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Using a group-theoretical approach, we generalize Dicke's theorylll to include the case of multilevel emitters. 
The case of three-level particles is considered in detail and is solved completely. It is shown that state are 
possiblt: for which the emission intensities for all transitions are proportional to the number of particles 
squared. Methods of producing such states from various initial states of the system are discussed (including a 
state in thermodynamic equilibrium). Photon-echo effects (intensities, angular distributions) are considered 
for extended systems. 

1. INTRODUCTION 

SPONTANEOUS emission of individual atoms or mole
cules, in the case when the linear dimensions of the 
systems are small in comparison with the wavelength, 
do not occur independently. There is always an indirect 
interaction between particles via the electromagnetic 
radiation field, which can lead both to enhancement of 
the radiation (superradiant states) and to its suppres
sionfl'2l, Interest in phenomena connected with coher
ence of radiating molecules has greatly increased of 
late, owing to the experimental observation of anum
ber of effects produced when a short electromagnetic 
pulse acts on a resonant medium (photon echo[3l, ef
fects of "self-intransmission" of a pulser4 • 5 l, change 
of momentum spectrumr 6 , 7 l), 

The principles of the quantum theory of coherent 
spontaneous emission were formulated by DickePl, who 
has shown that as a result of interaction via the field 
two-level molecules behave like a single-quantum
mechanical system whose radiation intensity is deter
mined by its coherence characteristics. Dicke's prob
lem was subsequently investigated, in various aspects, 
by many workersP• 8• 91 , but always within the frame
work of two-level idealization. Yet in many problems 
(molecules with equidistant spectrum, action of several 
resonant pulses, interaction with intense radiation 
fluxes) such an idealization cannot be used. Moreover, 
the spontaneous emission from multilevel molecules, 
as will be shown below, exhibits by itself a number of 
singularities that cannot be predicted solely from re
sults pertaining to two-level molecules. Finally, analy
sis of the multilevel problem enables us to establish 
accurately the limits of applicability of the two-level 
approximation. 

The possibility of generalizing Dicke's theory to 
include multilevel molecules was considered by one of 
us in r 101, where it was noted that an important factor in 
Dicke's theory is the choice of irreducible representa
tions of the su2 group in the energy space of the sys
tem as the stationary states of the unperturbed Hamil
tonian. A similar role is played for multilevel systems 
systems by the basis of irreducible representations of 
the SUn group (n is the number of levels). Teplitskii 
obtainedr 11l, by group-theoretical methods, the explicit 
form of the density matrix of a multilevel system in
teracting with an electromagnetic field. 

The present paper is devoted to coherent emission 
in multilevel systems on the basis of a group-theoreti-

cal approach. We investigated in detail the case n = 3 
(we present a complete classification of the coherent 
state, obtain the coherent characteristics, and analyze 
the properties of the sponteneous emission). The 
analysis implies experimental possibilities of obtaining 
superradiance at several frequencies, and also observa
tion of "photon echo" in a multilevel scheme (in this 
case the angular distributions of the superradiant re
sponses have, as will be shown below, a highly unique 
character). It must be emphasized that the transition 
from the two-level to the three-level one is the princi
pal step that makes it possible to investigate a number 
of subtle effects in nonlinear interactions of light with 
matter. The analysis of the present paper shows that 
even in the three-level scheme one can observe the 
main features of the phenomena that occur in real 
multilevel systems. 

2. THREE-LEVEL SYSTEMS. GROUP APPROACH 11 

We consider a system of emitters with three non
degenerate energy levels. The ensemble of particles 
occupies a volume with dimensions that are small in 
comparison with the wavelengths emitted by the system. 
We neglect inelastic collisions (low-density gas). Then 
the variables of the molecule internal energy and the 
coordinates of their mass centers can be separated. 

It is convenient to express the Hamiltonian of the 
system with the aid of generators of the su3 group (we 
use the notation introduced inr 13l), The internal-energy 
operator of the j -th molecule has eigenvalues E 1 = -E/ 2, 
E2 = E/2 and E3, and can be represented in the form 

s:il = e/;il + e,('/,- Y)(J1. (1) 

The eigenfunctions of this operator xP) ( i = 1, 2, 3) 
correspond to the eigenvalues (- Y2, Y3), ( Y2, Y3), . 
(0, -%)of the isospin and hypercharge operators I~J) 
and yU), and correspond to the molecule occupying the 
first, second, and third-level, respectively. The func-

tion x~j) transforms in accordance with the representa-
1 

tion D(l, 0) of the group SU3. The unperturbed Hamil
tonian of a system of N molecules is 

H = H,(r,, r,, ... , rN) + e/, + e,(l!J- Y), (2) 

where H0 is the energy of translational motion and of 

I) A detailed derivation of all the mathematical statements made here 
can be found inl12] 
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the intermolecular interaction of the molecules. 
N 

~Iw fa=~ 3, 

N 

'/,- y = ~ ('/,- Y)<'' ..... . 
j=l 

H0 acts only on the coordinates r 1, rz, ... rN of the 
molecule mass centers. The eigenfunctions of the un
perturbed Hamiltonian are 

'I',(N,, N,, N,) = U,(r,, r,, ... , rN)x~~'x;:' ... X~~. (3) 

Here Ug( r1, ... , rN) is the coordinate p~rt of the wave 
function (HoUg = ~gUg); the functions x0) indicate the 
level occupied by each of the molecules; N 1, Nz, and 
N3 are the level populations. The interaction of the 
molecules with a classical radiation field is described 
in the dipole approximation by the operator 

H,., =-A[ (e,- ie,)I+ + (e, + ie,)K- + (e, + ie,)L + h.c.], 

where A is the vector potential of the field at the loca
tion of the system; the vectors ei are connected with 
the dipole-moment matrix elements by the relations 

e, - ie, = li~ ( e, + ; ) d31 • 

Thus, the transition probabilities are determined by 
the matrix elements of the nondiagonal generators of 
the su3 group (see the figure). 

In analogy with the two-level casePl, it is necessary 
to use as the initial states not those in (3) but their 
linear combinations, such that Hint couples one sta
tionary state with a minimum number of other states. 
Such a set of states is the basis of irreducible repre
sentations I P, Q, I, 13, y > of the su3 group. The elec
tromagnetic transitions conserve the quantum numbers 
P and Q (the Hamiltonian is made up of group genera
tors with which the Casimir operators commute). It 
can be shownP21 that when N1, Nz, N3 and I are speci
fied, the numbers s (s = Y3(N- P + Q) and a (a 
= %( N - P - 2Q)) run through values satisfying the 
system of inequalities 

I>£- I~ s ~ IM +I, 

a~!."- I, s +a~ IM- I+ N,, (4} 

where 21M= N1 + N", I Nz- N1l ::s 21 ::s N1 + Nz, Using 
the matrix elements of the operators ~. ~. and 
L±[lzJ we obtain for the intensities of the spontaneous 
emission from the state Is, a, I, h, Y) 

J, = 1!:' (I+ I,) (I- I,+ 1), J, = /,1,''[ y,'(I +I,+ 1) + y,'(I- I,)], 

J,. = J,;•> (y,'(I- I,+ 1) + y,'(I +I,)], 
where 

y,' = (IM +I-s+ 1) (IM + 1- a+ 2) (IM +I-s- a+ N,) 
X( (21 + 1) (21 + 2) ]-', 

y,' =(I -IM+s) (IM- I -a+ 1) (IM+I -s-a +N, + 1) 
X (2/(2/ + 1)]-'; 

(5) 

J~~l, J~~>, and J~~l are the intensities of the spontaneous 
emission of an isolated molecule. Thus, the intensities 
depend on the three quantum numbers s, a, and I, one 
of which (I) changes in the transitions 3 - 1 and 
3- 2. These numbers are the cooperative character
istics of the system of molecules and determine the 
rate of its radiative decay. 

E 
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Diagram of transitions between the energy levels. The transition be
tween each pair of levels is described by the non-diagonal I-, K-, or 
L-spin components. 

In particular cases when the number of particles at 
one of the levels is equal to zero, the correlation be
tween the two other levels is described, just as in the 
case of the two-level scheme, by the corresponding 
isospin (I, K, or L). The emission via the other chan
nels is proportional to the number of particles at the 
level from which the transition is considered. For 
example, if Nz = 0, then we have from (4) I= -Ia 
= N1/2, a= 0, 0 ::s s ::s min (N1, N3). With the aid of (5) 
we obtain 

J, = /,~'' (L + L,) (L- L, + 1), J, = J,~" N,, J, = 0, (6) 

where 

L = 1h(I11, + N,)- s, I Lsi~ L ~ 1h(N, + N,), L, = 1/2(N,- N,). 

At s = 0 the intensities of emission between levels 
coupled by the corresponding isospin are proportional 
to N2 (Dicke's superradiant states). 

On the whole, one encounters in the analysis of 
formulas (4) and (5) a great variety of possibilities. 
Let, for example, I = Imax· Then a = 0 and 
s =min (N1 + Nz, Na). If s = 0, we have 

J, ~ 1,;•• N,(N, + 1), J, ~ 1,~•> N, (N, + 1), / 31 ~ 1,;•> N,(N, + 1). (7) 

At equal populations, in particular, the emission in
tensities in all channels are proportional to the square 
of the total number of molecules (superradiance at all 
frequencies). If s = Na, the emission at the frequencies 
w 13 and waz is suppressed; at the same time, the sys
tem emits coherently at the frequency w 12 : J 21 
= J~~lNz(Nz + 1). Let I= -h. Then Nz ::s s ::s N1, a ::s N2, 
and s + a ::s Nz + Na. At s = Nz and a = N3, the system 
does not emit through any of the channels. It is easy to 
show (cf.P,zJ) that whereas the intensities of the spon
taneous emission of the system depend on the states of 
the system (on the cooperation numbers s, a, and I), 
the intensity of the total emission (or absorption) in the 
absence of external resonant fields is always propor
tional to the difference between the numbers of mole
cules at the corresponding levels (Jaz - J23 a: Na - Nz, 
etc.). The super radiant states can be excited by starting 
from the ground state (kT = 0): N1 = N, Nz = Na = 0. Then 
I = -Ia = N/ 2, s =a = 0. If a strong resonant pulse of 
frequency w12 acts on the system, then it goes over 
into a state with h ~ 0 (I remains maximal). The 
pulse action is followed by an intense response at the 
frequency w12 : Jz1 = J~~l(N/2 + 1)N/2. When a pulse of 
frequency w 13 acts on the initial state, we arrive at the 
case (6) with s = 0 (coherent emission at the frequency 
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w 1s). Finally, by using excitation pulses with frequen
cies w 12 and w 1s we can transfer the gas into a state 
with s =a= 0, N1 = N2 = Ns, and I= IM = N/3 (when a 
pulse of frequency w 12 is absorbed, the number I does 
not change; I remains maximal when the second pulse 
is absorbedr 12 l). The system in this state emits with an 
intensity proportional to N2 at all frequencies. 

Superradiant states can be obtained also by molecule 
sorting. Unlike in the two-level case, equal sorting of 
the molecules can lead to essentially different results, 
depending on the concrete properties of the multilevel 
system. If one sorts the molecules at the upper level, 
a state with s =a = 0 is produced. During its decay at 
J~~l ~ J~~l (which is usually satisfied for vibrational 
transitions), two successive intense signals are ob
served, first at the frequency ws2 and then at w2 1• If 
J~~l ~ J~~l, one signal at the frequency ws 1 is ob
served. At J~~l ::::: J~~>, the picture of the evolution is more 
complicated. The system goes through a state that is 
intermediate between the superradiant and the ordinary 
one (the degree of proximity of this state to (7) calls 
for further study). Formulas (4) and (5) make it also 
possible to obtain the time dependences of the intensi
ties in the case of systems that are not fully sorted out. 
As to the sorting methods, one can propose, in addition 
to the known methods used in masers (21, a chemical 
method in which the reaction of hydrogen with molecu
lar fluorine is usedfl4l. The rate of this reaction de
creases rapidly with increasing number of excitation 
of the hydrogen levels. One can observe superradiance 
on the hydrogen atoms. In general, by virtue of the dif
ference between the properties of the atoms or mole
cules located at relatively remote levels, the sorting in 
multilevel systems becomes much easier in compari
son with the two-level case. 

Let us stop and discuss the case of a system in 
thermodynamic equilibrium. We assume that 

kT',;i!>e, + e/2. (8) 
Obtaining the mean values of the corresponding opera
tors with the aid of the equilibrium density matrix we 
can show that if the conditions 

l,' ':1!> N, + N, ':1!> 1, L,' ':1!> N, + N, ':1!> 1, l(,' ':1!> N, + N, ':1!> 1 

are satisfied (Ni are the equilibrium populations), the 
values of I, s, and a deviate slightly from the respec
tive values 

_ e ( 1 e, e ) ( 1 2e, ) (9) 
I = N 6k1'' s = N 3 + 9kT - 6kT ' a= N 3- fJkT . 

The intensities of the responses of the system to pulses 
are determined in the main by the states with the s, a, 
and I indicated in (9). The action of a strong pulse of 
frequency w 21 will produce an intense response 

/21 =l,\'ll(l+1)~.J~:'N'(e/6kT)', 1"=1,~0. (10) 

After excitation by a strong pulse of frequency w2s, the 
syst~m goes over into a state with Is = YlN2 + Ns) 
- Y2N1, I= -Is. We obtain for the intensities 

(ol N' ( 2e, - e ) ' 
J,~J"4 ~ ' '" = '" ~ 0. 

(11) 

The calculation method employed enables us to 
separate in the intensities only the terms proportional 
to N2. Using the density matrix formalism (see Sec. 3, 
formulas (18) and (19), below), we can obtain exact 

formulas (without confining ourselves, furthermore, to 
the condition (8)): for the case (10) we must put in (18) 
the values 8 = 0, .p = 90°, and r(k12, k') = 1, and inte
grate over the angles; for case (11) we must put 
X= 90° and r(k2s, k") = 1 in (19). The result of the 
action of a pulse of frequency w 1s cannot be obtained 
on the basis of the simple considerations that lead to 
(10) and (11 ), for absorption of the pulse results in a 
superposition of states with different 1. We must 
therefore use the results of Sec. (3) see formula (18) 
below, with cp = 0, 8 = 90°, and r(k1s, k"') = 1). A 
superradiant response at the frequency of the applied 
pulse is observed in the cases under consideration. 
By applying in succession two intense pulses (with 
frequencies w 12 and w 1s) we can bring the system to a 
state from which superradiance is observed at all fre
quencies. The intensities of the responses are deter
mined in this case by formulas {18) with 8 = cp = 90° 
and r(kl2, k') = r(k1s, k"') = r(k", k13 - k12) = 1. The 
emission intensities following the action of several 
pulses depend, generally speaking, on their sequencefl2l, 

3. SYSTEMS WITH LARGE DIMENSIONS. PHOTON 
ECHO 

In the optical band, as a rule, the linear dimensions 
of the system exceed the wavelength of the spontaneous 
emission. In this case the molecules can be correlated 
in such a way that coherent emission is observed at 
different frequencies in directions that are connected 
by definite geometrical relations. The Hamiltonian of 
the interaction between the molecules and the field is 

+(e, + ie,)K_(k) + (e, + ie,)L(k) l+h.c.}, 
(12) 

where ab_ and akA are the photon creation and annihi
lation operators. The operators in (12) are defined by 
the formulas 

/±(k')= ~ 1~1 exp(±ik'r;). K±(k")= '\" K~1 exp(=Fik"r;), 
.i-.ol .id 

L±(k"') =,I: L;n exp(=F ik'"r;) 
J 

and if the condition 

k'+k"=k"' (14) 

is satisfied, these operators, together with the diagonal 
operators Is and Y, satisfy the commutation relations 
of SUs algebra. The wave functions of a system of 
molecules can be chosen to be simultaneously the 
eigenfunctions of the unperturbed Hamiltonian (2) and 
the Casimir operators F2 ( k', k", k"') and G3 ( k', k", 
k'") made up from (13) with condition (14) satisfied. 
The Casimir operators do not commute with operators 
of type (13) having wave-vector indices different from 
those already chosen. In analogy with the reasoning 
that led to (5), we find that the constructed wave func
tions j s, a, I, Is, Y) with momenta k', k", and k"' are 
the system states for which the emission in the direc
tions of k', k", and k"' ( k' + k" = k'") at the respective 
frequencies W12, w1s, and w2s is coherent. The in
tensity of the spontaneous emission in these directions 
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is calculated from formulas (5}, where J21, J~~>: 
J~g>; Ja1, J~~> should be interpreted as the rates of pho
ton emission in a unit of solid angle in the directions 
k', k", and k"', respectively. Emission in the direc
tions k', k", and k'" does not change the quantum num
bers s and a. The emission in other direction does 
change these numbers and destroys the coherence with 
respect to k', k", and k"'. 

In analogy with the analysis given in Sec. 2 above, 
we can show that when two plane waves of high intensity 
are incident on a system in the ground state, super
radiant pulses will be observed at all three frequen
cies, and the wave vectors of the emitted photons are 
given by the wave vectors of the incident waves. If, for 
example, two pulses k12 and k1s (at frequencies w 12 
and w1a) act on the system, then the photons emitted 
by the system have wave vectors k12 (frequency w 12 ), 
k1s - k12 (frequency w2a), and k1s (frequency w 1a). The 
action of one pulse produces an intense response in the 
same direction (at the other frequencies the radiation 
is incoherent and isotropic). Let us calculate the in
tensities of the photon echo after application of a pulse 
to an equilibrium system. We use the formulas (seePl) 

/ 21 (k') = 1~:> (k') Sp I_ (k') p/ + (k'), 

J,(k") = 1!:> (k")Sp K+(k") pK-(k"), 

/ 31 (k"') = /,<~> (k"') Sp L+(k"') pL_ (k"'), 

(15) 

where p is the density matrix of the molecule system 
after the action of the pulses. The action of the pulse 
on the molecule is described by a unitary transforma
tion in its energy space. The only difference between 
the action of the pulse on different molecules is that 
the time of arrival of the wave at the location of the 
molecule is different (the molecule locations are as
sumed fixed). After the action of a pulse of frequency 
w13 (wave vector k1a), for example, we have 

p(t) = exp(-iH,t/ li)T13p,T.,-'exp(iH,t / li), (16) 

where po is the equilibrium density matrix: 

exp (- H 1/ kT) ITN <I> !I> w 
po= Spexp(-HtfkT) = (a,P, +a,P, +a,P, ]; 

l-1 

the quantities a1 = 'NJN, a2 = N2/N, as = Na/N deter
mine the level populations; 

Rotation in L-spin space is described by the operator 

T 18 = exp[ ~t H,U>t;] · 
j=t 

ITN [·8 (j) (i)] [if, (I)] exp !z(L_ ~+L+ ~·) exp -h~H, t1 , 

.. =1 J=t 

which yields, after the substitution tj = k1s ·rj/w1a, 

T" = exp{ 1/2i8[L_ (k") ~ + L+ (k") W]}. 

Here e is the angle of rotation around the axis whose 
direction in the L-spin subspace is determined by a 
parameter f3 ( 1 f31 = 1) and which is perpendicular to 
the quantization axis (all other transformations in 
energy space have no meaning in this case). The 
parameter e is proportional to the area of the pulse 
(the product of the amplitude by the duration); 

sin2( e/ 2) is the probability of molecule excitation from 
the ground state to the third level. 

Let us calculate the intensities of the echo signal 
following a succession of two pulses with frequencies 
w 12 (wave vector k12) and w d k1a). The distance be
tween pulses is neglected in comparison with the radia
tive decay time of the system. The density matrix 
after the action of the pulses is similar to (16}, with a 
transformation matrix 

T = T 13T 12 , T, = exp{ 1/.i<p[aL(k12} + a'/+(k,) ]}. 

It is convenient to represent the operator Tp 0T-1 in 
the form of a product 

(17) 

(the complicated expressions for Aj are given inr 12 l). 
Substitution of (17} in (15) yields (the details of the cal
culation are given inP2l): 

J,(k') = J,<,•> (k')N{a, +(a,- a,)cos'(<p/2) 

+ '/,sin' <p( a,- a,)' cos'(8/2) [ Nr (k,, k')- 1]}, 

J,, (k") = J,~'' (k"} N {a,+ sin' (8/2) [a,+ (a,- a,) sin'( <p/2)- a,] 

+ '/,sin' <p sin' (8/2) (a,- a,) '[Nr (k"- k,, k")- 1]}, (18) 

J, (k"') = J,\'' (k"') N {a,+ sin'(B/2) [a, -a,+ (a,- a,)sin'( <p/2)] 

+ '/,,sin' 8[ a,- a, cos' ( cp/2)- a2 sin' ( <p/2) ]' [ Nr (k18, k"')- 1]}. 

In (18} we have introduced the notation 
r(p,, p,) = l<exp{i(p,-p,)r})i', 

where the symbol ( ... ) denotes averaging over the 
coordinates of all the particles; for systems of suffic
iently large dimensions we have 

(exp {i(p,- p,)r}) = li(p,- p,). 

It follows therefore that intensive coherent radiation is 
observed at the frequencies W12, W2s, and w1a in the 
directions k12, k1s - k12, and k1s, respectively. To ob
tain the time evolution of the echo signals, it is neces
sary to take the inhomogeneous broadening into ac
count in the calculations (seer 3l). 

We present also formulas for the intensities follow
ing the action of a pulse of frequency w2a (wave vector 
k2a): 

/ 32 (k") = Ji:' (k") N {a,+ (a,- a,) sin'(x/2) 

+ ('/,) sin'x (a,- a,)' [ Nr (k", k")- 1]}, 

J, (k') = J,\'' (k') N[ a,+ (a,- a,) sin' (x/2)], 

J, (k"') = J,\'' (k"') N[ a,+ (a,- a,) sin'(x/2) ]. 

(19) 

Other cases of pulsed excitation of coherent radiation 
are considered inr12 l. 

4. CONCLUSION 

An examination of the case n = 3 reveals the main 
features of the multilevel problem. The classification 
of the states of a molecule system with n levels is in 
accord with the irreducible representations 
D(p1, P2, ... , Pn-1) of the group SUn· The cooperative 
characteristics of the system are the indices of the 
irreducible representations. If the system is in a 
superradiant state, then the radiation intensities at all 
frequencies are proportional to N2 (the total number of 
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such transitions is n(n- 1)/2). The superradiant 
states can be excited by applying pulses to the system. 
If the wavelengths are shorter than the system dimen
sions, then the intensities of the responses can be 
easily obtained by generalizing the formalism used in 
Sec. 3. By reducing then-level problem on the SU3 
subgroups contained in the SUn group, it is easy to 
find the angular distributions of the photon-echo signals 
from the purely geometrical relations between the wave 
vectors. 

It should be noted that a number of problems not 
touched upon here (equidistant molecules, quasiclassi
cal states of the Glauber type for the multilevel Dicke 
problem, equations of motion for macroscopic polariza
tion vectors, comparison with paramagnetic systems) 
are considered in fl2 l. In the future, besides the realiza
tion of the experimental possibilities ensuing from the 
present paper (simultaneous observation of super
radiant states on several transitions, specific photon
echo effects), great interest attaches to the use of the 
formalism developed here for the study of cooperation 
effects in processes involving the interaction of light 
with matter and described by higher orders of pertur
bation theory. 
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