
is quite removed from the equilibrium state. In this 
case, for radiation pulse durations Tn ~ 10-10_10-9 sec, 
and for qo ~ 1013_1014 watt/ cm2, the IOnization multi
plicity' although less than the equilibrium value at the 
given temperature, attains values z "" 20-30, whereas 
the temperature Te ~ 5-10 keY. PhYSically, the situa
tion described here indicates that as compared to the 
energy expended on iOnization, the fraction of the radia
tion energy which goes into the thermal energy of the 
electrons increases with the radiation flux density. 

The gap between the electron and ion temperatures, 
which is determined principally by the inelastic losses 
also becomes important at high qo. Thus, for example, 
at qo"" 1012 watt/cm2 t,. T R< 41TMe2q/3mw2c "" 1 keY. In 
the general case, the electron distribution function in a 
strongly ionized plasma, F( E, t), satisfies the kinetic 
equation 

of ( aF) ( aF) ( aF ) -= - + - +-at at q at in at" (1) 

The terms on the right hand side of Eq. (1) respectively 
describe the contributions of the laser radiation field, 
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the inelastic collisions of the electrons with the ions 
(including ionization), and the electron- electron colli
sions to the change in F(E, t). The quantity z, which in 
the model under consideration is for mathematical con
venience assumed to be a continuous function of the time, 
is related to the distribution function by the relation 

1 ~ 
z(t)=1+NfdeF(e,t), (2) 

o 0 

where No is the density of the ions (z = 2 corresponds to 
a single ionization). 

The ionization potential for an ion of ionization multi
plicity z may be represented in the form I(z) = Ioz2[5], 
where 10 is a slowly varying function of z, which we shall 
assume to be apprOximately a constant. 

The frequency of elastic collisions of electrons with 
ions of ionization multiplicity z is equal to 

V'I/ (e, z) = (2n) '"Noe' (z - 1) 'A / m Y'e'I" 

where A is the Coulomb logarithm. For the inelastic 
collision frequency vi(E, zj' we can use the Born ap
proximation when (30 < 1[5 : 

where vim(1) is the maximum frequency of inelastic 
collisions of electrons with neutral atoms. 

(3) 

( 4) 

Under these conditions the ex~ressions for (a FiaT) 
and (aF/at). are determined by-2] (hw/E « 1, I(z)/E q 
< 1) In 

( aF ) eo a ( aF) - =--- V effF - 2Vefje- , 

at q 3 ae ae (5) 

(!!.!..). = _ I(z)v,(e, z) (F _ 2e!!'!"). 
at 'n 2e ae 

(6) 

The collision term (a F/at)ee' describing the contribu
tion of the electron-electron collisions, can be repre
sented in the Fokker- Planck approximatiorf 6] in the 
form 

( aF) (2e) 't. - = (4ne')' -
at e, m 

(7) 

l' 1 • ~ 

IjJ (e) = - 24n (3 J F de - -;-J eF de +2e'l, J e-'I'F de). 
o " , 

Since in the case being considered the parameter {30 
characterizing the magnitude of the light field depends 
on E and z, it is necessary to analyze the condition 
(30 < 1 in greater detail, and to establish the condition, 
not dependent on E and z, for a strong field and non
equilibrium ionization. 

With that end in view, let us introduce a new variable 
17 = dI(z) = dIoz2. Then the relations (3) and (4) will 
have the form 

(8) 

and the inequality {30 < 1, the form 

'I']~'<1 ~ =TJP' ~'= vim(1)Io 
o , 0 0 , 0 eove-Jlo • 

(9) 

It follows from the relation (9) that if {3~ « 1, then, 
owing to inelastic colliSions, the electron distribution 
function terminates at 17 ~ 1/ (3~ »1, L e., when 
E »I(z). Consequently, the condition {3~ « 1, which 

does not depend on E and z, is a sufficient condition for 
the validity of the Born approximation for the frequency 
Vi' and the majority of the electrons will, for (3~ « 1, be 
concentrated in the region E > I(z). It is also evident 
that the inequality (3~ « 1 leads to the condition 170 > 1, 
Le., it determines the magnitude of the field in which a 
nonequilibrium ionization obtains. It is physically clear 
that in the case being considered the form of the dis
tribution function F( E, t) is mainly determined by the 
competition between the electron diffusion process in 
energy space under the action of the light field and the 
electron-electron collision mechanism. 

Owing to electron-electron collisions, in the region 
of not too high fields (or not too small (3~) the distribu
tion function F( E, t) will be nearly Maxwellian with a 
temperature that depends on the time and the magnitude 
of the field. When the magnitude of the light field is in
creased ({3b « 1) the function F( E, t) is determined 
mainly by the electron-field interaction process and is, 
generally speaking, non- Maxwellian in the entire energy 
range. First, we give an approximate condition which 
separates these cases. In order of magnitude 

( ~~ ) ,,"" (N,cr"v,)F = (Nozcr"v,)F, ( a~) q "" eoNoz'cr"v ~: 
where Gee is the Coulomb cross section of the electron
electron collisions. Consequently, the distribution func
tion will be nearly Maxwellian when (a F/at) 
»(aF/at)q' Le., F »zEoaF/aE, or finally ee 

T, > zeo. (10) 

The condition (10) can be more rigorously derived for 
the" tail" of the distribution function, Le., in the en
ergy region E > Te , and this is most important for the 
interpretation of the spectra of the plasma radiation. 

Changing in the expression (7) to the variable 
17 = dIoz2 and expanding it in powers of (TJ)/TJ (where 
(17) is the mean value), we obtain in the zeroth approxi
mation 

( aF) v"O('I']) [a' ( F) a ( F )] at ,,= --z-' - a '1']' -;j'h + a'l'] '1']'/; .. , (11) 

where v~e = 23/27Te4No/m1/2I~/2. When the change 7J 
= dIoz2 IS made in the relation (5) it takes the form 

( aF) 2 v:l/eo a' ( F ) 
at q =3 z3I. a'l']'~ . (12) 

Comparison of (11) and (12) shows that the distribution 
function will have a Maxwellian "tail" provided 

(13) 

Since Te = (17)Ioz2, (13) coincides with (10) except for the 
factor 3-:.riiA -1 ~ 1. 

It is physically clear that the condition (13) is appli
cable to a completely ionized hydrogen plasma (z = 2), 
and is always valid (within the limits of validity of the 
kinetic equations under consideration). Consequently, 
the radiation of a hydrogen plasma, the energy of whose 
quanta exceeds the temperature, is certainly deter
mined by the Maxwellian "tail" of the electron distri
bution function. 

Let us make numerical estimates, using the formulas 
(9) and (13): 
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eo[eV]= 1.7·10"qo[watt/cm' 
(V/3-10"), (14) 

, 10"1,'/'[88] (v/3 ·10U )' 
~o = ----.---'---,-,.,.:.... 

qo[watt/cm~ 
It follows from (14) that for the radiation of a neo
dymium laser (v = 3 X 1014 sec-I) and for 10 Ri 5-10 eV, 
the condition {lh ~ 1 is fulfilled when qo ~ 1012_1013 
watt/cm2, whereas the inequality (13) is valid only when 
qo< 1014_1015watt/cm2 (ZRi 20, (fJ) Ri 1-2). Thus, in 
the range of radiation flux densities 1012 < qo < 1014 

watt/cm2 the ionization equilibrium in the plasma is 
destroyed, but the electron distribution function remains 
nearly Maxwellian with T > I(z). In the region qo 
> 1014 watt/cm2 (v = 3 X 1814 sec-I), or in the case of 
radiation in the infrared region (e.g., for a CD.! laser 
with v = 3 X 1013 sec-I, qo > 1012 watt/cm2) the condition 
(13) may turn out to be unfulfilled, and the electron dis
tribution function deviates substantially from the 
Maxwellian. In this situation it is necessary to seek the 
exact solution of Eq. (1) with (&F/&t)ee = O. 

3. In the general case the electron distribution func
tion can be represented in the form 

t 

F(e, t) = No!(e, z) exp {S y(z)dt }, 
• 

-I !(e,z)de = 1. 
• 

(15) 

It is then easy to show that 
d -_z = zy(z), y(z) = I !(e,z)vi(e,z)de. (16) 
dt 0 

A. Let us first consider the case of relatively weak 
light fields 1012 < qo < 1014 watt/cm2, corresponding to 
the fulfillment of the conditions (10) and (13). Then the 
distribution function f( E, z) is close to the Maxwellian 
distribution with a z-dependent temperature: 

2e'/· { e} 
j(e, z) = n,'/.T,'/.(z) exp - TXz) . 

The quantity y (z), which has the meaning of an 
avalanche-development "constant," is equal to 

(17) 

() I- 2Vim(1)/o'" 
y Z = !(e,z)vi(e,z)de = . (18) 

o n 1
/ 2z2 T/J 

Further, multiplying Eq. (1) by E and integrating it with 
the function (17), we obtain an equation expressing the 
energy conservation law for an electron gas: 

o 
~~NozT.=.!!-.Noeov'/I _ 2 No/ oVim(1) (19) 
2 dt 3'1. 1"],';' (t) n'l. 1"],'1. (t) 

where fJo(t) = Te(z)/loz2(t). Adding the equation dz/dt 
= y(z)z to Eq. (19), we obtain a system for the deter
mination of Te and z as functions of the magnitude of 
the light field and time. The system of equations under 
consideration admits of an exact solution of the form 

z = 4';'[Vim(1)t]';'(~0')I/" - qo-,;"t'i" 

T. = 1.75[vim(1)t]';'/o(~o')-I/· - qo,;,t';'. 
(20) 

The magnitude of the ratio fJo = Te/loz2 then turns out to 
be time independent and equal to 

T)o = 0.7 trW- (21) 

The solutions (20) permit us to express the conditions 
(10) and (13) in terms of the parameters of the laser 
pulse and the material. Substituting (20) into (10) and 
(13), we have 

where T P is the duration of the laser pulse. 

Let us now make numerical estimates, setting qo 
Ri 1013 watt/cm2 (v = 3 X 1014 sec-I), T = 10-9 sec, 10 

(22) 

20 -3 P = 5 eV, No = 10 em ,and vim(l) = 1012 sec-1. We ob-
tain with the aid of (14), (20), and (21) 

.jlo' = 6·10-'. z = 15. T. ~ 3 keY, ·1]0 ~ 2.7. 

The inequality (22) is in this case very well satisfied. 
B. As follows from (22), the electron distribution 

function may substantially deviate from the Maxwellian 
when we go over to higher-power and shorter pulses 
(qo > 1014 watt/cm2, T "" 10-10_10-11 sec). Under these 

conditions the principE! role is played by the interaction 
of the electrons with the radiation field, and the elec
tron-electron collisions may be neglected. The kinetic 
equation (1) then has an analytic solution which allows 
us to find the parameters of the plasma and determine 
the form of the spectra of the radiation. 

Representing the distribution function F( E, t) in the 
form (15) together with the conditions (16), we arrive in 
Eq. (1) to the new variables fJ = dloz2 and z. Then we 
shall have 

• 
( V'II 

Vef! T),z)=-,-; , 
Z1"] , 

( Vim(1) 
Vi T),Z)=-'-'I.-, 

Z1"] 

( f)F ) 2 V:/leo f)' F 
at ,=371:- f)1"]'~' 

( f)F ) Vim (1) f) F 
at in = -z-, -a1"]-:;;'h' 

(23) 

In terms of the variables fJ and z the function f( E, z) has 
the form 

!(e,z) = A (z)<:p(1"]). (24) 

In fact, A(z) is determined from the normalization con
dition 

A(z)= 1/ loz' j <:P (1"]) d1"]. 
o 

(25) 

Further, we find with the aid of the relation (16) the ex
pression for y(z): -

y(z)= Jfvide = Vim (1) Jo/Z'. 
o 

(26) 

(27) 

Substituting now the function F( E, t) into Eq. (1) (with 
(& F/&t)ee = 0) and taking into account the expressions 
(15) and (23)-(26), we obtain the equation for the func
tion q;(fJ): 

(28) 

Thus, the formulated problem reduces to the solution of 
the system (27) and (28). 

The substitution ~ = q;h 1 / 2 reduces Eq. (28) to the 
form 

d'ID + (3 , 3 ,'/ ) dID , u. 
dl]' 2~0 + Jo~o 1"]' drj+ 3Jo~0 1"]"ID = O. (28') 

The term % {3hd~/ d fJ in Eq. (28') is connected with the 
allowance for the influence on the distribution function 
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of the effect of deceleration of electrons during inelastic 
collisions with ions. However, in the case under con
sideration ({3b « 1) the effect of deceleration affects the 
form of the distribution function only in the energy reg
ion TJo f';:! 1/ (3b » 1, a region which is of no interest to 
us. For this reason, this term may be neglected in Eq. 
(28'). We recall that in the present problem inelastic 
collisions leading to ionization are taken into account in 
the determination of the quantity y(z). Setting in (28') 

we obtain a universal equation, not containing physical 
parameters: 

d'W dW (, 1 1 ) y'--+y--W y --y+- =0. 
dy' dy 5·25 

(29) 

We now show that in the present case we can, without 
solving Eq. (29), derive the expressions for the "tem
perature" Te and ionization multiplicity z up to constant 
coefficients of the order of unity. Indeed, substituting 
the expression cP = TJeYW(y) into (27), we obtain 

( 3) 'I. 
I, = I,(~,')'/', I, ="5" Y_'/,/Y_',,, 

(30) 

Y. = J y-ne-·W(y)dy. 
, 

Further, using the relations 

(Tj) = j TjcpdTj / j rp dTj, 
, 0 

(26), and (16), we find the expressions for z, Te and (TJ): 
(Tj) = I,(~o')-'h, I, = ('f,I,)"'Y'"fY-'I" 

Z = (3/,)"'(lIo')""[vim(1)tj'l, ~ qo-""t"" (31) 
T. = (1])I,z' - q""t'I,. 

Comparison of the formulas (20) and (31) shows that 
in spite of the formal difference in form of the distribu
tion functions, the final expressions for z and Te in the 
last case and in the case of the Maxwellian electron dis
tribution differ only by numerical factors of the order of 
unity. This circumstance is not accidental, but connec
ted, as will be shown below, with the fact that the func
tion 

depends only on E and T e( TJ 0, z), Le., does not depend on 
qo and z explicitly. For this reason, mean values com
puted with the aid of f( E, z) (through integration from 0 
to 00), depend up to numerical factors on Te and z in the 
same way as in the case of the Maxwellian distribution 
function. However, if the computation of some charac
teristics of the plasma requires the integration of 
f( E, Te) between the limits (I, 00), where I is some char
acteristic energy, then a function depending on the ratio 
I/Te appears as a coefficient in the corresponding ex
pression. The form of the indicated function then de
pends very much on the form of f(~, Te)' For this 
reason, the spectra of the bremsstrahlung and the re
combination radiation, for example, may be substantially 
different in the two cases considered. 

For the computation of the bremsstrahlung spectrum 
in the case of a non- Maxwellian distribution functionr 
we use the expression for the effective radiation dqv 3J 

32/t'z'e' 
dq. = 3'1 2' dv (32) 2m eVe 

and, with the aid of the relation [3] 
00 

j~ dv = ~ N of (e, t) lJ,dv,aq, 
min. 

v, 

(m(Vmin)2/2 = hv), we obtain an expression for the 
specrral density of the bremsstrahlung jT: v 

(33) 

Similarly, we obtain for the recombination spectrum, 
in accordance with[3J , 

( 2 ) 'h z' ( hv 1 ) [ ( I z, ) 'h ~ -, 
j.p = 2/tnG, -;; N"l,-;;;~ l,z' - -;;; . hv --;;, I rpdTj *34) 

In order to obtain explicit expressions for the radia
tion spectra (33) and (34), let us consider Eq. (29). 
Analysis shows that Eq. (29) is to a high degree of ac
curacy satisfied by the function 

W(y) = K,(y), (35) 

where Ko(Y) is the Macdonald function. The solution 
(35) permits us to determine the unknown constant J 1 in 
the relation (31): 

I =2,,,[r('f')]'~=21 
, f('f,) r(1.3) • , 

( 5 )',. 1 [r('/,) 2 f(1.3) 
I, = 3/, 2'1, r('/,)] f(1.7)-= 0,5, 

where rex) is the gamma function. Substituting J 1 into 
(31), we obtain the final expressions for z, Te , and (TJ): 

z = (6,3)"'(~o')""[vim(1)tl'" - q,-tl"t''', 

T. = 1.71o(~o')-"'[vim(1)tl'" - q""t"', (31') 

(1]) = O,5(~,')-"', 

When (35) is taken into account the function cp(TJ) takes 
the form 

rp( Tj) = TjK, ( S ( (~) )"') exp{ - S C~ )"'} , 
J~ d - 2f'('f,)<Tj)'l'; 
, rp Tj - 5·S'/·r(1.3) , 

The distribution functions feE, z) and F(E, Te) are 
respectively equal to 

S"'fO,3) 8 (( e )'/') { ( 8 )"'} 
/(e,z)= '/,/t'/'r'('/,) T;2 Ko S r: exp -S T. ' 

F(e, t) = Noz/(e, z). 

(36) 

(37) 

Computation of the quantity j T for the bremsstrahlung 
spectrum (33) with the aid 0{(36) leads to the expression 

. , 32/t' f(1.3) No'e'z' ( hv '" 
Iv = --= . r 0.1 16 -

3y6 f'('f,) m'/'c'T:'· ' (T.))' (38) 

where rex, y) is the incomplete gamma function. 
In contrast to the known formula for the bremsstrah

lung spectrum in the case when the electron distribution 
is Maxwellian, the expression (38) contains the function 
reo, 1, 16 (hv/Te)5/2) instead of the exponential factor 
e-hv/Te. When 16 (hv/Te)5/2 »1, 

r (0.1, 16 (hvfT.) 'I,) - exp { - 16 ( ~:) "'} / 16'/0,( ~:) '/. , 

Le., the intensity of the radiation decreases with in-
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crease of the frequency much more rapidly than in the 
equilibrium case. The integrated power of the brems
strahlung and the recombination radiation differs from 
the usual expressions only by numerical constants of the 
order of unity. 

We note in conclusion that the expressions obtained 
in the present paper for the electron distribution func
tion and the plasma parameters are based on the con
sideration of pair interactions between the plasma par
ticles. However, as is well known, under certain condi
tions the important role in the plasma is played by 
collective processes allowance for which can, in prin
ciple, result in some changes in the electron distribution 
function. Although this problem has not as yet been 
fully investigated, the principal result of the theory de
veloped here, namely, the deviation in strong fields of 
the state of the plasma from the thermodynamic equili
brium state, should remain valid. In the particular case 
when the effect of induced Compton scattering of light in 
the laser plasma is taken into account, the electron dis
tribution function differs substantially from the 
~xwellianF7J. 
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