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A model of a degenerate polar semiconductor possessing a low-lying transverse optical phonon branch is 
considered. For impurity concentrations sufficient to obtain a high-density carrier gas, the semiconductor 
goes over into the superconducting state at sufficiently low temperatures. The peculiarly strong (with respect 
to the parameter f 0) interaction between the electrons and the phonons belonging to the low-lying branch is 
specifically responsible for the superconductivity. 

THE possibility of the transition of degenerate semi­
conductors into the superconducting state was theoreti­
cally predicted[l,2J long before such a transition was 
observed experimentally. As was first shown by 
Gurevich, Larkin, and Firsov ,C 1J in polar semiconduc­
tors the attraction between electrons near the Fermi 
surface may in principle exceed their Coulomb repul­
sion. In order for this to occur, the free electrons must 
form a degenerate gas of high density inside the semi­
conductor, and this gas interacts with the longitudinal 
long-wavelength optical phonons. A high density of the 
electron gas can be achieved at small impurity concen­
trations n ~ 1019 cm-3 , and the attainment of this situa­
tion is aided by the large value of the dielectric constant 
E00 and by the smallness of the effective mass in the 
filled band. It is assumed that the electron states fill the 
single valley at the center of the Brillouin zone. The 
threshold (with respect to the impurity concentration) 
for the appearance of the superconducting transition 
lies in a range of Fermi energies EF 2: wz which is 
lower the higher the value of the static dielectric con­
stant Eo (here wz is the frequency of the longitudinal 
optical phonons). The superconducting transition tem­
perature T c falls as the impurity concentration increa­
ses. 

Cohen proposedC2J and developedC3 ' 4 J an application 
of the BCS model to semiconductors having a many­
valley band structure. It was proposed to describe the 
electron-phonon coupling in terms of deformation poten­
tials. In this connection, numerical calculations have 
shown that the interaction of the electrons with all 
branches of the phonon spectrum, but not with any 
specific type of p~10non, introduces a contribution to the 
kernel of the integral equation for the superconducting 
gap. As a consequence of such an interaction, the elec­
trons are primarily scattered between different valleys. 
The effectiveness of the intervalley scattering is due to 
the large density of states and the relatively weak 
screening of scattering processes involving large mo­
mentum transfer. 

In the present article we consider a model of a de­
generate semiconductor under the conditions close to 
the ferroelectric phase transition. The structure of the 
electron spectrum is not very important for what fol­
lows, and for simplicity we confine ourselves to a single 
valley. In such "pseudo-ferroelectrics" the dielectric 
constant may increase to very large values as the tem­
perature decreases. In this connection, there is a trans­
verse branch in the optical phonon spectrum which has 
an anomalously small gap wo at low temperatures.CSJ 

Under these conditions the mechanism responsible for 
the superconductivity is not the polarization interaction 
of the electrons with longitudinal phonons, as it was 
inC 1J, but the peculiarly strong (with respect to the 
parameter E 0) scattering by phonons belonging to the 
low-lying transverse optical branch. 

1. EFFECTIVE ELECTRON INTERACTION 

Let us discuss the specific properties of the electron­
phonon interaction close to the ferroelectric transition, 
and let us derive the effective potential of the two-parti­
cle interaction. We shall express the coupling constant 
in terms of observable macroscopic quantities. In order 
to be definite, we shall discuss the case of conduction 
electrons, but all of the results are equally applicable 
to p-semiconductors. 

In the field of a lattice of point ions the potential 
energy c-p(r) of a conduction electron is of the form 

4nei ~ P.i(q) (q. + K.) 
rp(r) =- ,,- ."-' £;(q)exp {i(q + K)r}, 

rN ;,K lq+KI' 
(1) 

where the ;j(q) are the normal coordinates of the j-th 

branch of the lattice vibrations with wave vector q, N is 
the number of elementary cells in the crystal volume V, 
e is the electron charge, and K is the .reciprocal lattice 
vector. The polarization amplitude pJ (q) of the branch j 
is related to the eigenvectors e. by the harmonic dynam-
ical matrix: J 

Pi(q)=v,-' ~~~ e;(s,q). 
~m$2 (2) 

In Eq. (2) the summation runs over the lattice basis, zs 
and ms denote, respectively, the effective charge and 
mass of the ion in the s-th sublattice, and vo denotes the 
volume of an .elementary cell. 

At the temperature T the effective electron-electron 
interaction is described by the two-particle potential 

D(r-r',-r)= V,(r-r')+ L,<D(Q,,;)e'Q<•-">, (3) 

where we have introduced the function 

16n'e' Q Q 
<D(Q,T) = -~ ~P.i(Q)N(- Q) IQI: <i'UQ,T)S;(- Q,,;)) (4) 

of the variables Q = q + K and the imaginary time T, 

which appears in the temperature diagram technique;C 6J 
here V c (r) denotes the Coulomb interaction energy of the 
electrons. In what follows it is sufficient to assumeC 1 J 
that the contribution of the free electrons to the dielec­
tric constant leads to screening at the Debye radius K- 1• 
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For simplicity let us confine our attention to the case 
of a diatomic cubic crystal and let us assume that, to a 
high degree of accuracy, one can divide the lattice 
vibrations into longitudinal and transverse. 

As is well-knownPJ the dipole-dipole interaction 
leads to the result that the tensor x.-;;13 (q) + 41Tqaq(3/q2 

plays the role of the reciprocal of the dielectric per­
mittivity of the lattice in the long wavelength region. 
With this fact taken into account, we arrive at the fol­
lowing relations by expressing the dielectric constant 
E(q, w) of a cubic crystal in terms of the root-mean­
square displacements of the ions: 

Hence 

P.'(q)N(-q) _ 6.~ ( _1 __ 1 ( )] 

Ul/(q)- Ul2 - 4nv, e~ 8 q,Ul ' 

P.'(q)P,'(- q) = ~[e(q, Ul)- e~). 
Ul,'(q)-Ul' 4nv, 

P.'(q)P,'(- q) = 4
6"' Ul/(q) (eoo -I_ e0- 1 (q)), 
nv, 

P.'(q)N(- q) = 46"~ Ul,'(q)[e,(q)- e~). 
nv, 

(5) 

(6) 

The representation (6) for the polarization amplitudes 
in terms of observable macroscopic characteristics was 
utilized in[BJ in the problem of the electron mobility in 
the neighborhood of the ferroelectric transition. 

Only the optical branches of the phonon spectrum are 
taken into consideration in Eqs. (5) and (6). The contri­
bution of the acoustic degrees of freedom to the sum of 
the oscillator strengths is small for q « K. This small­
ness is related to the electroneutrality of the cell, as a 
consequence of which the terms of zero order in the ex­
pansion of the acoustic polarization amplitudes in powers 
of q turn out to vanish. We note that the well-known 
Lyddane-Sachs-Teller relation follows from Eqs. (5) 
and (6) 

Ulz'(q) I Ul,'(q) = e,(q) I Eoo. (7) 

In accordance with formulas (6), let us represent the 
function (4) in the form 

<lJ(Q, T) = <lJ,(Q, -,;) + <lJ,(Q, -,;), 

4n:e2 w/ .,.... 
<ll,(Q, T) =- -y!QT'[eoo _,- e,-' (q) J<n(q,T)~,(- q, T)), 

4ne' Ul,' (q) 
<ll,(Q,T) = --V-IQT'[B,(q)- Boo) 

X (T~,(q, T)S,(- q, T) > (1- 6,,,). (8) 

Here one can, as usual, regard the longitudinal optical 
phonons as dispersionless. The dependence of the trans­
verse phonon frequency wt and of the dielectric constant 
to on the wave vector should, in general, be taken into 
account, keeping in mind the anomalous smallness of w 0 

in the dispersion law: 

(l),'(q) = (l)o2 + sq'. (9) 

The principal term in the longitudinal part of the 
potential (3) is the one containing the function ~ z with 
K = 0. It describes the Frohlich interaction of an elec­
tron with the macroscopic polarization field of the lat­
tice. The terms with K "'0 represent small corrections 
and can be neglected. 

The transverse degrees of freedom do not give any 
contribution to the macroscopic field. Therefore ~t 
always corresponds to scattering with K "'0. Such a 

deformation contribution is usually small in comparison 
with the scattering by the longitudinal polarization po­
tential. However, in the ferroelectric case, when the 
value of to is large, it is precisely the scattering of 
electrons by the deformations created by the vibrations 
in the low-lying transverse optical branch which is the 
major effect. 

Let us define the momentum representation of the 
two-particle potential Don electron Bloch functions lk) 
of the conduction band (one can neglect the interband 
matrix elements of D). The interaction vertex, at which 
two electron lines and a single D-line come together, 
corresponds to the matrix element 

Ck,k,(K) =<klexp{i(k-k,+K)r}lk,), (10) 

which, for values of k, k1 ~Po (Po is the Fermi momen­
tum), we shall assume to be an isotropic constant 
smaller than unity. The values of these constants are 
different for polarization (K = 0) and deformation 
(K "'0) processes. Let us denote these values by Ca 
and Cb, respectively. 

The Green's function of the electrons in the momen­
tum representation can now be determined according to 
the standard rules of the diagram technique ,C 8J where 
the line representing the two-particle interaction corre­
sponds to the function 

4ne' I C. I' [ _1 _, w,' ] 
D(q,Uln)=-- '+ 2 1- (Boo -eo (q)) '+ 2 

E:oo q X Wt Wn 

- 4ne' IC I' ( ) Ul/(q) (11) 
K' ' Bo q Ul,'(q) + Ul.' 

Here wn = 21TnT are the Bose frequencies which appear 
in the temperature technique. The first nonvanishing 
terms of the expansion in powers of the reciprocal lat­
tice vectors have been kept on the right-hand side of 
Eq. (11). It has also been taken into consideration that 
E00 will be very much smaller than Eo(q) for q << K, on 
account of the Lyddane-Sachs-Teller relationship, pro­
vided wt(q) « wz. 

2. THE WIDTH OF THE SUPERCONDUCTING GAP 

At T = 0 the magnitude of the superconducting gap is 
determined by solving Eliashberg's integral equationC 9J 
with the kernel given by expression (11): 

'( )- m f~a ~(Ul,) s'"' d {4ne' IC.I' 
L\ (!) ----- (1)1 q q -~---

4n'p, , lUl 12 - ~ 2 
0 Boo q' + X 2 

[ Ulz ( 1 x 1-(e~-•-e,-'(q))- . 
2 Ul,+Ul,-w-!6 

...L 1 )] 4ne' IC I' Ul,(q) 
1 w,+Ul,+Ul-i6 ---yz- ' B,(q)-2-

x( Ult+Ul,(q~-Ul-i6 + Ul,+Ul,(q~+Ul-i6)} · (12) 

First let us consider the case of small impurity con­
centrations when 

(13) 
As the estimates show for a substance having the param­
eters characteristic, for example, of SnTe, the gas 
parameter rs = (91T/4) 1/ 3e 2/t00 VF becomes small even in 
the region (13). This implies that it is possible to obtain 
a free electron gas of high density in this range of con­
centrations. Neglecting the dispersion of wt and Eo over 
the entire range of integration over q, correct to within 
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terms of logarithmic order one can write Eq. (12) in the 
form . . 

" dro, 8~ ' CJlz [ 1 
A(ro) =-a J!i(ro,) -+ a-J L'i(ro,)- -,..------

~ Wt 8c 6 2Wt Wt + Wt - W 

1 ] 1 
CJlo 

+ + + dro, + a,J L'i(ro,) -2 -
Wt W1 W c.. Wt 

(14) 

[ 1 1 ] X + dro,, 
Wt + Wo- W Wt + Wo + W 

where 

e'l C.j' ( 2p,) 2 

a=---ln-
2neooV, x ' 

a,= e'jC,j' (2p,) 2
80 , 

2:rtv, K (15) 

ee-l= eoo-1- eo-1. 

Let us seek the solution of Eq. (14) in the form 

( Wz ) roo 2 
[ ( e, ) L'i(w)=-ti,a,ln- 2 , +t>, 1- 1+aln-

Wo COo - (t) W1 

( e~ ro,' a, w,' )] 
X , ,+- z ' • 

Ec Wt - (I) a UJo - W 
(16) 

Within the frequency intervals 6. < w < w0 , wo < w < wz, 
and wz < w < ~F one can set 6.(w) equal (correct to 
within terms of logarithmic order) respectively to the 
constants 6., 6.1, and 6.2 given by the following equations: 

t->=-ti,a,ln-+1'1, 1- -+- 1+aln- , , ro, [ ( 8~ a, ) ( e, ) ] 
~ ~ a ~ 

L\, = !1, [ 1- :: ( 1 + aln:)], 

1'12 = - a tiln- + 1'1, ln- + 1'1, ln- . ( 
Wo ro, e, ) 
1'1 Wo CJlo 

(17) 

The condition for the solvability of the system of equa­
tions (17) leads to the relation 

where 
(18) 

Eoo/e, - ( 1 + a ln e,/w1) -• 
a,= a 1 -[eoo/E,- ( 1 +a ln Er-/w,)-• ]ln(w,/w0) (19) 

In "pseudo-ferroelectrics" at >> az and the super­
conductivity is due to the strong coupling between the 
electrons and the transverse optical phonons. 

In the case of large impurity concentrations when 

(20) 

it is necessary to take the dispersion of the phonon 
spectrum into consideration in Eq. (12). As a result 6. 
turns out to be given by 

1'1 = 2s'f, Po exp ( -1/ ~,), (21) 
where 

( ro,2 
)' ( 2s'l•p0 )' ~,=a, -,-1 - In -- «;'a,. 

2s 2Po w(l 
(22) 

Thus, the inclusion of dispersion effectively reduces 
the coupling constant. Therefore, on the curve T c (n) of 
the transition temperature as a function of the impurity 
concentration there is an ascending branch correspond­
ing to densities rs « 1, spg « wg, a maximum in the 
region of concentrations n corresponding to p0 ~ w0s-112 
and a descending part for large values of n. Actually 
condition (20) is apparently satisfied for such impurity 
concentrations at which the properties of the alloy have 
already very little in common with the properties of the 
solvent material. 

If Ao denotes the value of the gap at the impurity 
concentration no, then by assuming parabolic bands and 

with the aid of expressions (15) and (18) one can deter­
mine the gap 6. at the concentration n: 

In 1'1 = (no/ n) •;, In 1'1,. (23) 

One can write down an analogous expression for Tc. 

3. CONCLUSION 

At the present time it has been firmly established by 
experiment that the three semiconducting compounds 
SnTe,C 10J SrTi03,C 11J and GeTeC 12J can be regarded as 
possessing superconducting properties. The first two 
substances belong to the class of "pseudo-ferroelec­
trics." Thus, for example, for SnTe we have Wo "'" 20°K 
at T = 0°K. At temperatures below 670°K the compound 
GeTe is apparently ferroelectric.C 13J At the temperatu e 
of absolute zero, here w0 is still smaller than the char­
acteristic De bye frequency. 

The superconducting properties of SnTe and GeTe 
are extremely complicated. In the narrow range of car­
rier density between 8 x 1020 and 1.6 x 1021 em-s their 
transition temperature T c increases from 0.1 to 0.4°K. 
The ratio 26.(0)/Tc has been measuredC 14J for GeTe, 
where 6.(0) is the value of the superconducting gap at 
T = 0. It turns out to be equal to 4.3, which is not in 
agreement with the law of corresponding states. Super­
conductivity has been observed in SrTiOs over a much 
wider range of densities, from 1018 to 1021 cm-3 • In this 
region T c varies from 0.1°K, passes through a maximum 
(0.5°K) at n"'" 1020 em-S, and then decreases to 0.1°K for 
large values of n. 

For SrTiOs relation (23) describes the ascending 
branch of the Tc(n) curve and agrees with the observable 
data to within the limits of experimental accuracy. For 
SnTe and GeTe the superconduc:ting transition tempera­
ture T c increases with the concentration more rapidly 
than Eq. (23) implies, a result which is related to the 
strongly nonparabolic nature of the electron (hole) spec­
tra of these substances. The centers of the L-valleys in 
these semiconductors do not correspond to extrema, but 
rather to saddle points at which two valence bands inter­
sect.[lsJ Therefore, the superconductivity begins here 
only after filling the upper band of "light" holes, when 
a maximum appears in the density of states. 

As follows from the present investigation, the super­
conductivity is certainly not at any time connected with 
the many-valley structure of the electron spectrum of a 
degenerate semiconductor, as it is in Cohen's model. 
On the other hand, the single-valley mechanism of 
Gurevich, Larkin, and Firsov enables us to predict the 
phenomenon only in principle. Here the very origin of 
superconductivity is due to such delicate relationships 
between the set of parameters appearing in the theory, 
that the effective coupling turns out to be weak. 

The deviation from the law of corresponding states 
indicates that the Cooper logarithm does not have a 
sufficiently large value. Therefore, we need to take 
account of optical frequencies smaller than the Debye 
frequency, which is done in the present work. The 
specific mechanism considered above enables us to 
qualitatively explain the strong coupling in polar semi­
conductors possessing a low-lying optical phonon branch. 
In this connection T c is bounded from above by the small 
frequency wo, but it may approach arbitrarily near to 
this value for not too small values of the matrix elements 
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Cb. In order to explain the transition temperature of the 
known semiconductors it is necessary to assume Cb 
~ 1/10. 

In order to clarify the actual role of the optical de­
grees of freedom of the lattice, it would be desirable to 
measure the isotope effect in a diatomic crystal such as, 
for example, GeTe. Since the heavy atom mainly oscil­
lates in the acoustic branch, then the isotope effect 
should be more weakly expressed by the atoms of Te 128 

than by the atoms of Ge 73 • 

The author sincerely thanks L. P. Gor'kov, I. B. 
Levinson, and D. E. Khmel'nitskil for helpful discussions 
and critical comments. 
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