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The value of the magnetic moment induced by an alternating magnetic field is calculated under the condition 
that the length of the free path is comparable with the specimen dimensions. The dependence of the moment 
on the specimen dimensions and on the nature of the reflection of the electrons by the surface is found for 
plane, cylindrical, and spherical specimens. This dependence may differ significantly from that for the static 
conductivity. This fact can be used for experimental determination of the relaxation time and of the 
coefficient of specularity of the reflection of the electrons by the boundary, and also for observation of the 
hydrodynamic mechanism of electronic conduction. 

THE method of determining the conductivity of metal 
specimens from the value of the induced magnetic mo­
ment in an alternating magnetic field[ 1 J has obtained 
quite broad dissemination. It is used, for example, for 
determining the galvanomagnetic properties of metals 
and for detecting open electron trajectoriesC 2 ' 3J. In the 
experiment it is usual to determine the torque acting on 
a freely suspended specimen placed in a rotating mag­
netic field H perpendicular to the axis of rotation. As is 
well known, the value of the torque K for bodies of revo­
lution can be expressed in terms of the imaginary part a 
of the magnetic polarizability of the specimen in an 
alternating magnetic field: 

K = ·allH', 

here Vis the volume of the specimen. 
For small specimens of pure metals at low tempera­

tures, when the length of the free path of the electrons 
is comparable with the dimensions of the specimen, 
scattering of the electrons by the surface may prove 
importantCl J • Under these conditions, the value of the 
magnetic moment may depend appreciably on the dimen­
sions and shape of the specimen, and also on the charac­
ter of the reflection of the electrons from the boundary. 
Because of the nonuniformity of the electric field, the 
dependence of the magnetic moment on the free-path 
length l and on the coefficient of specularity q of 
reflection the electrons by the surface will be different 
from that of the static conductivity a(q, l). Independent 
measurements of a and a can be used to determine the 
values of l and q. In the low-frequency range, the imag­
inary part of the magnetic polarizability is proportional 
to the frequency wC4J. By investigating the dependence 
of a on frequency, it is possible to determine a correc­
tion proportional to w3 , and thus to obtain still another 
quantity dependent on q and l. 

In the case of diffuse scattering of the electrons by 
the surface (q = 0), a characteristic dimension of the 
specimen will play the role of effective free-path length. 
As a result, the effective conductivity and, consequently, 
the magnetic moment should decrease with decrease of 
the dimensions of the specimen. The case of specular 
scattering (q = 1) requires more careful treatment. It 
turns out that in this case the result will depend on the 
geometry of the specimen and the direction of the mag­
netic field. Formally, this can be understood from the 
following arguments. 

We first consiaer a spherical specimen: the alternat-

ing magnetic field induces circular currents in it; that 
is, only the component E cp differs from zero. From 
Maxwell's equations in the first approximation with 
respect to w, it can easily be shown that in a spherical 
coordinate system Ecp ~ r sin 9. The inhomogeneous 
part of the kinetic equation, E cp v cp, will in this case be a 
conserved quantity, proportional to the projection of the 
angular momentum along the z axis. Therefore for 
specular reflection of the electrons by the boundary, the 
dependence of the distribution function on the coordin­
ates will be the same as for l « R, where R is the radius 
radius of the specimen. As a result, the magnetic mo­
ment for q = 1 will be determined by the expression ob­
tained for l « R. (A similar result occurs for the static 
conductivity of a plate.) 

A different situation occurs for a metal plate placed 
in an alternating magnetic field parallel to the surface. 
The induced currents flow in opposite directions near 
the top and bottom surfaces of the specimen. As a re­
sult, an electron that undergoes an addition to its speed 
because of the electric field at one surface, and that 
reaches the opposite surface without collisions, will de­
crease the electric current. Therefore the value of the 
magnetic moment should differ from the value corre­
sponding to l « d (2d =plate thickness), even for specu­
lar reflection of the electrons by the boundary. An im­
mediate consequence of this result is the occurrence of 
Sondheimer oscillations of the induced magnetic moment 
of a plate in a constant magnetic field perpendicular to 
the surface, for arbitrary conditions of reflection of the 
electrons by the surface. Of interest also is a result ob­
tained for a hydrodynamic mechanism of electrical con­
ductivity: since the current density vanishes on the 
boundary for an arbitrary value of q, a maximum on the 
curve of magnetic moment vs temperature should be ob­
served for an arbitrary type of reflection of the elec­
trons by the surface. 

Hereafter we shall restrict ourselves to calculation 
of the imaginary part of the magnetic polarizability in 
the approximation in which the skin depth appreciably 
exceeds the dimensions of the specimen. ~e assume 
weak, quasistatic magnetic fields: UT << 1, wT « 1, 
where U = eH/mc is the cyclotron frequency.) The real 
part of the polarizability is different from zero only in 
the next (as compared with a) approximation with 
respect to L/li and is proportional to w2 • The classical 
kinetic equation is used, in the relaxation-time approxi­
mation. The scattering of the electrons by the surface 
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is described by introduction of the coefficient of specu­
larity of the reflection, q. The energy spectrum of the 
electrons is assumed to be isotropic and quadratic. 
Results are presented for plane, cylindrical, and spher­
ical specimens. 

1. We consider a plane metal specimen in an alter­
nating magnetic field H parallel to the surface. All 
quantities vary with time as e-iwt. Assuming the fre­
quency w so small that the skin depth fJ appreciably ex­
ceeds the specimen thickness 2d, we shall suppose that 
in Maxwell's equation 

rotE= iwHic (1) 

the amplitude of the magnetic field is independent of the 
coordinates. Then in the first approximation with 
respect to 6/d 

E = iwHzlc. (2) 

To calculate the electric current, we shall use the 
kinetic equation linearized with respect to the electric 
field, 

± v,df±ldz+ f±l-r = eEv., {3) 

where the functions l correspond to vz ~ 0. On substi­
tuting the electric field (2) in the right member, we find 

j (z) = e(v.(!+ + J-) >+, 
where the angular brackets with the plus sign denote an 
average over the part of the Fermi surface where 
vz > 0. Once the electric current is known, it is easy 
to determine the value of the magnetic moment and of 
the imaginary part of the polarizability: 

1 • 
!lJl =-J zj(z)dz, !lJl = 2idHa. (4) 

c _, 

The solution of the kinetic equation for a plate is well 
known; therefore we present only the results of the cal­
culations: 

!lll = ~!lll,J• dx(1-x') {t- q'e-"1._ 3x [ 1 - q+ 2x (1 +q)] 
2 0 1 - q'e " 1" t t 

X [ 1- 2; + ( 1- q + (1 + q) 2;) e-'1•- q ( 1 + 2:) e-211•]}, 
where 

k,'d'H 
!lll,=~, 

4niwa, 
ko2=-c-,-, O'o=-.; 

m 

(5) 

Wlo and ao are the values of the magnetic moment and of 
the conductivity in the case of small free-path length, 
t = 2d/l, and l = VFT. 

Fort » 1 we easily derive from (5) 

!lll = !lll, (1-~ 1 - q -E.i..] 
8 t 5 t' . 

(6) 

For t « 1 it is necessary to distinguish two limiting 
cases: fort« 1- q, 

t [ 9 - 30q + 65q' ] ( ) 
!lll=!lllo 1 -q' 16 +3q(1-2q)ln2 7 

and for 1 - q « t « 1, 
= _t_[16+195q-221q' ~ (3 _ 2)ln 2 

!lJl !lll, 4q' 100 + 5 q q (8) 

-~(1- q') (y + lnt)], 
10 

where y = 0.577 is Euler's constant. 
In order to derive formulas (7) and (8), it is neces-

sary to replace the denominator in {5) by 1- q 2 or by 
q 22tx-\ respectively, and to use the expansions of the 
functions 

in powers of t. 

oo e-tJC 

En(t)= s-dx 
x" 

I 

It is significant that in the case of specular reflection 
(q = 1), the value of the magnetic moment is not equal 
to !lllo, as is the case for the conductivity. In the case 
l >> d the magnetic moment is independent of the re­
laxation time (the term (1 - q) ln t may be neglected), 
both for diffuse and for specular reflection of the elec­
trons by the boundary. 

We now consider the question of Sondheimer oscilla­
tions of the magnetic moment of a plate and of their dif­
ference from the oscillations of the static conducti v­
ity[sJ. From {5) one can determine the function 

<D(t) = !llll!lll,t. 

Then in a constant magnetic field H0 perpendicular to 
the surface of the plate, 

!lJl = !lll,tRe<D(s), 

where s = 2d/l + i2d/rH; rH is the Larmor radius of an 
electron in the magnetic field Ho. There is also a mag­
netic moment in the perpendicular direction, but it does 
not produce a torque about the z axis. Thus Sondheimer 
oscillations of the magnetic moment should occur even 
when q = 1. Determination of their explicit form re-
quires numerical calculations. · 

It is also interesting to consider a hydrodynamic 
mechanism of electrical conduction in the pl:1.te. Follow­
ingC6J, we write the equation for the drift v~; ')City u in 
the x direction: 

-vd'u I dz' + u I • = eE I m, 

where v = 1/J. 5 vFZep(T); Zep 11 T- 5 is the electron-phonon 
free-path length; the expression (2) must be substituted 
for E. The boundary conditions in this case can be writ­
ten u(±d) = 0 for arbitrary conditions of scattering of 
the electrons by the boundary. As a result, we get for 
the magnetic moment 

( 1-xcthx) 
!lll= !lll, 1 + 3 x' , 

where K = d(vTf 1/2. If K « 1, then !lll ~ W1 0 K 2/15. Thus 
an increase of the magnetic moment with rise of tem­
perature should be observed for an arbitrary mechan­
ism of scattering of the electrons by the surface. 

2. Let the magnetic field be perpendicular to the axis 
of a cylindrical specimen of radius R. We introduce 
cylindrical coordinates with the z axis along the axis of 
the cylinder; then we find from (1) that in the first ap­
proximation, the electric field is 

E, = iwc··'HrsinqJ. 

The magnetic moment is defined by the expression 
1 R 2.n 

!lJl =-J r' dr J dqJj (r, qJ)sinqJ, 
c 0 0 

and the imaginary part of the polarizability is deter­
mined from the condition 

!lll=inR'Ha. 

{9) 

In the cylindrical coordinate system, the kinetic equation 
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takes the form[ 7 ' 8 J 

at v. at v.2 at v.v, at t 
v,-+--+--. ----+-=eE,v,. (10) 

or r a'P r av, r av. t 

The homogeneous equation corresponding to (10) has 
the following integrals: 

e= v,'+v.', M=rv., 1jJ =<p-arctg(v,iv.), (11) 

the first two of these correspond to conservation of 
energy and of angular momentum about the z axis. In 
the variables E, M, l/J, and r we get an ordinary differen­
tial equation with the boundary conditions r = qt for 
r =Rand t = r for r = ME- 1 /.i, where the signs ± corre­
spond to v < 0. 

After some tedious calculations we find 

24 "s'2 s"'~os'!lsin' ada { cosljl(1 + 2sin'1jJ) (1 "") 
!1)! = !1)!0 - d.p COS 1jJ 1 {! 3 , 3 8 - q<!> I 

Jt v u - q 1 Slll 

4 
+-;;;l3 + q- 4(1 + q)ft•t. + (1 + 3q)f!,]-

4 cosljl 1-q } (12) ---.-[q+2(1-q)fS,,,-fS,J--.-, .(1-f!,) . 
k' sm8 ksm !i 

Here 

( cos"') {! n ""' exp - nk -.- • 
sm!l 

k=2R 
. l • 

For k » 1 we get a formula analogous to (6): 

!D!=!'Dl.[1-~ 1-q -~_i_] 
2 k 5 k' . 

(13) 

For k « 1 we proceed as in the derivation of formulas 
(7) and (8), using the expansion as a series in powers of 
k of the functions Sn (k), introduced inC 7J: 

n/2 

S.(k)= J e-''''"'cos'!lsin"-·'ede. 
0 

The first terms of the expansion for k « 1 can also be 
obtained more simply by setting T = «> in the kinetic 
equation. For 1- q » k, we have 

for1-q«k«1, 

1+ q 4k 
!'Dl = !D!,-1----;:-, -q ;) 

!D! = 'j,!'Dl,. 

(14) 

(15) 

For specular reflection of the electrons by the boundary, 
the value of the magnetic moment differs from !Dlo, 
although the ratio flll/!Dlo does not approach zero with 
increase of the free-path length, as is the case for the 
plane specimen (8). 

If the alternating magnetic field is directed along the 
axis of the cylinder, experimental determination of the 
value of the magnetic moment is difficult; we shall 
nevertheless give the results for this case also, in 
order to be able to make a comparison with the results 
for the spherical specimen: 

24 s"'' s"" sin2 1jl cos 1jJ d.p !D! = !D!,- de sin' 8 fS 
n, , 1-q, 

[ 1- q ] >< (1-qfS,)cosljl--k-sin8(1-fS,) , 

k,'R' 
!D!,=~H. 

(16) 

From (16) it is clear that for specular scattering by the 
boundary, in this case, !l1l = !Dlo. 

Fork» 1, 

[ 3 1-q] 
!'Dl=!D!o 1-y-k- , 

for k « 1 and 1 - q » k, 
1 + q 2k 

!D!=!D!o 1-q S' 

finally, for 1- q « k « 1 

!D!= !D!,--

(17) 

(18) 

(19) 

3. Let the magnetic field be directed along the z axis. 
We introduce a spherical coordinate system; then the 
electric field, in first approximation, is 

ioo 
E0 = -Hrsin!l. 

2c 

For the magnetic moment we have the formula 
R n 

!D! =~ J r'dr J j(r,8)sin'8d6, 
c • • 

(20) 

the imaginary part of the polarizability is determined 
by the relation 

!'Dl = '/,niR'Ha. 

The kinetic equation for a spherical coordinate sys­
tem has the following form: 

of v, i)j v. of V, 2 + v.' of 
v -+--+---+ (21) 'or r ae rsin!l a'P r ov, 

v.' cos 8- v,v, sin 6 of + ____:_ __ .....,:..--.::.,__ 
rsin!l av, 

v0 (v, sin 8 + v, cos 6) of f 
+-=eE0 v0 • 

rsin6 av. ''t 

The integrals of the homogeneous equation corre­
sponding to (21) are the following: the energy E = v~ 
+ v~ + v~; the components of the angular momentum 

M, = -rv, sin <p- rv. cos e cos <p, M, = rv, cos <p- rv0 cos e sin <p, 
M, = rv.sin!l 

(M~ = M~ + M;, M 2 = M~ + Mi}; and an additional inte­
grall/J such that 

( 2 2)'' v, sinS- v,cos 6 
tgljl = v, + v. '-----:---;;---;-;-----;-~--=--;;­

v,v, sin 6 + (v,' + V 0
2)cos 8 

Transformation to the variables E, M, 1/J, and r in the 
right member of the kinetic equation (21) in the general 
case can lead to difficulties. They can be overcome as 
follows: we go over to a system of coordinates so 
chosen that the angular momentum is directed along the 
z axis. In the new system, the relation between the 
variables and the integrals of the motion will be the 
same as in the cylindrical coordinate system (11). On 
transforming back to the original system, we get, for 
example, 

M 2 M 2 
[ M M 2 ''• ' 

sin'S = -' +-.L- -cos¢- (e--) sin•"] 
M' M'e r r' "' · 

After this, it is easy to express the remaining variables 
also in terms of the integrals of the motion. 

In the approximation of interest to us, however, no 
difficulties arise, since 

and the kinetic equation (21) reduces to the equation 

( M' ) 'h df± j± ieoo 
+ e-- -+-=-HM, 
- r 2 dr 't 2c 

(22) 
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with the boun,dary conditions r = qt for r = R and t = r 
for r = ME- 1/2. 

The result for the magnetic moment looks like this: 

15 ' dx 
!Dl = -!Dlo S {x'(1- x') (1- qe-'') 

2 0 1- qe-'" 

1-q } - -k-x(1- x') (1- e-") , 

where k = 2R/l and Wlo = k~~/30. 
If k » 1, 

[ 15 1- q] 
!Dl = !Dlo t-8-k- . 

For k « 1 and 1 - q » k, 
!Dl = !Dl 1 + q 5k 

0 1- q 16 ' 

for 1- q « k « 1, 

(23) 

(24) 

(25) 

(26) 

In the case of spherical and cylindrical specimens in 
a longitudinal magnetic field, the transformed kinetic 
equation has the form (22), a characteristic feature of 
which is a right member independent of r. The same 
property is possessed by the kinetic equation for a plate 
or wire in the determination of the static conductivity. 
Precisely because of this property, as follows from (16) 
and {23), the magnetic moment is equal to Wlo for q = 1; 

this corresponds to the results for the static conductiv­
ity. But in other cases the dependence of 9Jl on q and l 
differs from the corresponding dependence for the static 
conductivity; this may prove useful for measurement of 
such electronic parameters as the relaxation time and 
the nature of the reflection by the surface, and also for 
observation of the hydrodynamic mechanism of electri­
cal conduction. 
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