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By summation of an infinite series of nonrelativistic Feynman diagrams, a formula which is a gen­
eralization of the Brueckner formula is obtained for the 1T-Ir"- _a-deuteron scattering length. It is 
then demonstrated that allowance for terms corresponding to the kinetic energy of nucleons in the 
intermediate state significantly changes the Brueckner result. The effects of p-wave 1TN interaction 
in diagrams with single or double scattering are estimated. The general relations obtained are ap­
plied to a numerical calculation of the 1Td scattering length. For this purpose the 1TN scattering lengths 
presented in survey[1J and the Hulthen wave function for the deuteron are employed. The result is a1Td 
=-0.047 F. 

1. INTRODUCTION 

I T is known that the s-wave lengths for scattering of 
pions by nucleons are small. At zero energy 

(1 ) 

where bo = (-0.012 ± 0.004}J.1.-1 = (-0.017 ± 0.006) F, 
b1 = (- 0.097 ± 0.007}/l-1 = (- 0.137 ± 0.010) F, and I and 
T are the pion and nucleon isospin operatorsu . None­
theless, multiple-scattering effects must be taken into 
account even in the calculation of the length for scatter­
ing by a deuteron. The point is that the 1Td.- scattering 
amplitude in the impulse approximation (f~mp = 2bo) is 
small because bo is small, and is therefore comparable 
with the contribution of the multiple scattering, which is 
of the order of bUR (R is the deuteron radius). 

There are two different approaches to the calculation 
of the 1Td- scattering length. The first, proposed by 
Brueckner[2J , is based on the smallness of the pion 
mass in comparison with the nucleon mass (/lIm"" 1/7). 
It is assumed that the nucleons experience a small re­
coil after scattering the pion, and the 1Td scattering am­
plitude can be regarded as the amplitude for scattering 
by a system of two immobile centers[2,3J , averaged 
over the wave function of the deuteron. Brueckner suc­
ceeded in obtaining an expression for the 1Td scattering 
amplitude, in which account is taken of all multiplicities 
of pion rescattering. A somewhat more accurate 
expression was obtained in [4J by summing nonrelativis­
tic Feynman diagrams. It takes into account the deu­
teron binding energy and is rigorous in the limit as 
/lIm - O. The second approach was developed by a 
number of workers[5-BJ and reduces in essence to in­
clusion of the double scattering, besides the impulse ap­
proximation; in diagram language this corresponds to 
inclusion of diagrams a and b of Fig. 1. The calculation 
of the diagram b is carried out approximately, without 
allowance for the deuteron binding energy and neglecting 
the kinetic energy of the nucleons in the intermediate 

I) The values of bo and b, were taken from Ericson's review ['). Our 
notation also follows this review. We note that, in accord with the 
present practice in the literature on lTN and lTd scattering, we define 
the scattering length as the amplitude at zero energy (and not the 
amplitude with the sign reversed). 
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state. As will be shown below, this leads to a calcula­
tion error on the order of 50-70%. In addition, one can­
not discard beforehand the terms corresponding to large 
scattering multiplicities. The expansion of the ampli­
tude in powers of the scattering multiplicity is not, 
generally speaking, an expansion in terms of the param­
eter b1TN /R, as will be shown in Sec. 2. 

In the present paper we take multiple pion scattering 
into account by using a nonrelativistic diagram tech­
nique[ 9,10J. In Sec. 2 we sum the diagram series that 
makes the main contribution to the 1Td- scattering length 
(the diagrams of Fig. 1), and average the amplitude 
over the isotopic variables. Unlike the earlier paper[4J, 
we retain here kinematic corrections of order /lIm. The 
result of the summation is a modification of Brueckner's 
formula[2J if we leave out from the propagators, for 
convenience in summation, certain" small" terms of 
order /lIm. These terms are taken into account in Sec. 
2. It is shown that they alter the result strongly. In the 
same section, the accuracy of the proposed method is 
compared with the accuracy of calculations by others. 
In Sec. 4 we take into account the corrections made to 
the amplitude by the contribution of the p-wave 1TN inter­
action and discuss other possible corrections. The re­
sults enable us, in principle, to calculate the non­
absorptive part of the 1Td-scattering length with an ac­
curacy of several per cent. The real accuracy with 
which this quantity is calculated is now governed by the 
accuracy with which the 1TN-scattering lengths are 
known. 
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Preliminary results of the work were presented at 
the 4th International Conference on High Energy Physics 
and Nuclear Structure lll] . 

2. ZERO-ANGLE lTd-SCATTERING AMPLITUDE 
AT LOW ENERGIES 

In this section we sum the diagram series that makes 
the main contribution to the lTd-scattering amplitude 
(Fig. 1). We calculate the zero-angle lTd- scattering am­
plitude, assuming the lTN-interaction to be s-wave and 
its amplitude to be constant. We disregard for the time 
being the fact that the lTN-scattering amplitude is a ma­
trix in the isotopic variables. We proceed to calculate 
each of the diagrams of Fig. 1. Diagram 1a corresponds 
to the following invariant amplitude2 ) M~d: 

M(l) _ i'(-2Im)' 
nd - (2n)' 

xI M.'F(q.)F(q,)A.dq.dB. 
(q.' - 2mB. - ill) (q; + 2mB. + 2mBd - ill) (q.' - 2mB. - ill)" (2) 

Here M~ = 8lTa/m 2 (a 2 = mEd' Ed is the deuteron binding 
energy and m is the nucleon mass); A1(A2) is the invar­
iant amplitude for pion scattering by the first (second) 
nucleon; F(q) is the deuteron form factor, defined by the 
relation 

F(q) 1 I'· 
q' + u' = (8nu) 'I, e "1\Jd (r) dr. (3) 

Integrating with respect to energy in (2) and using (3), 
we obtain 

(4) 

We proceed now to consider double scattering. The 
corresponding diagram is shown in Fig. lb. Writing 
down the corresponding Feynman integral and integrat­
ing with respect to the energy variables, we obtain 

M.~)= !-IuA•A , 
4n' (5) 

I F(q.)F(q2)dq.dq2 

(6) 

where K2 = 2J.l( Ed - E), and E and k are the energy and 
momentum of the incoming pion. Proceeding analog-

2)The invariant amplitudes M and A are connected with the S-matrix 
elements of the corresl?.onding processes by relations of the type Sif = 
5if + i(21T) 4 Mif5 4 (Pi-Pf), where Pi and Pf are the 4-momenta of the 
initial and final states. 

ously, i.e., omitting the terms J.l q2/m in all the pion 
propagators, we can calculate any term of the series of 
Fig. 1. For odd N we have 

(N) ( !-IA,) (N_I)!2 ( !-lA, ) (N-O/2 2. e~-(N-')xr 
M'd = A. - - S \Ild (r)---dr. 

2n 2n r"-' 

For even N, analogously, 

M (N) A ( !-IA• ) N/2_' ( !-IA,) N/' I 2 ( ) eik.-(N_.)., d· 
•• = • ----z;- 2n \Ild r r"-' r. 

(7) 

(8) 

We shall find it convenient to change over from the 
invariant amplitudes M~icP and Ai (i = 1, 2) to the ordin-

ary amplitudes ~~) and fi (i = 1, 2)3) 

i (N) _ !-Imd M (N) i !-1m Ai. (9) 
.d - 2n(!-I'+ m.) n', i = 2n(m + !-I) 

In terms of this notation, the amplitude 

is given by 
t., = 1 + !-11m, J 1\J.'(r) { ( f. + f2 + 2~.f2 eik.-.. ) 

-I- f,f. r'"' (f' + f2 -I- 2 f.f, e"'-") 
r' r 

-I- ( f~. r 2., ). (f. + f, -I- 2 f~. e'kH') -1- •. • }dr, (10) 

where fi = (m + J.l)f/m • Transforming the expression 
in the curly brackets, we obtain ultimately 

in' 
__ 1-:-_ I \Ill(r) f. -I- f, + 2f,f,r-'e'''-·' d. 
1 + !-Ilmd 1 - f.[2r-'e-'" . 

(11) 

Similar calculations can be performed for E > Ed, and 
the amplitude flTd will take the form 

(12) 

where p2 = 2J.l(E - Ed)' Formulas (11) and (12) take into 
account (in the approximation J.l/m = 0) the three-parti­
cle unitarity of the amplitude flTd : f7Td is real below the 
deuteron breakup threshold and complex above. These 
formulas are a generalization of the Brueckner form­
ula l2 ,4J and take into account the additional deuteron 
binding energy in the relations for K and p, and also the 
kinematic corrections J.l/md and J.l/m that arise on going 
from the laboratory frame of the c.m.s. of the pion and 
deuteron and of the pion and nucleon4 ). 

In addition to the summed diagrams of the series in 
Fig. 1, contributions to the scattering amplitude should 
be made also by diagrams containing the rescattering 
of nucleons in the intermediate state. However as 
shown earlier[4], this contribution is small. First, any 
diagram with nucleon rescattering, for example the dia­
gram of Fig. 2, contains the factor (J.l/m)1/2. Second, 
such a diagram has smallness of order (bo/b1)2 in com­
parison with the double-scattering diagram (Fig. Ib). 
The point is that after the nucleon rescattering the pion 
can be scattered both by the deuteron and by the proton. 

3) The amplitudes f are defined in such a way that 1[12 = da/dU in 
the c.m.s. of the corresponding reaction. 

4)The formulas for scattering through a nonzero angle differ from 
(11) and (12) only in the presence of a factor exp {il!.r/z} in the inte­
grand, where l!. is the momentum transfer. 
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This results in a sum of diagrams that gives the value 
of boo The same can be said also concerning the first 
scattering of the pion. All taken together make the con­
tribution of the diagrams with nucleon rescattering not 
larger than 2-3% of the contribution of the diagrams of 
Fig. 1. 

Let us return to formulas (11) and (12). We note that 
the integral contained in them converges, in principle, 
even with a wave function of zero effective radius of 
the forces, even though each of the terms of the series 
(see (7) and (8)) diverges in this case. Incidentally, ex­
amining (7) and (8) we can easily verify that the param­
eter of the expansion in the scattering multiplicities is 
not the quantity b1TN /R. The convergence of lQfm~las 
(11) and (12) at zero is ensured by the term f1fdr in the 
denominator. This term, however, becomes significant 
only at very small distances of the order of f1TN 
= (0.1-0.2) F. The convergence of the integrals is 
therefore actually ensured by the wave function of the 
deuteron at much larger distances ~ 111l. For the same 
reason, the contributions of the terms of the triple, 
quadruple, and higher order scattering is small. It is 
sensitive to the behavior of the wave function at small 
distances, but does not exceed 8-10%.5) 

The vertices of the diagrams of Fig. 1 can contain 
not only elastic scattering, but also charge exchange. 
This is easiest to take into account by recalling that the 
1TN- scattering amplitude is an operator in isospin space 
(1). Accordingly, it is necessary to regard as an opera­
tor in each expression (6)- (8) the quantity 

(0 1 S') A f (') 1 S e'b-", t •• = 'i'. (r p, dr, .d = 'i'l(r)--p, dr (13) 
1 + fllmd 1 + fllm. r 

etc., where 

(14a) 

p~ = (0 0 + o,ITN ) (Do + o,ITN ,) + (Do + o,IT",,) (Do + o,ITN ,) (14b) 

etc. Here 
Do = (m + fl)bo/m, 0, = (m + fl)b,fm. (15) 

Recognizing that the deuteron isospin is equal to zero, 
each of the terms of the series (10) can be easily aver­
aged over the charge states of the pionS): 

etc. 

P, = 200. 1', = 2(00' - 20,'), p, = 200(00' - 20,') 

-40,', P, = 2(00'-20,')'-40,' 
(16) 

We note that in diagram language the aforementioned 
averaging over the pion charge states, say in double 
scattering, corresponds to taking the sum of a diagram 
with elastic 1Tp and 1Tn scattering with a diagram where 

5) If we discard f1 f2e-2nr /r2 in the denominator of (II), then we 
are left with only single and double scattering. Thus, only a small re­
gion of spatial integration, with dimensions on the order of the pion­
nucleon scattering length, contributes to the multiple scattering. 

6) We note that the connection between P n + 2 and Pn, obtained by 
Moyer and Koltun [7], is not quite correct. Formulas (38)-(40) of [4] 
are consequently likewise not quite correct. This does not affect, how­
ever, the numerical calculations, because they account correctly for the 
principal terms (single and double scattering). 

the order of the scattering is interchanged (i.e., first 1Tn 
scattering and then 1Tp scattering); this is followed by 
subtracting the diagram with charge exchange. The 
minus sign of the last diagram is due to the fact that the 
proton and neutron exchange places in one of the deu­
teron vertices, as a result of which this vertex reverses 
sign [12J. 

The complete formula with allowance for the virtual 
charge exchange in rescatterings of all multiplicities is 
given in the Appendix. 

30 ALLOWANCE FOR TERMS CORRESPONDING TO 
THE NUCLEON KINETIC ENERGY IN THE 
INTERMEDIATE STATE 
As already noted, by discarding the diagrams with 

nucleon rescattering, we incur an error on the order of 
several per cent. It is therefore meaningful to calculate 
the series of diagrams of Fig. 1 likewise with an accur­
acy of several percent. The errors in (11) and (12) are 
much larger, for two approximations were used in their 
derivations: a) we discarded the terms of the type 
{lq2/m in the pion propagators (these terms correspond 
to the kinetic energies of the nucleons in the intermed­
iate states), b) we neglected the p-wave nion-nucleon 
interaction. We shall now get rid of the first assump­
tion, and will take the p-wave part of the 1TN scattering 
into account in the next section. We make use of the fact 
that the main contribution to the 1Td- scattering ampli­
tude is made by diagrams with single and double scat­
tering. Principal attention is therefore paid precisely 
to these diagrams. 

Let k = O. Introducing the symbol 
'P(q) = F(q) / (q' + a'). 

for the quantity proportional to the wave function of the 
deuteron in the momentum representation, we rewrite 
formula (5) for the diagram of Figo 1b: 

M(" - C S ( ) ( ) dq,dq, (17) - 'P q, 'P q, (q, _ q,)' + fl(q,' + q,')/m + 2fled' 

where C = IlClA 1A 2 /41T 5• At first glance it may appear 
that neglect of the term Il(q~ + q~)/m leads to an error 
of the order of {lIm. Actually this error is larger and 
is more readily of order (lllm)1/2 (this statement would 
be perfectly exact at Ed = 0). To. verify this, we write 
(17) in the form 

M(2)=CS 'P(Q+q/2)'P(Q-q/2)dqdQ . 
(11+fl/2m)q' + 2flQ'/m + 2fled 

We have introduced here the new variables 

(18) 

q= q, - q2, Q = '/,(q, + q,). (19) 

We regard Illm as a parameter, which we denote by ~ , 
and calculate aM(2)la ~ I~ =0: 

()~~') 11~0 =2C S'P(Q+: )'P(Q-f) (~'~q:~d)' 
C S ( q) ( q ) q'dq dQ (20) 

+2 'P Q+2 'P Q-z (q'+2fled)" 

The first integral is determined by small q ~ (2{l Ed)1/2. 
In the arguments of the functions cp we can therefore put 
approximately q = O. In the second integral it is useful 
to integrate first with respect to dQ, introducing the 
quantity 

S(q)= f'P (Q+ ~)'P (Q-;) dQ~ f ",.'(rl ei ., dr. 
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Then 

iJM")', ~ 16n'~ S~ 'P'(Q)Q'dQ + 2ncwS S,(q)q'dq 2' (21) 
iJs .=0 (2f.1ed) /, 0 0 (q + 2f.18d) 

The first term is a large quantity because of the small­
ness of (211. Ed)1/2 and becomes infinite as Ed ~ O. We see 
therefore that the correction can in any case not be 
linear in ~. 

The structure of the correction that appears when 
the term 11. (q~ + q~)/m in (17) is taken into account is 
easiest to see by using the deuteron wave function in 
Gaussian form 

'1jJd(r) = (ny)-'I'exp (-r' / 21'), 

where y = 1/(86 MeV/c)2[13J • Accordingly, 

<pep) -exp(-yp'/2). 

(22a) 

(22b) 

With cp(p) in this form, we can integrate with respect to 
qin(18): 

Here 

M'" _ 1 r ( Q') 
(1 + f.I/2m)yY, \ exp - I' , 

'{ (ny) Y'B ' yB' ) [ (Y'I'B)]} XQ 1---2-exp ~4- 1- <Xl -2- dQ. 

(23) 

B = (2f.1Q' / m + 20le.) 'h (1 + f.l1 m) -II, (24) 

~(x) is the probability integral. The correction is given 
here in practice by the second term proportional to B 
under the integral sign. We see that at small Ed it is 
actually proportional to (fJ./m)ll2 together with B. 

Thus, the correction due to the terms of the type 
fJ. q2/m , which take into account the motion of the nuc­
leons in the intermediate state, should be quite large. 
To calculate it exactly we have performed a numerical 
calculation in accordance with formula (18) with two 
deuteron wave functions: Gaussian (22) and Hulthen: 

r _[ a~(a+~) ]'I'e-"'-e-'" 
'1jJd()- 2n(~-a)' r 

'P(p) _ (p' + a')-'(p' + ~')-' 

with parameter (3 = 240 MeV/c. We note that (r-1) 

(25a) 

(25b) 

~ 0.5 F-1 for both wave functions. We retain the symbol 
M(2) for the exact value of the integral (17) and take 
M(2) to mean the same integral, but calculated without 
the term fJ.(q~ + ~)/m, i.e., actually the expression (6), 
and Mi3~ to mean the Brueckner value of the double­
scattering amplitude, i.e., the quantity obtained from 
(17) by neglecting both the term 11. (q~ + q~)/m and the 
term 2fJ.Ed' which is proportional to the deuteron bind­
ing energy. We introduce the quantities 

M (a) _ M(" Sf' - MI" M~: - Al(2) 
Br a - , a, = ----'=-=..,.,...--. (26) 

M'" ' - M(2) Al'" 

The results are as follows: with the Hulthen wave func­
tion 

a, = 0.71, a, = 0.37, a, = 0.25; 

with the Gaussian wave function 

at = 0.82, a, = 0.42, a, = 0.29. 

(27) 

(28) 

Thus, the result of formula (6) is apprOximately 40% 
higher. This is not a correction to the entire amplitude, 
only to the double scattering, but in a certain sense this 
is precisely the quantity of interest. The single- scat-

tering term (impulse approximation) is always present 
and is very easy to calculate. It is therefore of interest 
to compare the calculation with the difference between 
the experimental 1Td- scattering length and the length 
calculated in the single- scattering approximation. We 
recall that the main emphasis in Brueckner's was pre­
cisely on the calculation of this difference. 

The term of the form fJ.(q~ + q~)/m in (17) can be 
calculated approximately by replacing ql and q2 by a 
certain constant value qeff' To obtain the correct result 
with the Hulthen wave function, qeff must be equal to 
110 MeV/ c. For a Gaussian function this quantity is 
somewhat smaller. When qeff is used, all the terms of 
the series of Fig. 1 are integrated in the same manner 
as in Sec. 2, and we obtain formula (10)-(12), in which, 
however, Ed is replaced by Ed + q~ff / m. It is just in 
this manner that we shall estimate henceforth the influ­
ence of terms corresponding to the kinetic energy of 
the nucleons in the intermediate state on the expres­
sions for triple, quadruple scattering, etc. 

We note that the terms under discussion become 
more significant when k ~ O. Numerical calculation 
shows, for example, that at k = 25 MeV/c we have for 
the Hulthen function 

at = 0.50 + 0.36 i, a, = 0.59, 

and for the Gaussian function 

(29) 

,at = 0.64 + 0.42 i, a, = 0.70 (30) 

(Brueckner's result becomes already complex in this 
case). 

In earlier studies of the 1Td- scattering length (see, 
e.g., [7,8J), the term with double scattering was actually 
expressed in the" Brueckner" form, i.e., both the mo­
tion of the nucleons in the deuteron and the deuteron 
binding energy were neglected in its calculation. As 
seen from the values of the ratio Qll in (27) and (28), the 
absolute value of such an expression is 50-70% higher 
than the correct result. 

4. ALLOWANCE FOR p-WAVE uN SCATTERING 

We proceed to take into account the p-wave part of 
the 1TN interaction in the diagrams of Figs. 1a and lb. 
Even at zero incident-pion momentum, the pion momen­
tum relative to the deuteron nucleons differs from zero, 
owing to the intranuclear motion of the latter. This 
leads, as will be shown below, to noticeable but not very 
large corre ctions (on the order of 20%). In the calcula­
tion of such corrections we shall therefore neglect the 
terms ~ fJ./m in a number of cases. The 1TN- scattering 
amplitude at low energies is given by[l] 

InN = b. + b,h+ (Co + cth)kk' + i(do + d,h)a[kk'J, (31)" 

where k and k' are the pion momenta in the c.m.s. be­
fore and after scattering. Expressions for bo and b1 
were given in the Introduction, 

Co = (0.208 ± 0.OO8)f.I-', c,= (0.180±0.005);.t-', 
d.= (-0.193 ± 0,OO5)f.I-', d, = (-0.060 ± 0.004),,-'. 

We consider the diagram 1a. In forward scattering, 
the third term of (31), which contains the factor (1 • k 
X k', makes not contribution (there is no preferred 
pseudovector along which the mean value of the opera-

*[kk'] =k X k'. 
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tor (1 can be directed). If the incident pion has a mo­
mentum k in the lab, then in the meson + nucleon c.m.s. 
the momentum is 

- m It 
k=--k-~q,. 

m+1t m+ft 
(32) 

The s- wave term 

M.(t)= 2b.N' J Icp(q,) I'dq, = 2b. (33) 

(N is a normalization factor) should be compared with 
the p-wave term 

M;I) =2c.N' J Icp(q,) I' ( m: ft k - m ~ ft q, ),dq, = 

=2c,N'{k' ( m:~)' J Icp(q,) I'dq, + ( m~ J' J Icp(q,)I'q,'dq}= . 

= 2c.{k'( m: J' +( m~ ft ),q'}' (34) 

At k = 0 the ratio of the p-wave term to the s-wave 
term is 

M.(I) c. ( Jl )" 
M;"=t;:m+Jl q=-0,t7. (35) 

We took into account here the fact that Cf! = (105 MeV/c)2 
for both the Hulthen and the Gaussian wave function. If 
k" 0, the term with k2 in (34) makes a contribution. Its 
ratio to M (1) is s 

~(_m_)'k" 
b. m + ft 

Its value is-0.27 and-0.62 at k = 20 and 30 MeV/c. 
We proceed to the diagram lb. If we recognize that 

the pion momentum in the intermediate state is equal to 
k + ql - q2, we can readily see that instead of k· k' we 
should write in (31) for the left- hand upper vertex 

(kk') , = (_m_ k __ Jl _ q,)( k+q,~q, __ Jl_(k+q,»), 
m+ft m+ft . m+ft 

and for the right-hand lower vertex 

(kk'), = (~k+_ft_q,) (k+qr-q2--ft-(k~q,»)·: 
m+ft m+ft m+ft 

At k = 0 we have, accurate to terms of order (fJ./m) 2 , 

(kk'), = __ ft~q,(q'_'q,}, (kk,);,=·_ft_q'(~i -q,), (36) 
m+ft m+ft 

These quantities enter in the form of the sum 

(kk'), + (kk') , = __ Jl_(q, - q,)'. 
m+ft 

(37) 

If we use the Gaussian wave function of the deuteron, 
we can easily see that allowance for the p-wave scatter­
ing in each vertex introduces a smallness of order 
(q2/fJ. 2)fJ./m. We need therefore take into account only 
combinations with s-wave scattering in one of the ver­
tices and p-wave scattering in the other. (We denote 
the corresponding expression by M~~.) For the same 
reason, we can disregard the term with the coefficients 
do and d1 in (31). Indeed, because of the absence of a 
preferred pseudovector direction, this term cannot in­
terfere with the s-wave terms in the other vertex. If we 
write down expressions of the type (31) for both vertices 
of the diagram 1b and add a diagram with the nucleons 
in reverse order, we find that the product of the ver­
tices yields 

{(bo + b,IT,) (co + t,h,) + (b. + b,h,){co + c,lT,)} 
x [ (kk'), + (kk') ,1. 

After averaging over the charge states of the pion, we 
obtain, with allowance for (37) 

(38) 

as against 2(b~ - 2b~) for the case when only the s-wave 
1TN interaction is taken into account (such an amplitude 
is designated M~i»). Thus, an expression of type (18) for 
M~2~ with C = 2(b~ - 2b~) should be compared with the 
following formula for M~2~: 

-2(boc.-2b,c,) m~ft Jcp(Q+: )cp(Q-:) 

q'dqdQ ' (39) 
x q' + Jl(2Q' + q'/2)/m+ 2fte. 

If we use a Gaussian wave function, their ratio is 

J exp(-yQ'-yq'/4)q'Q'dQdq 
x' q' + ft(2Q' + q'/2)/m + 2fte. 

[ 
exp(-yQ'-yq'/4)q'Q'dqdQ ]-' 

x J. q' + il(2Q'-+ q'/2)/m + 2fte. = -0,29. 
(40) 

We see that allowance for the p-wave part of the 
pion-nucleon interaction has a strong influence on the 
value of the double-scattering amplitude. We note that 
whereas the p-wave 1TN scattering was taken into ac­
count by Moyer and Koltun [7J for diagram s of the type 
la, nothing was done with respect to the diagram 1b in 
the preceding investigations. When p-wave terms are 
taken into account in both vertices of diagram 1b, we 
obtain in place of (38) (41) 

) '{ t • 2( m~ft 3(do'-2d,')[q'Q'-(qQ)'1-(c.'-2c,')[ (qQ)'-!-]) 

The corresponding correction to M~2~ amounts to only a 
fraction of one per cent. 

We have neglected in the calculations the D-wave 
part of the deuteron function. It can alter the result 
very little. At k = 0, as can be easily seen, the S- and 
D-wave parts of the deuteron wave function can not 
interfere with each other, and the integral contains 
simply the sum <PS(r) + <pn(r). Thus, the result is 
altered only because the radial dependence is changed 
in a small part (6-7%) of the integrand. This is cer­
tainly a small effect. 

5. ESTIM:ATE OF NUMERICAL VALUE OF 
71d-SCATTERING LENGTH 

We have thus examined the series of diagrams of 
Fig. 1 and estimated the following two corrections to 
the Brueckner formula[2J; the correction due to allow­
ance for the kinetic energy of the nucleons in the inter­
mediate state (the recoil of the nucleons in the virtual­
scattering process) in double scattering, and the correc­
tion for the p-wave 1TN-interaction in single and double 
scattering. We now estimate the numerical value of the 
1Td- scattering length. Although the proposed method has 
an accuracy of several per cent, the real accuracy is 
low because of the uncertainty in the information on the 
s-wave lengths of the 1TN scattering. We have used the 
set of lengths from [lJ and the Hulthen wave function of 
the deuteron. (In the estimate of (4) we used the Gauss­
ian function.) 



PION-DEUTERON SCATTERING LENGTH 23 

At k = 0, calculation in accord with formula (11), with 
allowance for (16), yields f1Td = -0.070 F, and the 
single- and double- scattering contributions are - 0.036 
and +0.003 F, respectively. In the case of single scat­
tering, we then took into account the correction (35) for 
the p-wave, and in the case of double scattering we took 
into account the correction for terms of the type 
J.!.(qi + eE)/m [Eq. (27)] and for the p-wave [Eq. (36)]. 
In the multiple scatterings, the correction for nucleon 
motion was taken approximately into account by intro­
ducing qeff (see Sec. 3). The result is the following 
value for the 1Td- scattering length: 

I.d = -0,047 F. 

Practically the same result is obtained with the 
Gaussian wave function. If we take the values of the 
s-wave 1TN- scattering lengths bo = - 0.008 J.!. -1 and bl 

= - 0.0953 J.!. -1, which were used in [7J , we obtain f1Td 
RI-0.037 F. 

(42) 

The value (42) was obtained by taking into account 
only diagrams that do not contain pion capture proces­
ses. From the experimental data on the reaction 1[+ + d 
- 2p[14J it is known that when absorptive diagrams are 
taken into account the 1[d scattering acquires an imagin­
ary part 1m f1[d = 0.006 F. The contribution of these 
diagrams to Re f1Td is apparently of the same order[8,15J. 
(See, however, the paper by Beder[16J , where a much 
larger value is given for Re fabs ' The validity of the 
use in that reference of dispersion relations without 
subtractions is, however, subject to question.) 

In conclusion, we wish to point out that exact meas­
urement of the 1fN- and 1Td- scattering lengths is at 
present an important experimental problem. 

The authors thank I. S. Shapiro for interest in the 
work and for useful discussions, and also D. Koltun and 
T. Ericson for a discussion of the results. 

APPENDIX 

We generalize formula (11) by taking into account the 
possibility of virtual charge exchange in rescatterings 
of all multiplicities. For concreteness, we shall con­
sider scattering of 1T+ mesons by deuterons. It is con­
venient to introduce a system of basis functions corre­
sponding to the isotriplet and isosinglet states of two 
nucleons: 

'IjJ, = ,w'xoo, 'IjJ, = 2-';' (w'x,O -WOx,') (A.1) 

(w-t, wo, and WI are different charge states of the pions, 
xZ is the isosinglet function and X;:t, x~, and xt the iso­
triplet functions of the system of two nucleons). 

In the space of the functions I/Jl and 1/J2, the operators 
b o + bIt· TN and b o + bIt· TN are two-row matrices 

1 2 

( 0 2'/'0) 0 - 2'/'0 
Do+D,hN,= 2'; ,,_~ 'Do+D,h'N,=( ':,_ _ '). (A.2) 

b, Vo v, - 2 b, 00 - 0, 

We denote by SI the sum of terms in the integrand of a 
formula similar to (10), in which scattering begins with 
the first particle. It is easy to see that 

8, = [(0o + D,h'N,) + (00 + D,h'N) (50 + D,h'N.)r-'ei"-"'J~" (A.3) 

~, = 1 + r-'e-'"' (00 + D,t'tN,) (00 + o,t'tN,) , 

+ r-'e-'"'[ (0. + O,h'N,) (00 + O,h'N,) J' +... (A.4) 

L: 1 is easily obtained by solving the matrix equation 

~, = 1 + r-'e-'"' (0. + o,h:N ,) (00 + D,t'tN,) ~,. (A.5) . 

Introducing the notation 
p = e-'" / r', 

6 = 1 - p (200' - 2000, - 3D,') (A.6) 
+p'[ (00' - 20,') (Do' - 2500, -0,') + 20,'), 

we get 

~ = ~ ( 1 - p (00' - 2000, - 0,') 
, 6 -2'/'pD,' 

2'1> po,' 

1- p(Do' -2D,') 
) (A.7) 

Hence, using (A.3), we easily obtain SI' If we consider 
the process of elastic 1T+d scattering, then in fact we 
need only the matrix element (SI)U' We can find analog­
ously S2, which is the sum of those terms in which the 
scattering begins with the second particle, and we ob­
tain 

(8')!1 = (S,)". 

We thus arrive at a relation that generalizes formula 
(11) : 

tn. = 1 Sdl''IjJ/(r)~{2Do--2 e-:"' (003-21io'D,-DoD,'+20,3) 
1 + ~I/md {j r 

+ 2 ej~-", [(00'-20,')- e~:" «00'-20,') (0,'- 2Doo,-D,')+ 20,')]}' 

(A.8) 
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