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The equilibrium equations for vortex lines are solved for a number of particular cases by taking into account 
interaction of the lines with the boundary of an ideal type II superconductor. It is shown that the vortex-line 
lattice is almost undeformed for a certain position with respect to the boundary (Fig. la). The maximum and 
minimum values of the external field are determined for which a mixed state can still exist with the 
prescribed induction values. 

1. INTRODUCTION 

AccORDING to the theory of Abrikosov,Pl a magnetic 
field arises in the interior of a type II superconductor 
( K > 1/ 12) in the form of vortex lines, each of which 
carries a single flux quantum cp 0 = hc/2e. In ideal 
samples of cylindrical shape, placed in an external 
magnetic field H parallel to the surface (in what fol­
lows, we shall use a set of coordinates whose z axis is 
directed along H), the vortex lines are straight lines 
parallel to the external field. In equilibrium, the cen­
ters of the lines in the plane perpendicular to the ex­
ternal field form a triangular lattice.£2·41 

A regular (in the interior of the sample) distribution 
of vortex lines is a consequence of the equilibrium 
conditionsf 4 ' 5 l 

j, = 0, jy = 0 (1) 

at the center of each vortex line (jx and jy are the 
components of the current density j ). However, inas­
much as a screening current flows near the surface of 
the sample, and the number of nearest neighbors for 
each vortex line located near the surface is different 
than for those in the interior, it must be expected that 
the lattice of vortex lines will be deformed near the 
surface of the sample. The present paper is devoted to 
this problem (see alsof 6 l). 

Another aspect of this problem is the determination 
of the absolute boundaries of stability of the mixed 
state, i.e., the maximum Hmax and minimum Hmin 
values of the external field for which the mixed state 
can still exist with a given value of B. Bean and 
Livingstonf7l and De Gennesr4 J have shown that Hmax 
= Hs"" He > Hc1 for B = 0, since at external field 
values H < Hs there exists a surface potential barrier 
that does not allow the vortex lines to penetrate into the 
superconductor. We shall show that this potential bar­
rier is preserved even for B ;e 0, and shall compute 
the corresponding value of Hmax( B) for B « Hc2 
(see (38 )). 

As is well known, the vortex lines repel each other. 
The surface barrier also prevents their emergence 
from the superconductor. The quantity Hmin (B) is the 
value of the external field for which this surface bar­
rier vanishes. The values of Hmax( B) and Hmin( B) 
depend strongly on the structure of the surface layer 
of the superconductor and its roughness. It will be 
assumed below that the surface of the superconductor 

(the plane x = 0) is ideally smooth (the size of the 
roughnesses is much less than the distance x 1 to the 
first layer of vortex lines), and the parameters of the 
superconductor ( K, Tc, X, etc) near the surface have 
the same values as in its interior. Under these condi­
tions, the boundary conditions for x = 0 can be written 
in the form 

h = H, j, = 0, (2) 

where h = hz is the magnetic field intensity inside the 
superconductor. We shall also assume that K ~ 1 and 
B << Hc2, and use the modified equation of F, and H. 
London for the determination of h:f1•4 l 

h-i<.'!1h='fo L/)(r-rnml, (3) 
n.m 

where rnm(Xm, Ynml are the radius vectors of the 
centers of the vortex lines, X the penetration depth of 
the weak magnetic field. 

It is natural to suppose that the vortex lines in 
equilibrium are arranged parallel to the boundary in 
layers x = xm ( m = 1, 2, 3, ... ) and that the distances 
between the neighboring vortex lines inside the limits 
of each layer are identical for all values of m, so that 

Ynm=a(n+ml2), n=0,±1,±2, ... ,m=1,2,3,... (4) 

Farther from the boundary, the distances between 
neighboring layers must also be equal: 

lim (Xm+t- Xm) = b. (5) 

For b = a ..f3/ 2 and for b = a/ 2 !3, a triangular lattice 
with period d = a in the first case and d = 2b in the 
second is determined by Eqs. (4) and (5). For the 
same value of the induction 

B = <poI ab = 2<po I d')'3 (6) 

these two cases differ by the location of the vortex 
lines relative to the boundary (see Fig. 1 ). For b =a/ 2 
a square lattice is obtained with period d = a {2. In the 
following, when it is possible, all the calculations will 
be carried out for arbitrary value of the ratio a/b. 

2. ANALYSIS OF THE EQUILIDRIUM CONDITIONS 

The conditions of equilibrium (1) follow from the 
requirement that the Gibbs thermodynamic potential G 
of the system under consideration have a minimum. 
As was shown in the work of one of the authors.f 5 l upon 
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variation of the shape and location of the axial lines of 
the vortex lines (see expressions (2.6) and (2.13) from 
from[ 5l), the Gibbs potential reduces to 1 > 

fiG=- ~0 I: S [jdlnm]firnm, (7)* 
n,m r nm 

where rnm is the axial line of the vortex line nm, 
dlnm the element of length of this line, Ornm the dis­
placement of this element upon variation; it is assumed 
that all the other variables on which G depends are 
fixed. In particular, if the vortex lines are straight 
lines, and Ornm = (Oxm, 0Ynm. 0), we obtain 

rp,l ~ . . 
fiG= -C- .i.... (]x(lnm)fiynm -Jy(lnm)fiXm), 

where l is the length of the vortex lines. Then, taking 
into account the Maxwell equation curl h = 41Tj/ c, we 
find 

:~ = :: ::I •=•nm' :Y~m = :: ~~ l.=•,,n • (8 ) 

Derivatives with respect to the magnetic field h = hz 
must be calculated for fixed positions of all the vortex 
lines. The force acting on the straight vortex line 
(n, m) can be represented in the form 

iJG lj)ol I Fnm=---=--'\lh . 
arnm 4:rt r=r nm 

(9) 

The equilibrium conditions Fnm = 0 (m = 1, 2, 3, ... , 
n = 0, ±1, ± 2, ... ) are obviously identical with (1). 

Solving Eq. (3) with the boundary conditions (2), we 
find 

h(x, y) = hc(x) + h,(x, y), hL = He-"1'. 

h( )=~~[K (~xm)'+(Y-Ynm)']'l') 
vx,y ::!-:A::~ o ;._ (10) 

_ c:, ( JJx + Xm) 2 +A(y- Ynm)'] 'J,)] 
where Ka is the Macdonald function. The divergence 
as x - xm and y - Ynm can be removed using cut­
off at the distances [(x- xm)2 + (y- Ynm?J 112 =~.as 
in the case of a single vortex line.r4 ,aJ Using (8) and 
(10), it is not difficult to establish the fact that the 
equilibrium conditions 

!!!_ = 0, f.t = 1, 2, ... ' v = 0, ± 1, ±, 2,... (11) 
fJyll,. 

1lAn error was committed in writing down (2.6) and (2.8) in15] The 
positions of j and dk under the signs of the vector product must be 
exchanged. 

*[j dlnml =j X dlnm· 

are satisfied for all values of xm, because of the regu­
lar distribution chosen in (4) for the vortex lines in all 
the planes x = xm, 

Proceeding to the derivation of the second group of 
equilibrium conditions, we introduce the notation 

~ ~ K ( [ (x,± Xm) 2 +(y,,- Ymn)'] '/,) (12) 
2nA' £... 1 A 

(x, ± Xm) 
X[( + )'+( _ )']''' ='f,~BS(x,±xm). 

XJ.I _ Xm YJ.lv Ymn 

The function S(xJ.J. ± xm) also depends on the parame­
ters b/A and a/A and has different values depending 
on whether the number J.1. - m is even or odd. If 
J.1. - m is an even number and 1 xJ.J.- xm 1- 0, then 

S (x,- Xm) ~ a . 
nlx,-xml 

(12a) 

As 1 xJ.J. - Xn 1 - oo, 

S(x,-Xm) ooexp (-lx,-xmi/A). (12b) 

The expression (12b) is valid even if J.1. - m is odd, but 
the quantity S(xJ.J. - xm) is bounded in this case as 
I xJ.J. - xm I - 0. The condition of equilibrium of the 
forces acting in the direction of the x axis can now, 
according to (8), (10), and (12), be represented in the 
form 

iJG 'l 2H H 

-=~{--exp(-~)-~ S(x -x) 
iJx, BnA 'a ~B A .i.... " m 

rn=t 

~ ~ 

+ ~ S(xm- x,)+ _Es(x,. + x,) }= 0, 
m=11+i m=l 

f.t= 1,2,3, .... (13) 

We note the following general implications of this set 
of equations. 

1) The first and last components in Eqs. (13) take 
into account the interaction of the vortex lines with the 
boundaries. For xJ.J. ~ A, they become negligibly small 
and we get 

p.-1 .... 

LS(x,-x,_,)= LS(x, .. -x,). 
11.=1 

These equations are approximately satisfied (asymptot­
ically accurately as J.1. - oo) if 

XIJ.- Xl'-k = X).l+k- XJA. = kb, k = 1, 2, ... , 

where b is an arbitrary constant. Thus, the distances 
between successive layers of vortex lines become uni­
form, far from the boundary. It is important to empha­
size that the quantities a, b and B = cp 0 / ab appear as 
arbitrary constants in the solution of Eqs. (12) and 
(13). Therefore, in the general case, the solutions of 
these equations correspond to metastable states of the 
superconductor as a whole. Solving Eqs. (12) and (13), 
we can express the Gibbs potential in terms of B and 
a/b and then so choose these parameters that the 
Gibbs potential has a minimum value for a given H. 
We shall call such a state one of macroscopic equili­
brium (cfYl). 

2) The following equation holds: 
N+l oo Il-l 

!~r:! I:[I:s(xm-x,)-~S(x,-x,.)] (14) 
f.i=l m=~<+l m=t 

= I:I:s(b(k+t+t))= ~kS(kb). 
h=O 1=0 k=1 
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Actually, it is not difficult to verify that 
N+J: f.l.-1 N N+l 

L, L,s(x,- Xm) ==I:~ S(xm- x,). 
1J.=2 m=l j.l=t m=~J-+1 

Using this identity and recognizing that the lattice of 
vortex lines is not deformed far from the boundary, 
we arrive at the proof of the relation (14). Currents 
flowing along the boundary of the superconductor act 
on each vortex line with a certain force, which is 
counterbalanced by the forces of its interaction with 
the other vortex lines (the second and third components 
in (13)). Using the relation (14), we can calculate the 
total force (per unit area of the boundary) which acts 
on the vortex lines, 

qJo' {1 
P= = 8na' A' L..J kS (kb). (15) 

k=t 

The quantity Pxx is one of the diagonal elements of the 
energy-momentum tensor of the superconductor and is 
identical with the pressure in the isotropic approxima­
tion. 

3) The set of equations (13) is equivalent to the sys­
tern 

( x, ) oG ( x,+, ) oG exp - --exp - --=0, 
A oa:, A ox,+, It= 1, 2, ... , (16) 

which does not contain H, and one other equation (see 
(18)). When account is taken of the obvious inequalities 

0 < Xt < X2 < ... < Xm < Xm+t < • • • • 

Equations (16) are solved uniquely (see Sees. 3 and 5) 
and we obtain 

x,=l,(x.,a, b), ~t=2,3, .... (17) 

To determine xi> we can use the equation 

oG 2H ( a:,) ~ -oo--exp -- + LJ[S(xm-x,)+S(xm+x,)J+S(2x,)=0, 
ox, ~B A m=• (18) 

in which we must substitute the expressions (17). As a 
result, we obtain 

H/B=F(x., a, b), (19) 

F(x,, a, b)=+ ~exp ( ~ )[ S(2x,)+ t (S(xm- x,)+ S(xm + x,)]. 

m=2 (20) 

Both for x1- 0 and for x 1 - oo, the sum in this expres­
sion tends toward a finite limit. Inasmuch as 

(21) 

as x1 - 0 (see (12a)), the function F(x1, a, b) increases 
without limit when x1 - 0 and when x1 - oo. Conse­
quently, for some value x1 = x0 , this function reaches 
a minimum and Eq. (19) does not have solutions for 

H < Hm,n(B) = BF(x,, a, b). (22) 

In accord with (18) and (21), the derivative aG/oxi > 0 
for sufficiently small values of x 1, so that there exists 
a potential barrier for entry of the vortex lines into the 
superconductor (cf.r4- 7l). The location of the maximum 
potential barrier is determined by the smaller of the 
solutions of Eq. (19): x1 = x~ < x0 • The other solution 
of this equation x1 = x~ > x 0 corresponds to a relative 
minimum in the Gibbs potential. In the range x~ < x1 
< x~, we have aG/axl < 0. Thus the surface barrier 

acts in both directions. When the external field de­
creases to the value Hmin(B), 

x/ =Xo = x/', 

and consequently the Gibbs potential falls off with de­
crease in X1 over the entire range 0 < x 1 < x2, the 
surface barrier disappears, the vortex lines in the 
first layer approach the surface and are cancelled by 
their images. This is then repeated with the vortex 
lines of the second layer, and so on. The induction 
should decrease by a finite value, so that a surface 
barrier is again formed, capable of containing the lines 
inside the superconductor. 

4) The surface barrier disappears also if the maxi­
mum of the external field emerges to the boundary 
when the field increases. Since our analysis does not 
hold when x~ ~ ~, the corresponding external field 
H = Hmax( B) can be determined only approximately by 
assuming x 1 ~ ~ in (19). In accord with (19), (20), (21), 
we find 

Hmox(B) = BF('§, a, b)~ H, + ~B ~S(xm), (23) 

where Hs = C{Jo/4rr>t~ ~ He (cf.(4l). For H = Hmax(B), 
the induction should increase by a finite jump before a 
potential barrier is formed, which hinders the further 
penetration of the vortex lines into the superconductor. 

3. THE REGION Hc 1 « B « Hc2 

In the case a<<>.. and b « >.., and we need take a 
large number of terms in the sum into account. Using 
the knownr9 J relations 

oo +r» oo +ao 

.E In= SIn dn + 2 .E S fn COS (2nkn)dn, 
n=-oo 1!.=1 -oo 

+~ 

SK ( ( '+ ')~) cosay n 
-~ • q P Y ' (p' + y') ,1, dy = qjpfexp[ -lp I (q' +a') 'I•], 

we get from Eq. (12) 

(24) 

o(x,-xm) = -[1- (-1)•+rnexp(2nlx,-xml/a)]-'. (25) 

The corrections to the expression (24) are of the order 
(a/ >..)2 exp [-2rr 1 xll - x11 i/ a ] . Equation (16) can now be 
rewritten in the form 

Q,,exp(-2y,) + (1 + 2cp,)exp(-y,)- (2cp,+t-1)- Q, = 0; (26) 

Q _ \""" [ Xm - x,+, ] 
"- """"'exp - A , 

m=).l+l 

Il-l "" 

cp,, =- .E a(a:,- Xm) + .E [a(x,+m- x,) + a(x, + xm) ]. (27) 

As becomes clear from what follows, Qll ~ {r1 and 
in the most important cases, 

f:lcp,. ~ 1, y, ~ 1. (28) 

Under these conditions, the set of equations (26) can be 
solved approximately, expanding y !l and Q !l in power 
series in {3 = b/>.. << 1. As a result, we find 

y,= f:l(1 +cp .. -cp,+,) +O(f:l'), 

and consequently, for !l 2:: 1, 
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x. =XI+ b[~-t -1 +'PI- <p. +OW)]. (29) 

For the determination of the quantities rp fl' we obtain 
the set of equations (see (27)) 

·-I 

'P• = L [1- (-1) m exp(k(m + 'P•-m- rp,)) J-1 

+[1-(-1) m+•exp(k(m + ft- 2 + 2t + 2rpl- 'Pm- rp,,)) ]-1}, 

where k = 2rrb/a, t = x 1 /b, fJ. = 1, 2, .•. , Fort -oo, 
the values of rpJ.L tend to the finite limits q;fJ.oo· Using 
a relation similar to (14), we obtain 

~ 00 

cr~ =I>·~= -1: m[ 1-<- 1) me•m]-1 • (31) 
J.i=t 

As t- 0, 

(32) 

If k ~ 1 (for the case of Fig. 1a, k = rr..f3 = 5.44) for 
all values of fJ. and t, 

(33) 

For the case of Fig. 1b, we have k = rr/..f3, and the 
expression (33) is too rough an approximation. Solution 
of (30) by means of a computer at k = rr/ ..f3 led to the 
results shown in Table I. Thus, in the case of Fig. 1a, 
the lattice of vortex lines is much less deformed near 
the boundary. The reason for this is the fact that in 
this case, even in the second layer, each vortex line 
has the normal number (six) of nearest neighbors. It 
will be shown below that a smaller value of the free 
energy also corresponds to this case. 

For the determination of the quantity x 1 = bt, we get 
in accord with (19), (20), (24), (28) and (29) the equation 

H/b=F(xl,a,b)=1+fl'[ 1/ 2 (t+<p1- 1/ 2)'+<p- 1/,.], (34) 

where (cf. (14), (27), (31)) 

<p= I>•=rp~+ t.ta(x.+xm). 
11=1 Jl-=1 m=t 

Following the program set forth in Sec. 2, we find 

<jlo 2 b 
H,.,n(B)=B+--y 

),2 a ' 

where y ~ 1 is the maximal value of the function 

(35) 

(36) 

Y2( t + r[J1 - 7'2)2 + rp - 7'24• For k ~ 1, the minimum is 
reached for t ~ 7'2 , when rp 1 ~ rp ~ 0 (see (35)) and 
r~ -7'24· 

In accord with (32) 

fl'P1(6) ""'ba/4n!.\; = H,/ B, 

so that 

Hm, = BF(\;, a, b) = B + H,' /28. (37) 

This expression is valid only for B >> Hs, since we 
used the inequality (28) in the derivation of Eq. (34). 
More exact expressions (see the Appendix) give the 
result: 

H~"" = H,' +B'+ flBH, +B'fl'(2rpoo + 1/e). (38) 

Of the two solutions of Eqs. (34), the smaller corre­
sponds to the maximum of the surface barrier and the 
larger to 

X1 = xt'' = b(l/2- 'P1) + /.[2(H I B -1) + fl 2 ( 1/12 - 2<p) ]'I• (39) 

is the stable position of the first layer. If 2( H/B 
- 1) » {3 2 , we can set in place of rp 1(t) and q;(t) their 
values as t-oo (see (31) and (33), which are given i.n 
Table II, where the values of the parameters a and b 
are also listed for the two values k = 2rrb/ a and the 
single value ab = d2 FJT2. 

The structure of (39) is such that the total number 
of vortex lines inside the superconductor for x~ » b 
does not depend on the manner of location of the !attic 
relative to the boundary. We shall prove this. Let the 
superconductor have the dimension X» b along the x 
axis and Y ~ X along the y axis, and let M be the 
number of layers parallel to the y axis. Using (29 ), 
we get from the condition xm =X - XM-m+H selecting 
m » 1 and M - m + 1 » 1 

M = b-1{X- 2[xl + b(<p1- 1/,) ]}, 

and, consequently, the total number of vortex lines 

N = y: = :b { XY- 2YA [ 2 ( :- 1) + fl' ( 1
1
2 - 2rp~)] '"} 

(40) 

as the data of Table 2 show, in the limit x 1 ~ b does 
not depend on the value of the parameter k. This is 
connected with the fact that the elastic properties of 
the lattice of vortex lines are almost identical for dif­
ferent directions in the xy plane. Actually, using (24) 
and (31), we can represent the expression (15) in the 
form 

The values k = 1r/ ..[3 correspond to deformations of the 
vortex line lattice in two mutually perpendicular direc­
tions. According to the data of Table I, Pxx ~ Pyy. In 

Table I 

I ~· 
I 

0.05 +5.025 -0,235 +0.197 -0.109 +oon -0.043 +4.912 
0,1 +2.283 -0.231 +0.192 -0.103 +0.069 -0.032 +2.168 
0,2 +0.915 -0,201 +0.162 -0.089 +0.059 -0.026 +0.834 
0,4 +0.221 -0.083 +0.061 -0.036 +0.023 -0.011 +0.173 
0.6 -0,014 +0.022 -0,014 +0.009 -0.005 +0.003 +0.001 
0.8 -0.124 +0.098 -0.058 +0.039 -0.022 +0.012 -0.056 
1.0 -0.180 +0.144 -0.083 +0.057 -0.032 +0.017 -0.076 
1,5 -0.226 +0.187 -0.104 +0.073 -0.041 +0.022 -0.088 
2.0 -0.233 +0.195 -0.108 +0.076 -0,042 +0.023 -0.089 
00 -0.241 +0.198 -0.112 +0.077 -0.045 +0.025 -0.096 
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Table II 

k 

d ¥3!2 
d/2 

d 

d yJ 

the isotropic approximation (seer 4l) the pressure is 

p = 'l,(p"' + p,,) = -g +Bag 1 aB, 

where g is the Gibbs potential per unit volume. In the 
considered region 

B' <f!oB e'l•fl'd BH 
g = g;-+ 16n'A'In-s--~, 

so that 

The number /3/27T = 0.2758 agrees with the data of 
Table II. 

(41) 

For macroscopic equilibrium (aGjaB = 0), accord­
ing tor2- 41, 

ll=H,(B)=B+~In fl'd 
4ttA2 s ' (41a) 

where ln (3' = -1.893 for the triangular lattice. The 
corresponding value of x~ for the case of Fig. 1a, when 
CfJ1 ~ cp = 0, can be written in the form 

d [ ( 1 4 fl' d •r, 
x,'' ~ z 1 + "3+ ny3"ln-s-) ] . (42) 

The expressions (41) and (42) are valid if (3' d/ ~ > 1. 

4. SURFACE ENERGY 

Using the results given in Appendices 1 and 4 of the 
work of Shmidt, rsJ we can represent the Gibbs potential 
for the superconductor in the form of a parallelepiped 
with dimensions X, Y, and l, placed in an external 
field H parallel to the z axis in the form (cf. (10)) 

(43) 
n,m 

As we go further away from the boundary, the value of 
h11 ( rnm) approaches hv( 0 )-the value of the magnetic 
field at the centers of the vortex lines in an unbounded 
superconductor. Setting 

h,(r.'") = h,(O) -"-- oh(rnm) (44) 

and using the expression (40), we find 

where 
G=Vg+aS, 

g = (B /8n) (h,(O) - 2!!) 

(45) 

(46) 

is the Gibbs potential density in the unbounded super­
conductor, V = XYl is the volume and S = 2Yl is the 
lateral surface area of the superconductor, 

Bb ~ 

a=- g[x, + b(<ji,- 0,5) J+ Sn ~ (bh(xm)+ 2hL(xm)) (47) 
m=t 

is the sy,rface energy. In the considered case, hL(x) 
= He -X/ A. Setting 

Q = L,exp(- XmiA) 

~loo ~00 I (I ) 4)> 1)2 i2 -2q>00 {jl 

--0,00435 -0,00428 I 0.2759 
--0.241 -0,0967 0.2757 

and summing Eq. (15) with account of the relations (14), 
(24) and (31), we obtain 

2HQ e-' 
flB = (1-e-')' +Q'+2<fi, (48) 

whence 

flQ = !!_- [ !!: -1 + fl' (_!_-'- 2<ji ) ] y, ~ ~- x, + b ( <fi• - 0 5) ' 
B B 12 B A (49) 

Calculation of the other sum in (47) presents no diffi­
culty in principle, but is rather cumbersome. We shall 
give only the final result here: 

~ {Jh _ flB [ e-' 2fl<fi ] 
fl~ (xm)--2 (1-e-')'+e'-1 · 

m=l 

Equation (47) can now be represented in the form 

a= -F(B)x + 3AH' I 16n + B'x' I 16ttA. (50) 

Here 

F(B) = g+BH /4n = Bh,(O) l8n 

is the free energy density, :X= x~ + b(cp1 - 0.5). In the 
approximation used (the corrections to (50) are of the 
order of units of AB 2j3 3/87T), the surface energy does 
not depend on the manner of location of the lattice 
relative to the boundary, when H/B - 1 » (3 2 (see 
Table II). For smaller values of the external field, the 
case Fig. 1a corresponds to a somewhat smaller value 
of the surface energy. In order to prove this, we re­
write Eq. (34) in the form 

H 1 ~ 
2(s-t)+wh2 -2<f!~)= ~, +2fl'(qJ-q>~). (51) 

According to (30) and (35), the quantity f3 2(cp- cp 00 ) is 
always nonnegative and falls off with increase in k. 
Inasmuch as the left hand side of Eq. (51) is the same 
for k = 1Tf3 and k = 1T/ .f'J, the larger of these values 
corresponds to the larger value of x, and consequently, 
the smaller surface energy. 

5. THE REGION B « Hc1 

In this region, a » A and b >> A, and it is necessary 
to take into account the interaction of the vortex lines 
only with nearest neighbors. In the case of Fig. 1a, even 
in the second layer, each vortex line has the usual num­
ber of nearest neighbors, so that the lattice of the 
vortex lines is practically undeformed. For the deter­
mination of the location of the first layer, in accord 
with (12) and (18), we obtain the equation 

H=--F=--exp - K, - +l'3K, -<f!o {jlo ( x, ) [ ( 2x, ) - ( d ) ] 
2n),' 2nA.' A A A . 

(52) 

In the case of Fig. 1b, the distance between the first 
and second layers X2 - X1 should be somewhat less 
than b. Eliminating x2 from the corresponding set of 
equations, we get for the determination of x1 a rela­
tion that differs from (52) only in that instead of .[3 
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Table III 

i<~Y'l 

I 
k~3 

d 7i Ho. 
X= 10 

Hmin 

2 1.815 1.953 1.080 
.3 0.806 1.476 0.490 
4 0.453 1.300 0.249 
5 0.290 1.233 0.134 
6 0.201 1.208 0.073 
7 0.148 1,198 0.040 
8 0.113 1.194 0.022 
9 0.089 1.193 0.013 

10 0.073 1.192 0.005 

we have the coefficient 3 before K 1( d/A). Setting x1 
= ~ in (52), we find 

I 
Xo 

I 

1.202 
1.403 
1.910 
2,512 
2.803 
3.402 
3.801 
4.102 
5.001 

I I I 
XJ, 

iimin Xo 
x,, 

X= iO X= 10 

2.050 1.468 0.825 1,402 
3.075 0.677 1.200 2.510 
4.0.52 0.338 1.685 3,550 
5.151 0.180 2.100 4.610 
6.102 0,098 2.625 5.752 
7.110 0.052 2.975 6.851 
8.105 0,030 3.500 7.850 
9.100 0.017 3.875 8.950 

10.000 0 .Oil 4.200 10,000 

<jlo <jlo ( d ) 
H'""" = 4:rtA.s + 2nA.' K, T ~H •. (53) 

The magnetic field and the induction below in this sec­
tion and in Table III will be measured in units of 
cpo/2TTA 2, and the distances in units of A. For example, 

B = 2:rtA.'B /qJo = 4:rt/ il'l'[ (54) 

The function F(x1) has a minimum for x 1 = x 0 • The 
quantity x0 is the solution of the equation 

2K,(2x,) + (x,-' -1)K,(2x,) = lCK,(a), (55) 

where k = f3 for the case of Fig. la and k = 3 for 
the case of Fig. lb. Furthermore, we find 

Hm,n=exp(x,)[2K,(2x,) +x,-'K,(2x,)). (56) 

The relations (54)--(56) determine the dependence of 
Hmin(B) in parametric form. The values of Hmin, 
Xo and x1 ( AX1 is the distance of the first layer to the 
boundary at macroscopic equilibrium) are given in 
Table III. 

General expressions for the surface energy (44)­
(47) are valid also in the case under consideration (in 
(47) we must formally set cp1 = 0.5). Without going 
through the corresponding calculations, we note that in 
the case of Fig. 1a the quantity a is smaller at macro­
scopic equilibrium. 

6. DISCUSSION OF THE RESULTS 

The above analysis of the equilibrium conditions of 
(12) shows that: 

1) the lattice of vortex lines is deformed only at 
distances from the boundary of the order d (and not A 
as was to have been expected); 2) there exists a posi­
tion of the vortex lines relative to the boundary (Fig. 
1a) for which the deformation is minimal; 3) for a 
given value of B, the balance equations have solutions 
for values of the external field H in the range Hmin (B) 
< H < Hmax(B) (see (36), (38), (53), (56) and Fig. 2); 
4) the case Fig. 1a corresponds to the smallest values 
of the surface energy and Hmin (B) and the largest 
value of Hmax( B); however, the dependence of these 
quantities on the orientation of the lattice is weak. 

The results obtained show that considerable 
hysteresis will be observed even in ideal type II super­
conductors in the experimental determination of the 
magnetization curves H(B). This is due to the interac­
tion of the vortex lines with the surface. Such a "sur­
face hysteresis" is actually observed (see, for exam-

Fig. 2-Stability limits of mixed state Hmin(B) and Hmax(B) (shown 
schematically). The solid lines pertain to the case of Fig. Ia and the 
dashed to the case Fig I b. H0 (B) is the equilibrium magnetization curve. 

ple,f1°-13 l) but the experimental values of Hmax - H 
and H - Hmin are significantly less (sometimes by an 
order of magnitude) than is predicted here. This 
divergence can be connected both with the obvious ex­
perimental difficulties of obtaining metastable states 
far from macroscopic equilibrium, and also with the 
limited applicability of our results for small values of 
the parameter K. It should also be noted that, at finite 
temperatures, a thermally activated transition of the 
vortex lines through the surface barrier are possible, 
so that the absolute boundaries of stability of the mixed 
state computed here may turn out to be unattainable for 
T"' 0, 

In cone lusion, we consider the case in which the 
external field on the lateral surface of a thick (X 
>> .:\) layer has different values H1 and H2, i.e., a 
current flows along the layer. For definiteness, let 
H 1 > H2 and let the value of the induction be B. The 
quantity B is determined from the history of the sample. 
Relatively stable current states exist when 

Hm.,(B) > H, > H, > Hm,n(B). 

If, upon increase in the current, H1 reaches the value 
Hmax(B), or H2 is shifted to the value Hmin(B), 
instabilities arise (see Sec. 2), which can lead to a 
disruption of the superconductivity. The maximum 
critical current is evidently proportional to Hmax( B) 
- Hmin(B). 

The authors express their gratitude to A. A. Abriko­
sov, E. A. Shapoval, and V. V. Shmidt for discussion of 
the results. 

APPENDIX 

The proof of Eq. (38) is given below. Using (24) and 
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(27 ), we can represent (20) in the form = exp [- ~·- ~ ( <i'• _ +)] [ 1 _ :: + ~'cp] 
F(x,,a, b)= ~exp ( x;) [ cp, + }exp(- x;) +ch x; t exp(- x;)]. whence 

(A.1) 

If the first layer is very close to the boundary ( x 1 ~ ~ ), 

occupying a position at the maximum of the surface 
barrier, its magnetic field is almost entirely cancelled 
by the images. Therefore the vortex lines of the first 
layer practically do not interact with the other vortex 
lines. It then follows that the vortex lines of the second 
layer does not exist at all, i.e., x2 = x~ (see Sec. 2). 
Therefore, in (A.1) 

1: exp (- x; ) = Q, 
,_, 

where Q is determined by the relations (48) and (49), 
in which one must set H = Hmax( B). Recognizing also 
that {3cp1(0 ~ HsB, in accord with (19) and (A.1), we 
find 

H,= H, ~ H,= [H~= (1 )]V' (A 2) s=T+2+s- li'-1+W 12-2cpoo . . 
Solving this equation relative to Hmax, we obtain the 
expression (38 ). This result is valid for any value of 
B. 

If H ~ Hmax, the quantity x~ can reach values of 
the order of X. In this case the expression (39) should 
be made more precise. Using (29 ), we get 

~Q = ~exp[- ~:- ~( cp,-+)] .t exp[- ~(m-1)+ ~cp,] (A.3) 
- m=t 

x' = x,'' = b('/,- <p,) +A In [ (1- ~'/24 + f,'cp) ~-'Q- 1 ], (A.4) 

where {3Q is given by the expression (49). For H/B 
- 1 « 1, Eq. (A.4) is identical with (39). 
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