
SOVIET PHYSICS JETP VOLUME 35, NUMBER 6 DECEMBER, 1 9 7 3 

Multiphonon Nonradiative Relaxation in Impurity-Phonon Systems with the 
Static Jahn-Teller Effect 

Yu. E. Perlin, B. S. Tsukerblat, and E. I. Perepelitsa 
Kishinev State University 
Submitted November 30, 1971 
Zh. Eksp. Tear. Fiz. 62, 2265-2278 (June, 1972) 

The theory of multi phonon nonradiative relaxation in paramagnetic impurity centers of small radius is 
developed within the framework of the crystal-field theory. Formulas are obtained for the probabilities of the 
spontaneous (at T = 0) and quasiclassical (at high temperatures) nonradiative transitions. It is shown that the 
static Jahn-Teller effect causes nonradiative transitions between degenerate terms both as a result of the change 
of the deformation energy and as a result of its spatial reorientation. The nonradiative transition with change 
of spin, generated by the spin-orbit interaction, is considered. The lifetime of the 4T 2g level of the Cr3+ ion in 
the 4T2g -> 2T1g transition is calculated by way of example. 

1. INTRODUCTION 

NoNRADIATIVE relaxation of excited states of impur
ity centers is defined as the transfer of localized elec
tron excitation to the phonon subsystem. In the case of 
a weak coupling with the phonons, first-order perturba
tion theory gives perfectly satisfactory results for 
single-phonon relaxation. In the case of strong coupling, 
serious difficulties arise when it comes to calculating 
the probabilities of multiphonon nonradiative transitions, 
because the "polaron effect" (i.e., the deformation of 
the crystal environment, which accompanies the change 
of the electronic state of the local center) must be taken 
into account, generally speaking, in all orders in the 
coupling constant. The polaron effect leads to the ap
pearance of broad optical bands (from ~ 100 to 
2: 103 cm-1) in the impurity-absorption and impurity
luminescence spectra, and this effect is appreciable 
even in the case of relatively weak electron-phonon 
coupling. 

The polaron effect is taken into account in the theory 
of optical nonradiative transitions with the aid of the 
adiabatic approximation, the applicability of which is 
limited to cases where the dependence of the wave func
tions of the fast (electron) subsystem on the coordinates 
of the slow (nuclear) subsystem is weakC 1 ' 2J, For a 
two-level system, such a criterion of the adiabatic ap
proximation means smallness of the non-diagonal ma
trix elements of the electron-phonon interaction opera
tor in comparison with the energy gap separating the 
levels. If the symmetry of a certain configuration of 
nuclei admits of orbital electronic degeneracy, then, ac
cording to the Jahn-Teller theoremC 3-sJ, the matrix of 
the electron-phonon interaction operator is non-zero, 
and in the general case there are therefore no grounds 
for assuming the dependence of the electronic wave 
functions on the coordinates of the nuclei to be weak. 
A more thorough investigation[6-aJ makes it possible, 
however, to separate three qualitatively different types 
of such a dependence. 

1) The electronic equation of the adiabatic approxi
mation can be diagonalized with the aid of a unitary 
transformation whose matrix does not depend on the 
vibrational coordinates. In this case, the adiabatic sur
face consists of intersecting parabolic sheets, the num
ber of which is equal to the multiplicity of the degener
acy. The Jahn-Teller effect is static and the adiabatic 
approximation criteria are not violated. An example is 
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the orbital triplet of cubic groups, when the doubly de
generate vibration is active (the T-e problem). 

2) The correct wave functions of the electronic equa
tion depend strongly on the vibrational coordinates q, 
but at some points of q- space the adiabatic potential has 
minima that are deep in comparison with the zero-point 
oscillation energy, and the electronic wave function can 
be expanded in powers of q- q0i near these minima, 
The number of such minima is larger than the degener
acy multiplicity (for example, the T-t problem in the 
cubic group, where four minima appear). Thus, cases 
are possible when the adiabatic approximation is appli
cable (see alsoC 8J) only in certain regions of q-space. 

3) The minimum of the adiabatic potential is reached 
not at isolated points but along a ring (a well known ex
ample is the E- e problem). The adiabatic- approximation 
criteria are violated everywhere, so that the "internal 
non-adiabaticity" is large-the dependence of the elec
tronic ~)!-functions on the vibrational coordinates ap
pears already in the zeroth approximation of perturba
tion theory (the so-called dynamic Jahn-Teller effect)u. 

We shall henceforth designate oscillations that are 
active in the Jahn-Teller effect as "adiabatic," and call 
the remaining ones "non-adiabatic." We consider in 
the present paper an example in which the electron
phonon interaction operator 

(1) 

(qKv is the dimensionless normal coordinate of the os
cillation with wave vector" belonging to the v-th branch, 
r is the vibrational representation, y is its row' and i 
numbers the optical electrons of the center), which is 
linear in the displacement of the nuclei, the adiabatic 
part predominates. In accordance with the definition of 
the adiabatic oscillations, matrices of the type 
(ry 1lv K v(ry) lr y 2) (r is the representation in accord
ance with which the electron function is transformed 
when qKV = 0) are diagonalized by one unitary trans
formation, and the adiabatic approximation leads to a 
system of energetically equivalent minima of the adia
batic potential, near which the electron-vibrational wave 
functions take the form C 12J 

'l" rv (r, q) = >Prv (r, q) n c!>x, [qx,- q_, (l'y)], (2) 

1>For optical transitions with allowance for the dynamic Jahn-Teller 
effect seel9- 111. 
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where q K v(ry) is the vibrational- subsystem configura
tion corresponding to the y-th minimum of the adiabatic 
potential, and <I>Kv are the wave functions of the harm
onic oscillators. The dependence of the electronic wave 
functions IJ!r on the vibrational normal coordinates 

y 
appears, in first order of perturbation theory, as the re
sult of the inter- multiplet mixing of the electronic states 
by the oscillations (this effect is called non-adiabaticity). 
The quantities qKv(ry) are calculated from the formula 

- nw.,qx, (fy) = .E (1jl0 (fy) I Vx, (fy) I1Jl0 (fy)), (3) 
rv 

where IJ! 0(ry) are the zeroth-approximation Condon wave 
functions and wKv are the normal frequencies. 

Starting with the work of Kun Huang and Rhys [UJ , 
Krivoglaz [ 1J, and others (see the reviewC2J), it has been 
customary to take the non-adiabaticity operator to be 
the perturbation generating the nonradiative transition 
r - r '. We, however, are interested in the case when 
the non-adiabatic transition is forbidden because the 
matrix elements (rylv(rr)lr'y') are equal to zero for 
all the adiabatic f oscillations. If the forbiddenness is 
not connected with the spin properties of the states r 
and r', then the perturbation can be an interaction with 
non-adiabatic oscillations. Examples of such transitions 
are the nonradiative relaxation 4T2 - 4A2 in rubyC}4J and 
certain relaxation transitions in rare-earth impurity 
ionsC 15J. 

The general laws governing the nonradiative transi
tion in the presence of the static Jahn- Teller effect are 
easiest to trace in the case when the perturbation opera
tor is a certain interaction V in the electronic subsys
tem. By way of an example, we shall consider in Sec. 4 
a transition generated by spin-orbit interaction[zJ. As 
shown earlierC 16J, the transfer of excitation between 
discrete electron-vibrational levels H(r ... nK ... ) and 
H(r' ... n~ ... ) described by the wave functions (3) is 
possible because of relaxation of the final state, and 

proceeds at a rate Y I <r I vI f') I' IJs' (n., n.') 

w(fn-+ f'n')-
- (w- H)'+ n'v'/4 

(4) 

where y - 1 is the relaxation lifetime of the final state, 
and S(n, n') are the vibrational overlap integrals result
ing from the phonon factors of the function (2). If the 
vibrational frequencies wK belong to a discrete spec
trum (local vibrations), then of the electron- vibrational 
states formula (4) leads at resonance to a transition 
probability proportional to the lifetime of the final 
state[ 16J. If there are no local oscillations and the 
phonon frequencies belong to the continuous spectrum, 
then (4) must be integrated over the final states. In this 
case the result remains practically unchanged when the 
Lorentz factor in (4) is replaced by a 6-function. After 
statistical averaging over the populations of the initial 
vibrational sublevels and summing over the final vibra
tional states[zJ, we thus arrive at the following expres-
sion: 

2lThe possibility of using the spin-axis interaction in diatomic molecules 
as the causes of nonradiative transitions was indicated by Landau and 
Lifshitz[3l. Another example is nonradiative excitation transfer when 
the perturbation is an electrostatic or exchange interaction between 
impurity centers!16l. 

w(f-+f')=-1-) ~ l<fviVif'y'>I'Gvv.; (5) 
g(r LJ 

YV• 

~ 

G,., = J exp(- iQ,t)l,.,(t)dt, 

J , = {.!_ ~ ~ (f f' ') r cos (w.,t.- i6.,(2)- th ~]} 
vv 1exp 2 -'2 x• y, y L sh (6.,(2) c 2 ' 

~x• (fy, f'y') = [qx• (fy)- qx• (f'y')J', (6) 

where g(r) is the degeneracy multiplicity and fJK v 
= tiwKv/kT. Formula (6) contains summation and aver
aging over the equivalent minima of the final and initial 
states, respectively; no is the frequency of the phonon
less line corresponding to the optical transition r ;:!: r '. 
If the adiabatic part of the interaction (1) is regarded as 
a perturbation when solving the electronic adiabatic-ap
proximation equation, then czJ 

2. CASE OF WEAK INTERACTION WITH ACOUSTIC 
OSCILLATIONS. QUASICLASSICAL CASE 

The methods of approximate integration with respect 
to t in formula (5) were discussed many times in the 
theory of multiphonon transitionsC 2J. In an earlier 
paper C 14] we developed an approximation based on re
placing the crystal frequencies entering in the factors 
exp (± iwKvt) of formula (5) by certain values averaged 
over the given oscillation branch. The shortcoming of 
this approximation is that the phonon density contained 
in the final formula is replaced by a quantity w-1 which 
is not fully defined. Retaining the indicated approach 
for optical branches with small dispersions, we expand 
the acoustic part of the generating function (5) in a 
power series 

lw (t) = exp (- 1/, ~ ~x. (yy')) exp [ 4>·· cos (cu.,t- n.,/2) J 
X [ 1 + ~ Zx, (yy') cos (ro.,t- (3.,/2) + 1/ 2 ~ Zx, (yy') z,,. (yy') 

- d. 
X cos (w., t- i~ •• /2) cos (w,l't- i~,l'l2) + ... J, (8) 

where zKv(w') = l>Kv(yy')/2 sinh (f3Kj2), and the quan
tities with the zero subscript pertain to the optical os
cillations. It will be shown below that the n-th order 
term in the expansion (8) corresponds to a transition in 
which n acoustic phonons take part. In the case of an 
extremely weak interaction with the acoustic oscilla
tions, the channels of nonradiative relaxation with the 
minimum number (1- 2) of acoustic phonons have the 
overwhelming probability, and the series (8) can be 
terminated at the corresponding term. For an arbitrary 
interaction and at low temperatures, when the contribu
tion of the virtual transitions with phonon absorption can 
be neglected, the number of terms in the series (8), 
which must be taken into account, is n = E>(no/wn) 
(E:::;;, (x) is the next higher or lower integer and wn is the 

De6ye frequency. The temperature region where this 
approximation is valid is determined by the condition 
zac < 1, where zac is the contribution of the acoustic 
oscillations to the quantity z = '6 zKv(yy'). We empha-

KV 
size that the expansion (8) is more accurate than the 
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usual perturbation theory, in which the n-phonon transi
tion between the electronic states occurs in the n-th 
order, since, as is seen from formula (7), the quantity 
0 0 , which determines the order of the process, is calcu
lated with allowance for the polaron effect. 

Substituting (8) in (5) and using the well known expan
sion 

ez.cos~p = L e'~m"]m(z), (9) 

where Im(z) is a Bessel function of imaginary argument, 
we obtain after integrating with respect to t 

Gyy- = exp (- 1 / 2 L dx, (yy')) {LIp (z0) exp (I ~.12) 6 (Q0 - P"o) 
x• P 

+ 1/ 2 LIP (z0) exp (p'30/2) L d,., (yy') [(ii., + 1) 6 (Q 0 - p.u0 - w.,) 

p "' 

+ ii.,6 (Q0 - pJ:J0 + w.,)] + 1/ 4 ~I 1, (z0) exp (pB0/2) 
p 

X Ld,., (yy')d<t.<(yy') [(ii., + 1)(ii,l" + 1)6(Q0 - pJ:J0 - w.,- W>.t.<) 
)('J..vt-t 

+ 2ii., (ii1.~ + 1) 6 (Q0 - pw0 + w., - w,l") + ii.,ii,,\"6 (Qo- PJ:Jo 

+ w., + Ull.t.<)l + .. ·}. (10) 

The first term describes a transition in which only opti
cal phonons of one branch take part. In the concluding 
stage of the calculation it is possible in this case to take 
into account the dispersion of the optical oscillations by 
introducing a continuous parameter in the argument of 
the delta function, followed by integration (instead of 
summation) with respect to p. The second term is a 
contribution of the processes in which one acoustic 
phonon is produced or absorbed, and p == E:::: (Oo/wo) 

<:::: 
optical phonons take part respectively. At low tempera-
tures, when n.K < 1, the process with production of 
acoustic phonon predominates. If E>(nt/u..•o) 
< z0 sinh (!30 /2) (narrow gap, strong interaction with 
optical phonons), then ePi3o/2~(z) increases with in
creasing p, and when the temperature increases the 
process with absorption of the acoustical phonon can be
come predominant. Among the processes with two 
acoustic phonons, which are represented by the last 
term of (10), the principal role is played at low tem
peratures by the radiative transition, and when the tem
perature is increased the relative role of the Raman 
transition and of the transition with absorption of two 
acoustic phonons increases. 

We emphasize that formula (10) takes into account 
accurately, in all orders in the coupling constant, the 
optical phonon creation and annihilation processes that 
are compatible with the energy conservation law. At 
low temperatures (kT « nw 0), when the absorption of 
the optical phonons can be neglected, the Bessel func
tions in (10) are replaced by the highest-order term of 
the corresponding power series, and we obtain the well 
known temperature dependence (n(wo) + 1)p for the 
probability of the process with emission of p optical 
phonons. 

We consider next the high-temperature region, when 
z >> 1. In this case we can use the quasiclassical des
cription of the phonon subsystem, which reduces in the 
zeroth approximation to an expansion of the exponential 
in (6) in powers of t up to terms ~ e inclusive. Formula 
(5) takes the form 

1 '2n ]''' w(l'~ r')= g(r) L l<f'y'l Vlrv>l'[ a(I'y,f'y') 
,,, 

where 
[ Qm.' { yy') ] 

X exp - 2a(fy, f'y') ' 

(11) 

(12) 

is the frequency of the maximum of the Gaussian lumin
escence band resulting from the transition ry - r 'y', 
and 

a (ry, f'y') = 1/ 2 L w~,d,., (l'y, I''y') cth (~.,/2) (13) 

'" 
is the second moment of the band. 

A criterion for the approximation (11) can be estab
lished with the aid of the theory of central moments, 
which yields the corrections to the Gaussian shape of 
the band with the aid of the so called Edgeworth series 
(cf., e.g., [ 17J) in powers of n- Orne· The condition for 
the applicability of formula (11) is rapid convergence 
of this series at n == 0, and reduces to the inequality 

Qm,a''' 11 - Qm.' I ~ 1, 
2a' 3a 

(14) 

where a and nme are th_e values of (1_2) and (13), with 
the symbols r and y omitted for brevity, and 

a<3> (I'y, I"y') = 1/ 2 L w!,.:l., ( l"y, l''y'). 

'" 
For large energy gaps (0 0 ;(: 104 cm-1), the inequality 
(14) is a rather stringent condition and calls, as a rule, 
for unrealistically high temperatures. If, however, the 
energy gap is small and the deformation of the crystal 
line environment (the Stokes losses) accompanying the 
electronic transition r - r, is relatively large, then the 
criterion (14) is satisfied in the observable high- tem
perature region. 

3. HAMILTONIAN OF ELECTRON-PHONON 
INTERACTION AND PARAMETERS OF 
MULTIPLET- MULTIPLET NONRADIA TIVE 
TRANSITIONS 
The subsequent calculation is for an impurity para

magnetic ion in an ionic- crystal matrix. The electron
phonon interaction operator is derived by a point model 
of the crystal field, We emphasize, however, that since 
the principal role is played by considerations connected 
with the symmetry of the crystalline environment, the 
main qualitative results of the theory remain valid also 
when account is taken of the finite dimensions of the 
ligands, of the covalence of the bonds, etc. The approxi
mations of Sec. 2 are not used here. The radius of the 
state of the electrons of the unfilled shell is assumed to 
be small, and only their interaction with the displace
ments ~R of the ions of the first coordination sphere 
will be tafen into account. In the absence of local os
cillations, the electron-phonon interaction results from 
modulation of these displacements by the optical and 
acoustic lattice vibrations 

dRa = L(li/!Vlw.,)'1'e,.,q,.,cos(xRao- 6,.,), (15) 

where M is the mass of the crystal, eKv is a unit vector 
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of the polarization of the crystal mode, oK 11 is its phase, 
and R is the equilibrium position of the a- th ion of the 
lattic~ 0 On the other hand, the symmetrized displace
ments of the ions of the first coordination ~here can be 
calculated in accordance with the rule (see 3 J) 

- • g (f) ~ , ' A A 

Q (fy) = g (G) ~ I vv (I, G) Gt:.Rai, 
G 

(16) 

where 6 is the group- symmetry operation, r:y:yW, G) is 
the matrix of this transformation in the representation 
r, g(G) is the order of the group, and i = x, y, z. 

Expressing the electron-phonon interaction operator 
in the form 

Hint= 'E V (t'y, ri) Q (l'y) 
Fv 

and substituting in it the expressions (16) and (15), we 
obtain an interaction Hamiltonian in the form (1), where 

In the point model of the crystal field we have 

' -:;-_ - av (r,,---, R •. - .) I v (I v, r,)- , ao (rv) Q=' 

(19) 

where v(ri, R) is the potential energy of the electro
static interaction of the i-th electron with the surround
ing ions. 

The structure of the matrices of the tensor operators 
v(fY) is established with the aid of the Wigner-Eckart 
theorem[la]. We consider by way of an example the 
T states of the group 0 , for which [T~] = [T~] = A1 + E 
+ T2, and introduce the ~ollowing numbering of the basis 
functions C 18] : 

E(u ~ 3z'-r', v ~ y3(x'-y')); 
T.(a'""' yz(y'-z'), ~ ~ xz(z'-x'), y ~ xy(x'-y')); 

T,(; ~ yz, 1J ~ zx, ~ ~ xy). 

For the matrices of the interaction with the E-vibra
tions we obtain 

<Tv I V(Eu) ITy') = - 1/,3-'"<T II V(E) II T)(1- '/,S,' + '/,S,), 

(Ty IV (Ev) I Ty') = 1/ 2(T II V (E) II T) ( -1 + '/,S,' + If2S,), (20) 

where ( ... 11 ••• 11 ... ) is the reduced matrix element, and 
Sz and 1 are respectively the spin-1 and unit matrices. 
In a similar presentation, the matrices of the operator 
V for the case T are not the diagonal, and conse
quently, the trig~Kal vibrations are nonadiabatic in this 
case. 

We consider a case in which the interaction with the 
T2- vibrations is relatively small. Estimates of the ruby 
absorption- band parameters show that this case is in
deed realized for the T states of the Cr3+ ionsC 12 •17J. 
Neglecting the interaction with the non-adiabatic T2 
vibrations and solving the electronic Schrodinger equa
tion in the adiabatic approximation, we obtain for the 
equilibrium configurations of the crystal with a degen
erate electronic T-term 

q.,[T, ~(a)]= -(3Miiw.,')-'b{[- 1/ 2a.,(Eu) + 1/,-3'ba.,(Ev)] 
X (T II V(E) liT>+ a,.,(A,e) (T II V(A,) II T)}, (21) 

q • .[T, I](~)]= -(3M/iw.,')-'"{[- 1(2a.,(Eu)- 1/ 2 -3'/'a.,(Ev)] 
X (T II V (E) liT>+ a,.,(A,e) (T II V (A,) II T)}, 

q.,[T, ~(y)] =- (3Miiw • .S)-'"{a.,(Eu)(T II V(E) II T) 
+ a,.,(A,e)(T II V(A,)II T)}, 

where ~, 11, t; pertain to the T2-term, a, {3, y to T11 and 
e is the basis of the representation A1. The energy of 
the Jahn- Teller deformation (the "polaron" effect) is 
determined by the expression 

(22) 

which does not depend on the index y numbering the de
generate states within the limits of the T-term. In fact, 
the following orthogonality relation holds for the quanti
ties in (18): 

La,., (l'y) a,., (l"y') =La~, (l"y) 6rr· l5vv' ;; b,., (l') l5rr·l5vv·· (23) 
o)e Ox 

where the summation is carried out over the directions 
of the vector K. Performing this operation after substi
tuting (21) in (22) and averaging over the directions of 
eK 11 , we obtain 

t:.EJT(T) =- '/, 1:-1-,[b,,(E) I (TIIV(E) liT) I' 
Mwxv 

(24) 

which contains only the reduced matrix elements of the 
electronic operators. We note that, unlike in the papers 
of Van Vleck[ 19J and Kristofel'[2oJ, formulas (21) and 
(24) describe the static Jahn- Teller effect in interac
tions with crystal modes. 

Proceeding to the calculation of the parameters of 
the Stokes losses .6.Kv(ry, r'y'), which characterize the 
change of the equilibrium configuration of the lattice in 
an electronic transition, we consider first the transition 
T - A. For the orbital singlet A, only fully- symmetri
cal vibrations are active ([A 2] = A1), and therefore 

q.,(A) = - (/iM{t),}) -'ba.,(A,e) (A II V(A,) II A). (25) 

We can now easily show with the aid of (21) and (25) that 
all three T - A transitions are characterized by a 
single Stokes-loss parameter 

D., (Ty, A)= k t:.,., (y) = 3n!-{t)!, [b., (E) 1 <Til v (E) II T> I' (26) 

+b., (A,) I <TiiV (A,) liT>- 3'1'<AijV(A,)IIA> 1'1 = D,.,. 

Accordingly, the three generating functions (6) of form
ula (5) coincide, and the latter takes the form 

w(T-+A)= 'j,G ~ I<Tyl VIA> I'- (27) 

This result is perfectly understandable, since the 
minima are energetically equivalent and differ only in 
the spatial orientation of the lattice polarization along 
the three tetragonal axes; the activation energies for 
the transitions from these minima to the singlet state 
are identical. 

For transitions of the T - T' type there are nine 
quantities .6.K 11(Ty, T'y'), but after averaging there re
main only two Stokes-loss parameters: 

D"' (Ty, T'y') = D~:> (1', T') f5,, + D~!> (T, T') ( 1- 6,.); (28) 

oy , = 1 if y = y' for the transitions T1 - T1, T2- T2 
o/ y = ~ , y' = a; y = 1J , y' = f3; y = t;, y' = y for the 
transitions T1 :o= T2; Oyy, = 0 in all the remaining cases. 



MULTIPHONON NONRADIATIVE RELAXATION 1189 

Here D,;n(T,T')= 3/i~w.,' [b.,(E) I<TIIV(E)JIT)-(T'JIV(E)IIT')I' 

+ bxv (A,) I (TI/V(A,) Jl T)-(T'I/V (A,) liT') I'J, {29) 

(2' 1 
D., (T,T')= 3/iMw • .'{b,,(E)[I<TIIV(E)IIT>I'+ I<T'/iV(E)JIT')I' 

+(Til V(E) IIT)(T'II V(E) liT')] + b,,(A,) ( (TI/V(A,) liT> (30) 
- (T'II V(A,) JIT') ]'}, 

The parameter o<u corresponds to three transitions be
tween identically oriented Jahn-Teller minima of the 
adiabatic potentials. If at the same time ~EJT(T') 
= ~EJT(T), then 0 111 = 0, and the activation energy of 
the above-barrier transition (quasiclassical, see form
ula (11)) becomes infinitely large. The parameter D12> 

characterizes six transitions with change of orientation 
of the equivalent minima. With this, D12 J differs from 
zero and the activation energy remains finite also in the 
case of a constant energy of the Jahn-Teller deforma
tion. The possibility of an activation transition as are
sult of spatial reorientation of the lattice deformation is 
an essential feature of the multiplet- multiplet nonradia
tive transitions. Taking the foregoing into account, 
formula {11) takes the form 

w(T-+T')= '/,( c<•>I: I<TviVIT'v>l' 

' 
+G'') L I<TyiVIT'y')l'(1- 6".)]. (31) 

"' 
The presence of two Stokes-loss parameters in the 
T - T' transition leads to a doublet splitting of the 
corresponding band C 12J • 

4, THE TRANSITION 4Ta(t22e)- 2T1(e2) IN A Cr3+ ION 
WITH OCTAHEDRAL SURROUNDING 

By way of an application of a developed theory, we 
consider the transition indicated in the heading and play
ing an important role in the kinetics of the formation of 
the inverted population of the working 2E level of a ruby 
laser and in the temperature dependence of the lumines
cence R-line (the transition 2Eg- 4A ) of ruby and 
similar systemsC 21 '22J. For a six-co~¥dinated octa
hedral system, application of formula (18) yields 

(A ) 2sin6_., "" i . ·R 
ax-J lg = --,1-,- ~ exv SID ?<1 , 

6 i=xrz 
(32) 

a,, (Eu) =sin 6_.., (&;;, sin 'KxR- e~, sin xvR). 

For bK 11 we obtain 

b., (A,)=_!__ .i_ sin 2£ + sin 2£ _cos 2£ _ sin(2'!.s) 
6 2 2£ (2£)' (2£) 2 2'1•£ 

sin (2'1>~;) cos (2'1•6) 
+ 3 (2'1•6) 3 3 (2'1•£) 2 ' 

3 sin (2'1>1;) 3 cos (2'h(;) (33) 
+ 4 (2'!.~) 3 4 (2'1•6) 2 , 

where the indices l and t pertain to the longitudinal and 
transverse vibrations, R is the distance from the center 
of the octahedron to the vortex, and ~ = KR. 

The energy gap for the transition 4T 2 - 2T1 is M2 0 

= 1700 cm-1C23J 3 >. At low temperatures, when the stimu
lated emission of the phonons can be neglected, the 
greatest probability is possessed by nonradiative decay 
channels with a minimum number of phonons. Assuming 
for ruby the values wol = 1200 cm-1 and w0t = 1000 cm-1 

for the optical-phonon frequencies and wzo = 1000 cm-1 

and wtD = 700 cm-1 for the Debye frequencies of the 
acoustic phonons, we consider respectively two types of 
two-phonon transitions: 

1. Transition with participation of one acoustic and 
one optical phonon, described by the second term of 
formula (10) with p = 1. Using the low- temperature 
asymptotic form of the Bessel functions, we obtain 

G<•> '/ <•>(T T ) ~ D 1" ' ' = ,a, 2, , L, ., ( T,, T,)6(Q,-w,-w.,), (34) 
H.V=I,i 

where k = 1 and 2, and a~k) is the Pekar-Kun Huang 
function for optical phonons: 

I') ( ~ {A) 4 2 a, T,,T,)= .l....l D, .. ( T,, T,). (35) 

Substituting (28) in (35) and changing over to integration 
in K space, we obtain 

"> ('T 'T ) 1 { a, ,, ' = 24lipw, 'R3 ( B, (E)+ 2B, (E) Jl ('T,.II V (E) li'T,,> 

- ('T ,,1/V(E) II'T,,> I'+ [B,(A,) + 2B,(A,) ll ('T,,I/V (A,) II'T,,> 
- <'T,IIV(A,)II'T,,>I'}, 

(2) 1 
a, ('T,, 'T,) = 24/ipw,'R' { [B,(E) + 2B,(E)] [ 1 ('T,,I/V(E) II'T,,) I' 

+ I ('T ,II v (E) li'T,,> I'+ <'T,,I/V (E) II'T,.)('T,.II v (E) II'T,,) l (36) 
+ [ B, (A,)+ 2B,(A,) ll ('T,,I/V (A,) II'T,,>-<'T,IiV (A,) II'T,,> I'J, 

where 

B, d1 = J b" (r)£' d£, sv = '~~ .,R. 
0 

Substituting here the expressions (33), we get 
B,(A,) = '!.Sv'- '/,sin 26v + sv cos 2sv + Si(2£v) 

+ 46v cos 2';,6v- 8-2'hsin 2'i•£v + 6·2'i•Si(2Y•s ) 
B,(A,) = 'f,§v' +sin 2sv- Si(26v) + 8-2'1• sin 2'i'sv- 4~n, cos 2Y•6v 

- 6·2'i•Si(2'h£v), 

B,(E) = 'M,n'- '/,sin 2sv + sv cos 2sv + Si(2sv) 
. - 26v cos 2'"6v + 4-2Y•sin 2Y•£v- 3-2Y•Si(2'i•£v), 

B,(E) = 'f,6v 3 +sin 26v- Si(26v) - 4-2'/•sin 2'i•sv 
+ 26v cos 21'6v + 3 -2'i•Si (2'hsv). (37) 

Using the Debye dispersion law wK 11 = VyK for the acous
tic phonons and changing over in (34) to integration with 
respect to U.'K, we reduce (34) to the final form 

G''> ('T,, 'T 1) = __::_,"> ('T,, '~{ [_!!_.,(E) 
12/ipn' (Q,- w,) v,' 

+ 2b_.,;E)] I<'T,JIV(E)II'T,>I'+ [ b,,(A,) 
VI V/ 

2b_., (A,) ] } 
+ v,' I<'T,I/V(A,)JI'T,)-('T,I/V(A,)II'T,)I' , 

~;------:----:-

3)We emphasize that this quantity must be determined fro1"" the 
frequency of the phononless line of the U-band and not from the 
position of its maximum. 

(38) 
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where K 11 =(no- wo)/v11 , v = l, t. The analogous ex-
. f -G<2J • 'tt d t presswn or 1s om1 e o save space. 

2. The transition with participation of a transverse 
and a longitudinal acoustic phonon, described by the 
third term of (10) with p = 0 and nK 11 = 0, is given by 

G'' 1 =- D., D, li(Q,- w.,- w,) 
1 L ,., ,., 
2 d 

"' 
-- L' Ev'''v''' ., 
--- )(I 1o.1A, 

Hirr'v, · 
(39) 

e is the value of the main region of the crystal. It is 
necessary to substitute in (39) the Stokes-loss param
ete_rs (28) or (29) with the values of bKv from (33), and 
to mtegrate with respect to K. The resultant formula is 
too cumbersome to present here. It is more convenient 
in fact to calculate G(k) by a numerical method using 
tabulated values of DK 11• 

To calculate the reduced matrix elements of the 
operators v(ry) which enter in the foregoing formulas, 
we use the theory of the crystal field. For the Cr3 • ion, 
the most convenient is the approximation of a strong 
crystal field. We neglect here the mixing due to the 
Coulomb interaction of states having identical symmetry 
and pertaining to different configurations trem bearing 
in mind that the term 4T2(t~e) is encountered o~ce, and 
allowance for the mixinf of the term 2T 1(t~) leads only 
to small correctionsc 18 . Accurate to terms ~ r 4/R\ 
the electron- phonon interaction operators are C 19J 

V(A,,, r,) = -2B6-'i>(x.'+y.'+z.'-'/,rt), 
V(Ev, r,) =A(x(-y.') +B(x,'-y.'); (40) 

A = 1/,ee• (18R-'- 75R-'r'), B = 175ee• /8R', 

where e* is the effective charge of the oxygen ion. The 
wave functions of the T- states of the indicated configur
ations are 

I'T,,, M = '/,, ~> = lsYJvl; I'T,,, M = 112. 'I'>= z-''•(1~£~1-I~YJiil), 

where I ••• I is the ~ate~ determinant and the single
electron states ~, ~, TJ, TJ, !; and v contain also spin 
functions. Now the general formulas of Sec. 3 become 
much simpler, since 

('T,.(t,') I ~ V (Ev, r,) I'T,.(t,')) 
(42) 

= <£1 V(Ev) 1£> + <niV(Ev) IYJ> + <SIV(Ev) I~>= 0, 

as can be verified by direct substitution of the basis 
functions of the T2 and E representations chosen above. 
As a result it turns out (see formulas (28) and (29)) that 
D<1' - D<2J d (31 · - , an ) goes over mto the usual (single-
term) adiabatic-approximation formula. Thus, the 
strong-crystal-field approximation leads in this case to 
the loss of the specific feature connected with allowance 
for the Jahn-Teller effect in the triplet-triplet transi
tion. Calculation of the corrections connected with the 
interconfiguration mixing entails no fundamental diffi
culty, but these corrections are small and exert no in
fluence on the order of magnitude of the calculated tran
sition probability. 

We note that by virtue of relations (21) and (24), and 
also the easily verified relation (2T 1gl V(A1) I2T 1g) 

(4A2gl V(A1) I4A2g), the optical intraconfigurational 
transition 2T 1g(t~) - 4A2g(t~) is not accompanied by 

deformation of the crystalline surroundings, and conse
quently appears in the form of a phononless line. In the 

observed spectrum of rubyC 22J, the indicated transition 
indeed corresponds to a narrow line with a weakly pro
nounced vibrational structure, and this can be regarded 
as an experimental verification of the approximation 
(41). 

Further, as shown by direct calculation, 

<'T,.II V(E) II'T,,>=<'T,,II V(A,) II'T,,>-<'T,.IIV(A,) II'T~g)= 150 Dq . 
54'1• R '(43) 

Dq = ee•(r') I R'. (44) 

Thus, the reduced matrix elements are expressed in 
terms of a single parameter Dq, which characterizes 
the splitting of the d- term by the static crystal field and 
is determined from spectroscopic data. 

Since the states under consideration have different 
multiplicities, as already indicated in Sec. 1, the opera
tor of the perturbation generating the nonradiative tran
sition is the spin-orbit interaction. The transition prob
ability (31) will contain the factor 

F = _E l<aSfM'I'IH."Ia'ST'M''I''>I'· (45) 

We represent the operator Hso = ~A. 0IiSi in the form 
1 

of a contraction of the irreducible tensor T1, made up of 
the components of 1, with a spherical tensor of rank 1 
made up of the components of 8 [18 l, ' 

II,o = I,c·.:yV0:;(1T1), V ±w (1T,) =I, s1±1 t1~', 
q:y i 

Vov (1 T,) = I, si,tiv; 4.1 cqy I'= 3, (46) 
QV 

JJ. =a, {3; S:t, = sx ± isy, so= Sz. Then, using the 
Wigner-Eckart theorem for double tensor operators and 
the orthogonality conditions for the Clebsch-Gordan co
efficients, we obtain the "sum rule": 

F = l<aSr II V(1T,)II a'ST'>I', 

after which we get 
(t,'e'T,,II V ( 1T,) lit,' 'T,,) 

(47) 

= -3-'l'(t,ll V (It,) lie) = i('/,) 'I• f..,. (48) 

The numerical calculations with the aid of the foregoing 
formulas were performed for ruby with the following 
values of the parameters: p = 4 g/cm3 , vz = 1.2 
x 106 em/sec, vt = 6.7 x 105 em/sec, R = 2 x 10-8 em 

1 4 2 ' and Dq = 1800 em- ; w( T2- T1) was calculated for the 
limiting cases of low temperatures with formulas (34) 
and (39) in high temperatures with formula (11). The 
spontaneous (T = 0) transition with participation of one 
optical and one acoustic longitudinal and transverse 
phonon have respective probabilities 1.59 x 109 and 1.1 
x 1010 sec-1; the spontaneous transition with participa
tion of two acoustic phonons has a probability 6.4 
x 109 sec-1• Thus, at low temperatures the main channel 
of nonradiative relaxation of the 4T2 term is generation 
of optical and acoustic phonons. This result agrees with 
the experimental data of PollakC 24 '25J, who obtained a 
lifetime T (4T 2g - 2Eg) = 5 x 10-10 sec. We note that the 
transition 2T1 - 2E occurs much more rapidly[ 2eJ, and 
therefore T-1(4T2- 2E) ~ w(4T2- 2T1). The inequality 
(14), which determines the temperature region in which 
the quasiclassical formula (11) is valid for the transition 
in question, is satisfied with T >> 500° K. Calculation 
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yields w(700o K) = 2.1 x 1010 sec- 1 and w(800o K) = 2.33 
x 1010 sec-1 • The frobability w(4T2- 2T 1) was first 
culated by Malkin• 26J and later in our earlier 
papersl27 •28J, where the value obtained for w was 
smaller than almost two orders of magnitude than in the 
present paper. The discrepancy lies in the fact that the 
calculation in[2sJ was performed by perturbation theory 
in an approximation with a weak electron-phonon coup
ling, and the calculation in [ 27] did not take into account 
the polaron effect when the energy gap was determined, 
and the employed electronic functionsC 29J in the basis of 
the weak crystal field were not accurate enough. 
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