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A microscopic justification of the phenomenological theory of Fermi-type quantum crystals, developed earlier 
in I, is given. The results are derived by the methods of quantum field theory, without using any assumptions 
concerning the nature of the interaction between the particles. 

1. INTRODUCTION 

IN a previous paperC1J (referred to below as I), we 
developed a phenomenological theory of Fermi-type 
quantum crystals possessing gapless Fermi excitations. 
Equations were found determining the spectrum of the 
long-wave vibrations of the crystal, and expressions for 
the thermodynamic quantities of the crystal were ob­
tained. In the present paper, a microscopic justification 
of the phenomenological theory proposed in I is given. 
The results will be derived by the methods of quantum 
field theory, without using any assumptions concerning 
the interaction between the particles. 

The presence of gapless Fermi excitations leads to a 
significant analogy between the properties of a quantum 
crystal and those of a Fermi liquid. In particular, as a 
result of the interaction between the quasi-particles at 
the Fermi surface, a quantum crystal, like a Fermi 
liquid, can possess Bose excitations of the zero-sound 
type. At the same time, the absence of spatial uniformity 
of the quantum crystal leads to a fundamental difference 
between it and a quantum liquid. According to Gold­
stone's theoremC 2J, in a system whose ground state 
possesses lower symmetry than that of its Hamiltonian, 
provided that the broken symmetry has a continuous 
group, a gapless Bose excitation, restoring the broken 
symmetry, must exist. Clearly, in a crystal, the long­
wave acoustic phonons are excitations of this type. We 
shall carry out an investigation of the vibration spec­
trum of a quantum crystal by studying the singularities 
of the two-particle vertex part. 

In the second section, the properties of the single­
particle Green's function of a quantum crystal will be 
considered. In the third and fourth sections, the singu­
larities of the two-particle vertex part with respect to 
the momentum transfer will be determined. In the fifth 
section, a connection between the lattice deformation 
and the parameters characterizing the vibration spec­
trum of the crystal will be established. In the Appendix, 
a number of relations necessary for the derivation of the 
basic results are obtained. 

2. THE GREEN'S FUNCTION 

One of the basic field-theory quantities characteriz­
ing the properties of a many-particle system at T = 0 is 
the single-particle Green's functionC 3 J: 

G(z,z') = -i(T(¢(z)¢+(z')\), (2.1) 

where lj! (x) and f (x) are the Heisenberg particle anni­
hilation and creation operators, T is the time-ordering 
operator, and <. .. ) denotes averaging over the ground 
state at T = 0. For brevity, here and in the following, 
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we omit the spin indices. We can assume formally that 
these are contained in the definition of the coordinates 
x = {r, t, a}, the integration over d4x including a sum­
mation over a. Unlike the case of an isotropic medium, 
for which the G-function depends on the space variables 
through their difference, the Green's function in the 
crystal conserves invariance only with respect to the 
transformations of the space group of the lattice. In 
addition, in the absence of external varying fields, the 
G-function depends only on t- t'. The latter fact and, 
also, the translational symmetry make it possible to 
write G in the formC 4 ' 5J 

S dp 
G (x x') = -- e''"G (p r r') 

' (2n)'' ' ' ' 
(2 .2) 

where G(p, r, r') is a function that is periodic both in r 
and in r', p = {p, dis the quasi-momentum 4-vector, 
dp = dpdE, and the integration over p is bounded by the 
volume of a unit cell of the reciprocal lattice (the 
Brillouin zone). If we represent G(p, r, r') in the form 
of an expansion in a set of functions IJ!np (r) that are 
periodic in the lattice, then G(x, x') tak:es the form 

G( ')-s dp G () <> • (')'P,,_,., (2.3) x,x - (Zn)' "'" p fjl .. ,, r fjlmp r e 

(here and below, we use the convention that repeated 
indices are to be summed over). 

For arbitrary values of p, the matrix Gnm (p) is 
non-Hermitian. Therefore, it cannot be brought to diag­
onal form by a unitary transformation. However, as 
follows from the Lehmann expansion (see, e.g. ,[3J), for 
E = 0 the anti-Hermitian part of Gnm (p) vanishes. We 
shall find it convenient to take as the basis for the ex­
pansion of G(x, x') the system of functions q:>np(r) defin­
ing the representation in which Gnm (p) is diagonal for 
E = 0. Below, we shall call this the band representation, 
and the labels n of the functions q:>np(r) will be called 
the band indices. 

As follows from Luttinger's theoremC 5J (see alsoC3 J ), 
the number of particles per unit cell of the crystal, to 
within an even integer (we are considering a system 
consisting of spin- 1/:! particles), is proportional to the 
sum of the volumes enclosed within the surfaces at 
which Gn (0, p) goes either to infinity or to zero. We 
shall assume that Gn (0, p) becoming infinite for values 
of p lying on a certain surface corresponds to a pole of 
Gn (E, p) for E - 0 and for values of p close to the indi­
cated surface (we denote the index of such a band by f): 

a(p) 
G,(e,p) ~ (2.4) 

e- e(p) + i/j sign e(p) 

This means that, forE - 0, the crystal possesses weakly 
attenuating Fermi excitations with dispersion law 
E = E (p); E (p) vanishes at the above-mentioned surface, 
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which we shall call the Fermi surface .1 > The simplest 
example of a surface at which the G-function vanishes at 
E = 0 is the Fermi surface of electrons in a supercon­
ducting metal. The vanishing of the pole at E = 0 in this 
case is connected with the formation of a gap in the 
Fermi spectrum, due to the appearance of bound Cooper 
pairs. The crystal as a whole is also a bound state, and, 
therefore, the presence of a gap in certain branches of 
the single-particle spectrum is completely natural. Such 
a possibility enables us to explain the presence of de­
fection Fermi surfaces of small volume in a crystal 
with an odd number of sites per unit cell and with a 
small difference between the numbers of sites and parti­
cles. 

3. THE VERTEX PART FORk= 0 

Whereas the poles of the single-particle Green's 
function determine the spectrum of the Fermi-type exci­
tations, information on the Bose branches of the spec­
trum of a Fermi system is contained in the two-particle 
vertex part r(x1, x2; X3, x4). It is connected by a standard 
relationC3J with the two-particle Green's function 

G(x,, x2 ; x,, x,) = (T('Ijl(x1)'¢(x,)'ljl+(x3 )'1jl+ (x,))) 

and, like the single-particle G-function, is invariant 
under a simultaneous displacement of all its space var­
iables by an arbitrary translation vector of the crystal 
lattice. This fact, together with the in variance with 
respect to time translations, enables us to represent the 
function r (x1, x2; x3, x4) in the form 

S dpdp1 dk 
f(x,,x,;x,,x,)= (2n)" rnmn•m•(p,p1;k)cpnp(r,)cpmp•+k(r,) (3.1) 

X <r,:•+• (r,) cp,:.,,(r,) exp[ip(x,- x,) + ip1 (x,- x,) + ik(x,- x,) ]. 

Here, k = {k, w} is the quasi-momentum-transfer 
4-vector. As in (2.2) also, the integrals over p, p' and k 
are taken over the volume of the Brillouin zone; in the 
case when p + k or p' + k extends beyond its limits, we 
propose to use the periodicity condition of the Bloch 
functions <Pnp(r)eiP · r in the space of the reciprocal 
lattice. 

We proceed to investigate the singularities of the 
vertex part at small quasi-momentum transfers. First 
of all, it is clear that, in view of the presence of weakly 
attenuating Fermi excitations, the function r(p, p'; k), 
as in the case of an isotropic Fermi liquid[6J, can pos­
sess singularities of the zero- sound type. With these 
one associates diagrams containing Green 's-function 
loops, for which the difference in the quasi-momenta is 
equal to k. One can convince oneself of this by consider­
ing the equation connecting r with the irreducible vertex 
r <o[3J . 

r ( I k) r''> ( I k) . J dp, o> ( nmn'm' p,p; = nrnn'm' p,p; -! (2n)' rnm,n'm,' p,p,; k) 

X Gm,'m,(p,)Gm,•m,(Pt + k)fm,mm,'m•(PtoP1 ; k). (3 •2) 

r (1) is determined by the set of graphs for r which can­
not be cut into two G-lines with quasi-momentum differ­
ence equal to k. A singularity of r arises as a result of 
the non-regularity of the kernel of Eq. (3.2), which is 
due to the integration over p1, in the vicinity of the Fermi 

1>Unlike in I, the chemical potential fl. is assumed here to be an 
independent variable. Therefore, the energy of the quasi particles is 
reckoned from fl.· 

surface, of the term with m1 = m2 = m~ = m1 = f, when the 
poles of the G-functions come together as k- 0. On the 
other hand, as already noted, in a quantum crystal, exci­
tations of the type of long-wave acoustic phonons should 
occur. The presence of the corresponding pole in r 
stems from the relation (A.6) obtained in the Appendix 

w-'[P~m•(P) c,;;!m(P + 7i)- c:~·(p)P~·m(P) l = Onm'(p, 1i), (3.3) 

where 
d I 

Vnm'(p,Ti)=Pnm'(p)-i J (2!)' rnn'mm•(p,pl; 1i) 

X Grn'm"(p 1 )P ~"n" (p1 ) Gn"n'(P1 + '!£), 
(3.4) 

Pnm'(p)= J d~ cpnp"(r)e-'"( -i i)~.)cpmp(r)e'", (3.5) 

k = {0, w}, and v~ is the volume of a unit cell of the lat­
tice. It can be seen from these equalities that the vertex 
part r fork = 0, w- 0 has a singularity of the type w-1 
or stronger. This singularity is not of the zero- sound 
type, since, as follows from the theory of a Fermi 
liquid[6J, the latter is absent in the limit k = 0, w - 0. 

We stress that the residue at the pole of r(p, p'; 'K) 
vanishes in the transition to a unifQrm system, as are­
sult of the fact that, in this case, P~m (p), Gnm (p) ~ 6nm · 
This means that the pole under consideration is associa­
ted with inter-band transitions and, thus, being a specific 
property of the crystalline state, is a result of the broken 
symmetry of the ground state. 

It is clear that, at small but non-zero k, the pole of r 
occurring at k = 0 remains, having been displaced to one 
side (w ""0). Therefore, we write r in the form of a 
sum of two terms, one of which (I;') is regular fork= 0, 
w - 0, while the other part contains the singularity of 
interest: 
fnmn•m•(P~oPz; k) = f nmn•m•(p,, p,; 1i) + g:n•(p,, k)D,;(k)g~m·(p, + k,- k), 

(3.6) 

where g~m (p, k) is regular at k = 0, w- 0, and Dij(k) 
contains the singularity. The indices i and j in Dij have 
arisen in connection with the fact that the relatio.n (3.3) 
has three independent components. Therefore, g~m (p, k) 
has a vector character, and Dij(k) has the properties of 
a tensor. The relation (3.6) is depicted graphically in 
the figure. Because of the vector character of the resi­
dues at the pole and by virtue of the character of the 
broken symmetry of the ground state of the crystal, the 
function Dij(k), reduced to diagonal form, clearly deter­
mines the spectrum of the three branches of the acoustic 
vibrations of the crystal. Therefore, below, we shall 
call the fun~tion D· · the phonon Green's function, and 
shall call g~m (p, k~ the vertex of the fermion-phonon 
interaction. 

We shall study how to determine the functions g~ (p, k) 
~d Dij\!s) fork = 0. We introduc:e for !_his the quantity 
~m (p, k), which diffe;ss from~m (p, k) by the replace­
ment of r(p, p'; k) by r(p, p'; k) in (3.4), and the func­
t~ons Rij (k) and Aij (k), defined by the following rela­
tions: 

n;~,., ~j ~ d:p' 
+ )!.Jvvvv~ 

n,p m,p'•k n,p m,p'•k 
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.R,;(li) =- i J (::)' G,,.(p + lC)P~•m•(p)G,..m (p) Q,./(p, lC), (3. 7) 

A;;(lC) =- i J (::)' g,m'(p + lC, -lC)Gm,..(p)P,..,. G,.,(p + lC). (3.8) 

Expressed in terms of ~~m (p, k) and Aij(k), the relation 
(3.3) takes the form 

w- 1 [P~,..(p)G,;;:,.(p + lC)- c;:~.(p)P!.m (p)] 

= Q,m'(p, lC) + g,,.;(p, lC)D;,('k)Aii(li). 
(3.9) 

Hence, after multiplying by Gmm'(p +k)P~'n'(p)Gn'n(p) 
and integrating over p, we obtain the equality 

(3 .10) 

The quantities Ri/k), Ai/k) and Di/k) do not contain 
the space components of the momentum transfer k (we 
recall that k = {o, w}) and are second-rank tensors. 
The symmetry requirements of the system lead to the 
result that they are symmetric; in the case of cubic 
crystals they are proportiomi.l to the unit tensor, and in 
uniaxial crystals they have two independent components 
each and are commutative.2 > 

Because of the fact that, according to (3.9), to within 
a factor independent of p, ~m (p, O) is equal to 

P:..,(p)G,;;,',. (p)- c;:~.(p)P!.,. (p), 

it follows from (3.8) that Aij(O) = 0. Therefore, Aij(k) 

-wand, in accordance with (3.10), Dij(k) - w- 2 : 

(3.11) 

The structure of the x:elation (3.6) is such that the 
choice of the functions g~m (p, k) and Dij (k) is arbitrary 
to within multiplicative tensor constants, which are such 
that the second term of the right-hand side of (3.6) re­
mains fixed. We put 

p,, =- .R,;" == lim .R,;(k). 
k=O.w-+0 

(3.12) 

(Here and in the following, quantities with the index w 
denote the limit corresponding to k = 0, w - 0. Analog­
ously, the index k will denote the limit of a function of 
the momentum transfer for w = 0, k- 0.) Taking (3.12) 
into account, from (3.9) and (3.10) we obtain 

g,"''(p, li) =- i[P,~.(p)G;.~(p + lC)- c::.(p)P!.m (p)- wQ:~> (p) ]. 

(3 .13) 

In the expression (3.13), terms quadratic and of higher 
order in the frequency have been omittep, since, from 
the very nature of the definition of the g~m (p, k), it is 
meaningful to treat them only to this level of exactness. 
In the case n = m = f with E, E (p) - 0, using formula 
(2.4) we obtain 

'( ") , [ P;(p) i'i/(w) ( ) ] g, p,,., = -Hu a(p) -,<t P ' (3.14) 

where Pi(P) = Phm(P) ~or n = m = f. The connection be-
~l(W) ~' 

tween the quantities Qf (p), Pij =- Rti and the param-
eters characterizing the properties of the quasi­
particles at the Fermi surface will be established in the 
next Section. 

2lit is known that crystalline He3 exists either in one of the cubic 
modifications or in the hexagonal modification. 

4. THE VERTEX PART FORK ;otQ 

In order to determine the nature of the singularities 
of the vertex part for k "'0, we make use of Eq. (3.2). 
In analogy with the case of the isotropic Fermi liquid,C3 J 
the extraction of the singularity in the kernel of the 
equation can be performed by a formal decomposition 
of the product of G-functions into a regular and a singu-
lar term: G.,.(p)G.,,..(p + k) = G,,.(p)G.,mo(P + k) 

vk (4.1) + 2nia'(p)i\(r;)i\(r;(p) )--6.,6m16.,16,.,, 
w-vk 

where v = v(p) = aE (p)jap is the velocity of the Fermi 
excitations at the Fermi surface. The second term of 
(4.1) corresponds to the contribution of the product of 
G-functions in an integral over the vicinity of the sur­
face E(p) = 0, E = 0. We introduce the quantity 
~"nn'mm'(pl, P2i k) satisfying Eq. (3.2) in which the 
replacement GG - GG has been made. Since, as follows 
from (4.1), 

G(p)G(p + 'k) = G(p)G(p + 'k), 

we have 

r (p, p,; 'k) = r (pi, p,; lC). 

We write out the equations for r(pl, p2 ; k), r(pl, p2 ; k) 
and r(pl, P2i k) stemming from (3.2): 

-G,,.(p')G,.,(p' + k)fv,.,,,.,(p', p,; k)+ J dST~;~,(p,,p'; k) · 

·a'(p') W =~'k ftn'tm•(p', p,; k), (4.2) 
- (I) • J dp' r<l) ( '· k) r •• •,.,.•(p,,p,;k)=f •• ·mm•(p,,p,;k)-! (2n)' .,,.,p,p, . 

-G,I'(p')G,.,(p' + k) r, .•... ,..(p',p,; k), (4.3) 
(I) , s dp' (I)( I, li) 

r ••• ,.,..(p,p,;'k)=r ........ (p,p,;'k)-~ (2n)' r.,,.. P,P, · 

. G,,, (p') G,., (p' :+ 'k) r,.,,.,,., (p', p,; 7!). (4.4) 

(Here we have used the notation (27Tf4fdpo(E)o(E(p)) 
= J dS.) 

From a comparison of (4.3) with (4.4) and (3.6), we 
find that the solution for r can be represented in the 
form 

f,,.,,•,.•(p,,p,; k} = r .. ~nn•m•(PioPz)+ g~n•(PI, k}D~;(k}g~m•(P + k,- k), 
(4.5) 

F.or sm~ll k, the quantity g~m (p, k) differs from g~m ( 
g~m (p, k) by a term proportional to the vector k~ and 
the function Df)k) is expressed in terms of Dij(k) 
through the relation 

[D,;'(k)]-1 =D;;-1 (1!) -'Aa.,k,k,, (4.6) 

where Ailsj is a fourth-rank tensor satisfying the sym­
metry requirements of the crystal, so that 

(4.7) 

These relations follow from the actual structure of the 
vertex part. The tensor Xilsj and the term in ~m (p, k) 
that is linear in the wave vector k could be expressed in 
terms of r(pl, p2 ; K) and r<ll(pl, P2i k), but since r< 1> is 
an unobservable quantity, we shall leave them as inde­
~endent parameters. 



1216 DZYALOSHINSKII, KONDRATENKO and LEVCHENKOV 

It is easily seen that from (4.2) and (4.4) we can ob­
tain an equation connecting r with r. Since the singu­
larities of the vertex rnmn'm'(Pt, P2; k) in the momentum 
transfer have a factorizable form, i.e., do not depend on 
the band indices or the variables Pt and p2, we write out 
the required equation for the component of r with n = n' 
= m = m' = f for E1 = E2 = 0 and for p1 and p2 lying on the 
Fermi surface (i.e., E(pt) = 0, dp2) = 0): 

v'k 
tr(p,, p,; k) = .r(p,, p,; k) +J dS'.r(p,, p'; k)--,ktr(p', p,; k). (4.8) 

w-v 

Here, we have used the notation 

tr(p,, p,; k) = a(p,)a(p,)r111i(p,, p,; k) I•,=•'='• (4.9) 

.r(p,, p,; k) = a(p,)a(p,)fllll(p,, p,; k) l••=•o=O· {4.10) 

If we also use the notation 

/(p,,p,) = a(p,)a(p,)f,7"(p,,p,) I•,=•,='• (4.11) 

i(-<o§,(p) + k,~,.(p)) = a(p)gll'(p, k) I•='• (4.12) 

and take (4.5) into account, the function .r(pt, P2; k) 
takes the form 

.r(p.,p,;k) =/(p,,p,) + (w§,(pt) -k,~,.(p,)) 
XD,;'(k)(w!;;(Pz) -kmSm;(Pz)). (4.13) 

If we use the equality (4.13), the solution of Eq. (4.8) 
for tr(pt, P2; k) can be written in the form 

tr(p., p,; k) = .o/-(p,, p,; k) + (w£,(p1, k) 
- k,s,.(p,, k) )D,;(k) ( w!;;(p,, k) (4.14) 

- km~m;(Pz, k)), 

where i"(pt, P2; k), ~i (p, k) and tli(p, k) satisfy the 
equations 

- J v'k -tr(p., p,; k) = /(p,, p,) + dS'f(p, p')--,.fr""(p,', p,; k), 
(j)- v" 

J v'k ;,(p,k)= ;,(p)+ dS'f(p,p')--,k;,(p',k), 
w-v 

s,.(p,k)= ~,.(pl+JdS'f(p,p') v'k'k s"(p',k), 
w-v 

(4.15) 

(4.16) 

(4.17) 

and, if we take (4.6) and (3.11) into account, Dij(k) is 
determined by the relations 

D,;-'(k) = p;;w'- T,;(k), 

T,;(k) = Aiim;ktkm + J dS { (w£,(p) 

- k,~,(p))~k(w§;(p, k)- km~m;(p, k) l}. w-v 

(4 .18) 

(4.19) 

It can be shown that, since the singularities in k, de­
termined by Eqs. (4.15)-(4.17), of the functions 
~(Pt, P2; k), ~i(p, k) and l:zi(p, k) are common to all 
three functions, this leads to their cancellation in the 
expression (4.14) for tr(Pt. P2; k). But the true singu­
larities of tr(pt, P2; k) correspond to poles of the func­
tion Dij(k). The dispersion law, i.e., the dependence 
w = w{k), at the pole is determined by the secular equa­
tion 

[p;;w'- T,;(k) ]u;(k) = 0. (4.20) 

This equation, and also the dependences on k of the quan­
tities Tii{k), ~i(p, k) and l:zi(p, k) coincide with Eq. 

(1.3.11), ·obtained by a phenomenological method in I, 
and with the dependences determined by Eqs. {1.3.13) 
and {1.3.14). 

Another form of the dispersion equation for the Bose 
branches of the excitation spectrum of a quantum crys­
tal can be obtained from (4.8), if we note that, in the 
vicinity of the pole of tr( Pt, P2; k), we can neglect the 
term g-(pt, p2; k) in the right-hand side of (4.8), and, in 
view of the fact that the variable P2 in this equation plays 
the role of a parameter, represent tr(pt, P2; k) in the 
form of a product: 

w-v,k w-v,k 
tr(p1,p2 ; k) =--k-v(p., k)--k-v(p,,k). 

Vt v2 

After this, we obtain the following homogeneous equa­
tion for v(p, k): 

(w-vk)v(p,k)=vk Jas'.r(p,p';k)v(p',k). (4.21) 

This equation coincides exactly with the dispersion 
equation {1.3.8). According to (4.13), (4.6), (3.11), 
{1.3.9) and (1.3.10), the k-dependences of the function 
.r(pt, p2; k) appearing in (4.21) and {1.3.8) are identical. 

Thus, on the basis of a microscopic treatment, we 
have proved the correctness of the dispersion equations 
obtained in I for the Bose-excitation branches of a 
Fermi crystal, which correspond to coupled oscillations 
of the zero-sound and phonon types. According to (4.11) 
and (4.5), the Landau function introduced in I for the 
Fermi quasi-particles of the crystal is proportional to 
the w-limit of the irreducible (with respect to the 
phonons) vertex part fW(pt, P2). 

To conclude this section, we shall express the quan­
tities ~i(p) and pij in terms of parameters characteriz­
ing the properties of the quasi-par~~le~ at the Fermi 
surface. We note that the function~ w (p), with which 
the quantity ~i {p) is connected through the relat,Lqqs 
(4.12) and (3.14), can be expressed in terms of Qrk)(p) 
by the following formula: 

a(p)Q;<">(p)= a(p)Q;<•> (p)+ J dS'f(p,p')a(p')Q;<•> (p'), (4.22) 

which follows from (4.15) and the definition (A.4) of 
Qi {p, k) with the replacement r - f. Substituting 
(;f.~) into (3.13) and (4.12) and taking into account the 
equality 

a(p)Q/<•> (p) = a(p)Q/<•> (p) = mv,, (4.23) 

which stems from (A.7) and (2.4), we obtain an expres­
sion for ~i {p) that coincides with the formula (1.2.7). 

We now study the transformation of the tensor Pij• 
which, according to {3.11) and (A.13), is equal to 

• J dp ( i ?I . 
('J;; =- J{; = i lim -(-,Gmm• P + k)Pm•n•(p)G.,.(p)'<nm'(p, k). 

•='··-' 2:t) 
(4.24) 

By making use of the relation between the two limiting 
values (k = 0, w - 0 and w = 0, k- 0), of the product of 
G-functions, which follows from (4.1), and using the 
relations {4.23) and (4.24), and also the equality 

(4.25) 

which is a consequence of (A.7) and (A.18), we shall 
have a formula for Pij that coincides with (1.2.9). We 
remark, finally, that the functions f(p, p'), t~k{p) and 

Aiklm are related to the forward scattering amplitude of 
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the quasi-particles at the Fermi surface; this ampli­
tude, as in the case of a Fermi liquid[&], is expressed 
in terms of the k-limit of the vertex r(p, p'; k). 

5. CONNECTION BETWEEN THE CHARACTERISTICS 
OF THE PHONON SPECTRUM AND THE LATTICE 
DEFORMATION 

With the aim of further elucidating the physical mean­
ing of the quantities appearing in the microscopic theory, 
we shall determine the linear response of a crystal­
lattice structure to a weak long-wave (and low-frequency) 
external scalar field, given by the potential ocpe-ikx 
( kx = k · r - wt). The lattice deformation arising under 
the action of the external field can be found using the 
following formal device. We introduce an arbitrary in­
tegral operator with a difference kernel .2'(r- r') that 
falls off at distances of the order of the dimensions of 
the lattice unit cell; this operator has the property of 
orthogonality to a constant: 

.2'const""' dr.2'(r- r )const = 0. A J 1 

The result of the action of an operator with such proper­
ties on a periodic function is a function that is also per­
iodic, its integral over its period being equal to zero. 
In particular, 

where 

J dr.:fn(x) = 0, 

" ' 

(5.1) 

n(x)= -i J (Z~' e'•'G.,(p)<p •• (r)<p;.(r), 6-++0 (5.2) 

is the microscopic particle-number density of the crys­
tal, and v c is the volume of a unit cell of the lattice. In 
the case of a weak perturbation with nonuniformity of 
characteristic scale substantially greater than the period 
of the lattice, the relation (5.1) can be written: 

~ ~ drftn0 (r) + ~ drftfin (r, 1) = 0, (5.3) 
Vc(R, t) l'c {it, t) 

where vc(R, t) is the volume of a unit cell of the de­
formed lattice; the position of this cell is defined by 
the macroscopic coordinate R at time t. 

We shall transform the first term of (5.3). If we 
introduce the deformation tensor (unsymmetrized) 

iJrL,(R, t) 
w,.(R, t) = iJR, , (5.4) 

where ui (R, t) is the displacement vector of the lattice 
sites (and not of the particles), then, on changing to a 
system of coordinates r' by the formula ri 
= (oik + wik)rk, the integration in the new variables in 
the first term of (5.3) will be over a region whose shape 
and volume are the same as those of the unit cell of the 
unperturbed lattice. Taking into account the fact that the 
Jacobian of the transformation in the lowest order in wik 
is equal to 1 + wzz, we obtain 

~ drXn0 (r) = ~ dr' ~ dr":l!(l + w (R, t)) (r'- r")l n0 !(i + w (R, t)) r"] 
~(R, I) "• 

X(f + Wu (R, 1))2 • (5.5) 

Retaining only the terms of first order in wik• we shall 
have 

~ drftn0 (r) = Clmwlm (R, t), (5.6) 
'Vc(R, i) 

c ~ an.(r) 
C1m = Jdr:lrm - 0-. 

vc rl 

(5.7) 

We shall study the transformation of the second term 
in (5.3): 

S ~ s dp J - . . dr!l'{)n (r, t) =- i (Zn), e'"'{)G.m (p, k) dr!l'e~••<p •• (r) (jlmp+k (r), 
v,(R,t) v 0 (R,I) (5,8) 

Since Cfnp(r)cp~p +k(r) is a function that is periodic in 
the unperturbed lattice, 

vc(R,t) 

J dr.i<p,.(r)<Pm.;.(r) = 0, 
vc(R,t) 

t•c{R,t) 

= - ie-'•a J drft (kr) <p •• (r) <p:. (r) + 0 (k'). 
v 

' 

Therefore, the part of oGnm ( p, k) that is regular as 
k- 0 leads in (5.8) to an expression proportional to at 
least the first power of lkl. We shall be interested in 
two limiting cases of the relation between the frequency 
and the wave vector of the external field: w >> sol k I 
and w « solk I (so is the characteristic speed of the 
zero-sound excitations). In both cases, the irreducible 
(in the phonons) vertex f"(pl, P2; k) is regular and can 
therefore be omitted by virtue of what was stated above 
in the calculation of the G-function response necessary 
for our purposes. Consequently, corresponding to (A.3) 
and (3.6), 

6G."' (p, k) £~£- iG,.,(p) G.,'"' (p)g:,,,(p, O)D,;(k)lJ;,(k)k,fi<p, (5.9) 

J dp . 
lJ,,(k)k.= (Zn)' g,,'(p+k,-k)G,,,(p) 

X(m', PI e-'"'ln',p + k) G.,,(p + k). (5.10) 

Substituting (3.13) into (5.9) and then into (5.8), we obtain 

S ~ J ~ on,(r) dr.2'/'m(r,t)= -e••a+••• dr!l'(kr)--D,;(k)lj;.(k)k,{i<p or, 
uc ~ 

(5.11) 

Substitution of (5.6) and (5.11) into (5.3) gives 

(5.12) 

In view of the arbitrariness in the choice of the operator 
Z, which defines the matrix Czm (5.7), it follows from 
(5.12) that 

(5.13) 

This is the formula sought for the lattice deformation 
due to an external scalar field. 

It is clear that, for w » solkl, the function 1Jij(k) 
reduces, to within quantities of order (solkl/w)2 , to a 
constant, which we denote by 7)ij: 

lJ<; = lim lJ,;(k)""' lJ;,W. (5.14) 
11:=0, w-+0 

Analogously, in the region w « solk I, to within terms of 
order (w/solkl)2 , the quantity 1Jij(k) is also eq~al to a 
constant, for which we introduce the notation 7Jif 

1]:;= lim lJ•;(k)""' lJ•/. (5.15) 
w=o. k-+0 
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Using the definition (5.10), and also the relation (4.1) 
and Eqs. (4.15) and (4.17), by separating out the Fermi­
liquid singularities we obtain the connection between 7]i. 
and~: J 

(5.16) 

(fij(P) = t~(p)), which coincides with formula (1.4.12). 

In fact, the tensor 7Jij is not an independent quantity. 
Its connection with the other parameters of the theory 
can be established by means of the relation (A.19) ob­
tained in the Appendix. After substitution of the expres­
sion for the vertex part into the definition (A.12) of 
Roo(k) and extraction of the Fermi-liquid singularities, 
we arrive at a formula coinciding with (1.4.22). 

In conclusion, we shall consider the linear response 
of the lattice structure and of the macroscopic particle­
number density of the crystal to a static field tending to 
uniformity. In this limit, in the formula (5.13) for the 
def~rmation tensor the function 7Jjs (k) must be replaced 

by 7Jjs' and Dzj(k) by the static expression for the phonon 
Green's function, which follows from (4.18), (4.19) and 
(4.17). After passing to the limit k- 0, taking into ac­
count the effect of the finite size of the system, we obtain 

(5.17) 

where Aijlm coincides with the tensor introduced by the 
formulas (4.14) and (4.16) in I. 

If we take into account formula (A.2) for the response 
of the G-function and formulas (3.1) and (3.6), the 
response oN(R, t) of the macroscopic particle-number 
density of the crystal to an external field takes the form 

6N(R, l) = [Roo(k) +k;1'],,(k)D,m'lm•(k)k,]8c:pe-••R+iwl, (5.18) 

where R0o(k) is defined by the expression 

·s dp Roo(k) = -! (Z:rt)' B.,.,(p, k)Gn,m,(p)Gm,n,(P + k)Bm,m,(p, k) 

S dpdp' - ' 
- (Z;r)' B.,.,(p,k)G.,., (p)G.,., (p + k) r •. m,.,m,(p, p ; k) 

XGw•mo (p') Gm,n,(P' + k)Bm,m,(p, k), 

(5 .19) 

The response to the static field in the uniform limit can 
be obtained by separating out the Fermi-liquid singu­
larities and then passing to the limit w = 0, k- 0, taking 
into account the effect of the finite size of the system in 
the second term of (5.18). The final result takes the form 

( ~ 1\N( ) ) = - [ ( 0
0N ) + ~."A'"m;j;m], 

uq:> r eq>-+const ,..._. F 

(5.20) 

where (8N/8J..L)F coincides with the quantity defined by 
formulas (1.4.18) and (1.4.8). The formula (1.4.19) for 
the compressibility follows from (5.20). 

APPENDIX 

We shall prove a number of relations connecting the 
single-particle Green's function with the vertex part. 
For this, we shall make use of the fact that, on switching 
on an infinitesimally small external field, with the corre­
sponding interaction Hamiltonian 

fL, = y J dr ljl+(x) e-''" ,;a(r)¢ (x), y-rO (A.1) 

(we shall consider the case uo = 1, ui(r) =-i8/8ri), the 
resulting linear change of the Green's function is deter­
mined by the equalityC 3J 

6G-' (x, x') = v { e-''" ~. (r )6 (x - x')- if d'x, d'x,' d'x, r (x, x,; x'. x.') 

X G(x.',x,)e-""'~a(r,)G(x,,x,) }• (A.2) 

which, in the band representation, takes the form 

6G.m-'(p, p+k) = vQnn,"(p, k), (A 3) 
- d' I • 

Qnm"(p, k)= (n, Pie-'"' u.(r) I m, p + k)- is-< p)' rnn•mm•(p,p'; k) 
2;r (A.4) 

X Gwm,(p') (m", p' I e-'"' Iia(r) I n",p' + k) G., •. (p' + k). 
Here, 

- . . J dr -(n,p!e-'"'u.(r) lm,p+k) = -c:p.,•(r)u.(r)<pmp+k(r) 
v. •, 

(vc is the volume of a unit cell of the crystal). On the 
other hand, in the case of a special form of the operator 
ua (r), the response of the Green's function to an ex­
ternal field can be calculated directly using the symme­
try properties. A comparison of such a result with 
(A.3) enables us to obtain the necessary relations. 

We find th~ first relation by assuming that the 
Hamiltonian Hint corresponds to a uniform scalar field 
with non-zero frequency (a = 0, ua(r) = 1, k = 0): 

H,., = yNc'"', N = J drljJ+(x)ljJ(x) 

is the operator of the total number of particles. By vir­
tue of the fact that N commutes with the Hamiltonian H0 

of the unperturbed system, the Heisenberg operators 
(with respect to Ho +Hint) /j)(x) and (p'+(x) are expressed 
in terms of the unperturbed Heisenberg operators 1/J(x) 
and f(x) as follows: 

1ji(x)= exp ~i Ldt' yNe'"'') ljl(x)exp ( -iLdt' yNe'"'') 

( e'"') = ljl(x)exp -y~ , ( e'•' ) 1ji+(x)=ljl+(x)exp y~ . 

From this we find the connection between the Green's 
function in the presence of the external field and the 
unperturbed G-function: 

C(x, x') = G(x, x')exp [- : (e''"'•- e'''''•)]. 

After expanding this expression in y, going over to the 
band representation, and substituting it into (A.3), we 
shall have 

w-'[G,.,-'(p+li)-G., .. ,-'(p)] =Q.,,,'(p, li), (A.5) 

where Q~m(p, k) is defined in accordance with (A.4) with 
the substitution 

u.(r) = u,(r) = 1, 7i = (0, w). 

We obtain the second relation by considering the 
change of the Green's function due to a transfor~ation 
to a coordinate frame moving with velocity ynielwt (ni is 
the unit vector in the direction of the i-th coordinate 
axis). The corresponding addition to the Hamiltonian is, 
clearly, 

(9i = Jdr f(x)(+i8/8ri)I/J(x) is the operator of the total 
momentum). Performing calculations analogous to the 
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preceding ones and using the property that the total 
momentum of the system is conserved, we obtain 

. J dr ( a ) P,m'(p)= -rr.,'(r) -i- rp,,,(r), 
L',; r:l.~", 

(A.6) 

where ~m(p, k) is defined by the equality (A.4) with 
the substitutions 

ii,.(r) = u,(r) = -iB I ar,, li = (O, w). 

We find the third relation by specifying the interaction 
Hamiltonian to be of the form 

which corresponds to a change of gauge of the electro­
magnetic field under the assumption that the particles 
are provided with infinitesimally small charge (propor­
tional toy). It follows from the gauge invariance that, 
in this case , 

G(x, x') = G(x, x') exp [ -imy(r,- r,')n,] 

(m is the mass of a single particle). Expansion in y and 
substitution into (A.3) give 

aG.m -•(p) -• ' ' ( -• ( ) I Q'''> ) (A 7) -m +m[G.m,(p)Bm•m(p)-Bnm• p)Grn•m P = nm (p, • 
ap, 

where 

. J dr . a ( () . ) B.m' (p) = -- <p., • e''' -a <I'm• r e-••• . 
v Vc Pi 

(A.8) 

The following series of relations follows from the 
continuity equation for the particle-number density: 

~(¢+(x)>!J(x)H~{-~-[>~'+(x)!__>!J(x)- (~>~'+(x)) >!J(x) ]} =0, 
iJt ar, 2tm ar, ar, 

(A.9) 
from which follows a condition for the two-particle 
Green's function: 

aat [GII(x.,x,;x,,x,)I,,=,,,,,K,,+oJ+-21 _aa [(-aa __ aa) (A.lO) 
2 ~m r2i r'J.i r,i 

X G" (x,, x,; x,, x,) I ••=••· <,=<,+o] = iG (x., x,) [ ll (x,- x,)- ll (x, - x,) ]. 

Multiplying this equality by exp(-ikx2), integrating over 
X2 and then going over to the band representation in x1 

and X3, we obtain 

( k' ) ( k, Q '( ) I .• I I -· ( ) w+- Q.m' p,k)-- nm p,k =(n,p e-•• m,p+k)Gm•m p+k 
2m m 

- G.~.(p)(m', ple-'"'1 m, p + k). (A.ll) 

It is easily seen that the relations (A.5) and (A.7) are a 
particular case of (A.ll). Multiplying (A.ll) by 

-iGmm•(P + k)(m', P+kle'"'ln', p)G •.• (p), 

integrating over p and defining the quantity Raj3(k): 
d'p . ~ 

R.,(k) =- i J (2n)' Gmm•(P + k) (m', p + kl e'"' u.(r) In', p) 

x(s', p' I e-•" u, (r) ll', p' + k) G,., (p' + k)] (A.12) 

(we recall that iio(r) = 1, ui(r) = -iajari), we find that 

k' k 
( w + -, -)Roo(k)- _:_R,.(k) = 0. 

2m m 

In an analogous way, multiplying (A.ll) by 

-iGrnm•(P + k) ( m',p + kle'"' ( -i :r.) In', P )c .. ,(p) 

and integrating over p, we shall have 

k' k 
( w + -;;-) R;,(k)+---'-R,(k)= k,N, 

_m m 

(A.13) 

(A.14) 

(No is the number of particles in unit volume). It is ob­
vious that 

R.,(k) = R0.(-k). 

Therefore, on the basis of (A.13) and (A.14), we obtain 

k' 2 k' kk 
[ w'- (-) ]Roo(k)=-N,+-': R,,(-k). 

2m m m· 

From this it follows that 

Roo(li) = 0 (ii = (0, w)), 

R,f s= lim R;,(k) =- mN,Il,,. 

(A.15) 

(A.16) 

(A.17) 

Using (A.15), and taking into account (A.16), (A.17) and 
also the relation 

R,;(li) =0 

which follows from (A.6), we obtain 

lim a'Roo(k) = 2~1lr;. 
•~• fJk, fJk, mw' 

(A.18) 

(A.19) 

The relations established are a generalization, to the 
case of a crystal, of known identities for uniform sys­
tems. In particular, relations of the type (A.5) and (A.6) 
for w- 0 and (A.7) for isotropic Fermi liquids were ob­
tained by Pitaevski1[7J • 
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