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A method is proposed for the construction of a properly symmetrized wave function for a system containing 
several nonrelativistic nucleons and antinucleons. For a many-particle system with its baryon number equal 
to zero, a formula is derived which expresses the G-parity in terms of the properties of the Young pattern 
associated with the baryon number part of the wave function. 

IN addition to the well-known case of positrionium, 
other systems consisting of particles and antiparticles 
are being intensively investigated at the present time. 
In particular, in connection with the development of 
sufficiently intense antiproton beams it has become 
possible to investigate systems containing antinucleons, 
e.g., atoms with an antiproton in the atomic orbit. The 
quasinuclear mesons predicted theoretically inc1-4J may 
serve as another example of such systems. Quasinuclear 
mesons are a nonrelativistic system of nucleon and anti­
nucleon, bound together by the strong interaction. The 
existence of such mesons is ap~arently confirmed by a 
number of recent experiments. 5-?J The investigation of 
the bound states of two nucleons and a single anti­
nucleonC8J and of two nucleons and two antinucleons is 
of great interest. The former should appear experimen­
tally as baryon resonances, and the latter should appear 
as heavy meson resonances in the so-called "X-region" 
of the mass _[9J It is impossible to use the wave func­
tions customarily used to describe nucleons in nuclear 
physics in order to describe such systems, since in the 
present case the system contains two types of particles. 

In the present article it is shown that it is convenient 
to introduce baryon number variables in order to facili­
tate the construction of the wave function for a system 
consisting of nonrelativistic particles and antiparticles. 
In particular, the introduction of baryon number varia­
bles makes it possible to determine the G-parity of a 
system containing an equal number of nucleons and anti­
nucleons. It turns out that the G-parity of such a many­
particle system is not related to any kinematic quanti­
ties, i.e., it is not related to the orbital momenta, spin, 
and isospin (a relation of this type does hold for the case 
of two particles), but instead the G-parity is an indepen­
dent, exact quantum number which is determined solely 
by the permutation symmetry of the wave function with 
respect to the baryon number variables. 

1, THE BARYON NUMBER WAVE FUNCTIONS 

The nucleon and antinucleon differ from each other 
by the value of the baryon number: The nucleon has 
baryon number B = + 1, and the antinucleon has B = -1. 
Let us include the baryon number in the total set of co­
ordinates used to describe a particle, together with the 
spatial coordinates, the spin, and the isospin. Then the 
total wave function of a system containing a total number 
n of nucleons and antinucleons can be written in the form 
of the following direct product: 

'l'(x, a,<, q)= .p(x) X x(a) X I'J(<) '>< w(q), 
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X={Xt, X2, ••• ,.t'n}, a={at, O~, ... ,cr,}, L={L,, 'Tz, ... ,t'n}, 
q=(q,, q,, ... ,q,,}. (1) 

Here xi, 11i, Ti and qi denote respectively the spatial, 
spin, isospin, and baryon number variables of the i-th 
particle. According to the generalized Pauli principle, 
the wave function (1) must change sign upon permuting 
the coordinates of any two particles, that is 

IT (ii) 'I' = -'F. (2) 

where II(ij) is the operator which permutes the coordi­
nates of the i-th and j-th particles. One can represent 
the operator II (ij) in the form of a product of operators 
which permute separately the spatial, spin, isospin, and 
baryon number variables: 

IT(ij) = rrx(ii)Il"(ij)IT'(ii)fl'(ij). (3) 

Let the system under consideration consist of n parti­
cles, n1 of them nucleons and the remaining (n - n1) 
particles antinucleons. Let us denote the spatial, spin, 
and isospin coordinates of the i-th particle by the single 
symbol xi. For simplicity we consider a Hamiltonian 
containing only pair interactions: . 

H = ,E U(x,,x;). (4) 
i>I-t 

In accordance with our notation 
U(x,, :r,)= V(x,, .r,), k, l = 1, 2, ... , n,; 

U(xm, x,)=V(xm, x,), m, r=n 1 +1, n,+2, ... ,n; (4a) 
U(x,, X,,)= W(x,, Xm), 

where V, V, and W are respectively the nucleon-nucleon, 
antinucleon-antinucleon, and nucleon-antinucleon poten­
tials. Each of these potentials is invariant under iso­
spin rotations. In addition 

(4b) 

owing to the invariance of the strong interactions under 
G-conjugation. On this basis it is not difficult to verify 
that the Hamiltonian (4) is invariant under the following 
three types of permutations: 

k, 1=1, 2, ... ,n,; m, r=n,+1, n,+2, ... ,n. 
(5) 

Invariance of the Hamiltonian under permutations of 
the third type is the basis for the introduction of baryon 
number variables. With their aid one can construct 
wave functions which transform irreducibly under all 
of the permutations (5). The choice between functions 
which transform according to different irreducible 
representations of the permutation group is made with 
the aid of the generalized Pauli principle, which im-
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plies that the total wave function 1/J must be antisymme­
tric with respect to the interchange of any two particles. 
The representation of the wave function in the form (1) 
reduces to expanding it in the Clebsch-aordan series 
for the symmetric group Sn. [lo] The inner product of 
the irreducible representations obeys the associative 
law; therefore Eq. (1) can be written in the form 

'l'(x, <J, T, q)= rp(x, <J, T) X •w(q), 
where 

rp(x, 0", T) = 1jJ(x) X J((O") X t](T). 

(6) 

(7) 

In order for the function 1/J to be antisymmetric, the 
functions <fJ and w must transform according to conjugate 
representations of the group Sn. The baryon number 
variable q takes two values; therefore the Young pattern 
corresponding to the function w cannot contain more 
than two rows. Consequently the conjugate Young pattern 
for the function <fJ does not contain more than two col­
umns. 

Let us denote the baryon number function of the i-th 
nucleon by a (i) and the baryon number function of the 
j-th antinucleon by {3(j), that is 

Ba(i)=a(i), (8) 

where B is the baryon number operator. 
The baryon number function w of the entire system, 

which transforms according to a definite irreducible 
representation of the group Sn, is constructed from the 
baryon number functions a (i) and {3(j) of the individual 
particles. In principle such a construction can be 
achieved with the aid of the Young projection opera-
tors .c10J It is easy, however, to notice that the problem 
of constructing the baryon number function of a system 
with a definite baryon number and a definite permutation 
symmetry is completely equivalent to the problem of 
constructing the spin function for a system with spin 
component 83 = B/2 and a definite permutation symmetry. 
Such spin functions are treated in detail in[uJ for the 
case of a three-particle system, and these functions 
are written down, for example, in[ 12J for the case of a 
four-particle system. 

After introducing the baryon number variables it is 
now impossible to indicate which particles are nucleons 
and which are antinucleons, that is, it is impossible to 
say, for example, that the particle with label i is a 
nucleon and the particle with label j is an antinucleon. 
Therefore it is necessary to write the Hamiltonian as 
an operator in the space of the baryon number functions. 
The Hamiltonian describing the interaction of two parti­
cles i and j may be written as follows: 

U(ii)= V(ij)P(ij)+ V(ij)P(ij) + W(ij)Q(ij). (9) 

Here P(ij), P(ij), and Q(ij) are projection operators w 
which are symmetric with respect to i and j and which 
operate on the baryon number basis functions according 
to the following laws: 

P(ij)a(i)a(j)= a(i) a(j), P(ij)a(i) ~(j) = P(ij) ~(i) ~ (j) = 0, 
P(iM(i)~(j) = ~(i)~(i), P(ij)a(i)B(il = P(ij)a(i)a(i) = o, (10) 
Q(ij)a(i)~(j) = a(i)~(j), Q(ij)a(i)a(j) = Q(iM(i)~(j) =0. 

For specific problems, for example, in order to calcu­
late transition amplitudes or in order to calculate bound 
states, we need to know the matrix elements 
(wiU(ij)lw') of the Hamiltonian (9) between the baryon 
number functions. Here it is sufficient to know only the 

matrix elements of the Hamiltonian U(12) since the 
matrix elements of the other pair potentials can be 
reduced to matrix elements of U(12) by using the anti­
symmetry of the total wave function. The non vanishing 
matrix elements for a system (2NN) consisting of two 
nucleons and one antinucleon and for a system (2N2N) 
consisting of two nucleons and two antinucleons are 
given below. The Yamanouchi symbols[lo] are used in 
order to indicate the symmetry of the baryon number 
functions (the numbers in the symbol indicate in which 
row of the Young diagram the elements with numbers n, 
n- 1, ... , 1 respectively stand). The 2NN system has 
the following nonvanishing matrix elements: 

<[111liU(12JI [111]) = '/,V(12)+ '/,W(12), 
([211]1 U(12) I [211]) = 'j, V(12)+ '/,W(12)' 

([121liU(12) I [1?.1]) = W(12), 
(11) 

<[ 111 J I U(12) I [211]) = •;,y2[ V(12)- W(12) ]. 

The 2N2N system has the following matrix elements: 

(aiU(12) Ia) = 'j,V(12)+ '/,W(12), a=[1111], [21111, 
(biU(12) I b) ='/,V(12)+ '/,W(12), b =[1211], [2211l, 

<ciU(12) I c)= W(12), c = [1121], [2121], (12) 
<[ 1111]1 U(12) I [2211 1>=<[2111]1 U(12) I [ 1211]) 

= '/,li2[V(12)- W(12)]. 

2. THE a-PARITY OF A MANY-PARTICLE SYSTEM 

Now let us consider the question of the a-parity of a 
system of nucleons and antinucleons whose total baryon 
number is equal to zero (the system kNkN, where k = 1, 
2, ... ). It is well-known that the a-parity of the two­
particle (k = 1) nucleon-antinucleon system is expressed 
by the formula 

G = (-1)'+B+T. (13) 

It will be shown below that, in contrast to the two­
particle case, for the kNkN system with k > 1 the 
a-parity does not depend on the orbital momenta, spin 
or isospin characterizing the many-particle system, but 
it is solely determined by the symmetry of the baryon 
number function. 

Let us introduce isospin functions y(i) and o(j) of the 
individual particles, where y(i) corresponds to the 
3-component of the isospin of the i-th particle being 
equal to +1/2, and o(j) corresponds to the 3-component 
of the isospin of the j-th particle being equal to -1/2. 
Then one can represent the nucleon and antinucleon 
states in the form 

IP>=ay, ln>=a<'l, ln>=~v, lfi>=-~6. (14) 

It is well-known[lJ] that under the operation of a-conju­
gation the basis vectors (14) transform according to the 
law 

Gip> =-In>, Gin> =ifi>, Gin>= IP>, Gifi> =-In>. (15) 

As is clear from Eqs. (14) and (15), the effect of the 
operator a acting on the baryon number functions is 
given by the formulas 

Ga = -~, G~ =a. (16) 

The spatial, spin, and isospin variables do not undergo 
any changes under a-conjugation. Thus, the effect of the 
operator G on the wave function, written in the form (6), 
is given by the formula 
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~:y = Grp (x, a, 't)"' (a;., a;, ... , a;k, ~ik+l' ~'k+2' ... , ~in) (17) 
- cp (x, 0', 't) W (-Pi,,- fliu · · ·,- Pik' aik+l' aik+2' • · ·, ain)· 

As already indicated above, in general the Young 
pattern associated with a given baryon number function 
contains two rows. Let the number of squares in the f 
first row be n1, let the number of squares in the second 
row be n2, let n1 + n2 = n, and let us denote this partition 
by (n1, n2). Then n2 is the number of pairs of the varia­
bles a and {3 with respect to which the function w is 
antisymmetrized, and the difference (n1 - n2) is equal to 
the number of symmetrized (with respect to interchanges 
among themselves) pairs a and {3. According to Eq. (16) 
the operation of G-conjugation can be regarded as the 
replacement of all a by {3 with a subsequent change in 
the sign of all {3. It is easy to see that such a trans­
formation does not change the sign of the ensemble of 
variables a and {3, which are located in the n2 columns 
of the Young pattern-because in each pair of these 
variables a change of sign occurs twice: once due to 
antisymmetrization, and the second time-due to the 
change in the sign of {3. The remaining set of (n1- n2)/2 
pairs which are symmetric with respect to the variables 

a and {3 gives a factor (-1)(n1- n2)/2 upon G-conjugation. 

nz n1-n1 

Thus, the G-parity of a system of n nucleons and anti­
nucleons, whose baryon number function is described by 
the Young pattern with n1 squares in the first row and na 
squares in the second row (n1 + n2 = n) is given by 

(18) 

The functions cp()c, a, T) and w(q) are described by 
conjugate Young patterns. Therefore, for the Young 
pattern associated with the function cp(x, a, T) the differ­
ence (n1 - n2) is equal to the number of rows which con­
tain a single square. In particular, for the nucleon­
antinucleon system the symmetric function cp (x, CJ, T) is 
described by the Young pattern with n1 - n2 = 0 and accord­
ing to formula (18) G = +1 for this pattern, but the anti­
symmetric function cp(x, CJ, T) has the Young pattern with 
n1- n2 = 2 and, consequently, G = -1 for it. The possi­
bility of writing down formula (13) for the G-parity of 
the nucleon-antinucleon system is due to the fact that 
in this simplest case, by knowing l, S, and T one can 
uniquely reconstruct the Young pattern of the function 
cp(x, a, T). 

Let us cite an example which indicates that this 
cannot be done in general. Let us consider the 2N2N 
system with L = 0, S = 1, and T = 1. Let the coordinate 
function of this system be symmetric, i.e., let it be 

described by the partition (4). The values of S and T 
give partitions of the form (3, 1) for the spin and isospin 
functions. But the product (4) x (3, 1) x (3, 1) of the 
partitions contains both the partition (2, 1, 1) for which 
G = -1 as well as the partition (2, 2) with G = +1. 

Thus, our main conclusion is the following: For the 
kNkN system with k > 1 the G-parity is solely deter­
mined by the formula (18) and it is a quantum number 
which does not depend on the orbital momenta, spin, or 
isospin of the particles or of groups of particles. 

It follows from the conservation of G-parity that the 
matrix elements of the potential between baryon number 
functions of different G-parity vanish (formulas (12) may 
serve as illustrations of this fact). If such matrix ele­
ments are calculated without assuming beforehand that 
the potentials V and V are equal, then they turn out to be 
proportional to the difference (V- V). 

In conclusion we note that since G-conjugation is a 
generalization of C-conjugation, then it is trivial to 
transfer everything said above to a system possessing 
a C-invariant interaction. 
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