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First-derivative discontinuities of the space-time metric tensor which is the solution of the Einstein 
gravitational equations are investigated. Expressions are obtained for discontinuities on nonisotropic and 
isotropic hypersurfaces. It is shown that for a nonisotropic discontinuity hypersurface the expression in the 
general case contains four scalars. It is proven that in this case there exists a coordinate system in which the 
first derivatives of the metric tensor are continuous. For an isotropic discontinuity hypersurface the 
expression for the discontinuity contains six scalars in the general case. First derivative discontinuities of a 
spherically symmetric space-time metric tensor are considered in various coordinate systems. 

IT is known that the metric space-time tensor gik of 
general relativity theory, which is a solution of Ein­
stein's gravitation equations, can have discontinuous 
first derivatives. The presence of these discontinuities 
depends in many respects on the choice of the coordi­
nate system. Indeed, let the functions fi(xi, ... ,x 4 ), 

w_hich define the transit~on from the coordinate system 
x1 to the coordinates x1' be continuous together with 
their first derivatives. The second derivatives of the 
function fi are at least piecewise smooth. Since the 
transformation law for a gik/axj is given by 

og,.=ag,m!!.:!.._oxmaxn + lm(~~+ o'xm ox') 
axj axn ax• ax• ax; g ox' ax1 ax• ax• ax; ox' ' 

it follows that continuity of the derivatives agik/axj is 
determined by the continuity of agzm/axn and by the 
continuity of the second derivatives of the transfor.ma­
tion functions. Therefore the derivatives agik/a~J 
will be discontinuous in the coordinate system x 1 even 
if the derivatives ilgzm/axn are continuous, if the 
second derivatives of the transformation functions are 
piecewise smooth. In other words, if the first deriva­
tives of gik are discontinuous in a given system of 
coordinates and there exists another coordinate system 
in which they are continuous, then the functions that 
transform the first system of coordinates into the 
second have discontinuous second derivatives. 

A simple example confirming the foregoing is the 
Schwarzschild exact solution. In terms of the curva­
ture coordinates, this solution is[ll 

ds_' = (2.''1- ga'-_!_''1- gr' )'at'-~- r'da' (1) 2' ·z' 1-gr' ' 

ds+' = ( 1- 2rm )at' dr' - r' da', 
1- 2m/r 

(2) 

where 

da' = de'+ sin' e ckp', ga' =·2m. 

The metric ds~ determines space-time in a sphere 
of radius a and filled with a homogeneous liquid, and 
ds! defines space-time outside the sphere. By calcu­
lating the derivaties of the metrics (1) and (2) and by 
comparing them at r = a, we easily verify that the 
derivatives with respect to r of the metric tensor 
component at dr2 are different. Therefore the deriva­
tives of the metrics (1) and (2) are not continuous func­
tions. On the other hand, Rosenr2 l has shown that the 
complete Schwarzschild solution has continuous first 
derivatives in a homogeneous coordinate system. This 
means that the functions that transform the curvature 

coordinates into homogeneous coordinates should have 
discontinuous second derivatives at r =a. 

This paper deals with discontinuities of the first 
derivatives of the metric tensor gik· Section 1 gives 
the conditions for joining the discontinuity of the first 
derivatives on the hypersurface. In Sec. 2, a repre­
sentation is obtained for the discontinuities on a non­
isotropic hypersurface. It is shown that in this case 
the discontinuities are determined by four scalars 
specified on the discontinuity hypersurface. It is 
proved that in a sem.i-geodesic coordinate system the 
derivatives agik/oxl are continuous if the discontinuity 
hypersurface is non-singular. A representation of the 
discontinuities on an isotropic hypersurface is obtained 
in Sec. 3. It is shown that in this case the discontinuities 
of the first derivatives of the metric tensor are deter­
mined by six scalars specified on the discontinuity hy­
persurface. The discontinuities of the derivatives of 
the metric tensor of spherically-symmetrical space­
time in special coordinate systems are considered in 
Sec. 4. 

1. CONDITIONS FOR JOINING THE FIRST DERIVA­
TIVES OF THE METRIC TENSOR ON THE DISCON­
TINUITY HYPERSURFACE 

Let gik be the space-time metric tensor of general 
relativity theory, which is a solution of Einstein's 
gravitational equation, and let S be a sufficiently 
smooth ~ypersurface, and let the first derivatives 
agik/axJ becomes discontinuous on going through this 
surface. Such a hypersurface can be the boundary be­
tween regions of space filled with substances having 
different properties, or the boundary between a sub­
stance and vacuum·. If the energy-momentum tensor of 
the substance has on the hypersurface S a singularity 
of the 6-function type, such a hypersurface is called 
singular with energy-momentum density 6Tik· The 
analog of a singular hypersurface in Newtonian gravi­
tation theory is a simple layer. 

Let the hypersurface S divide the region in which 
gik is defined into two subregions il+ and n_, in each 
of which gik are continuous together with their first 
and second derivatives. The tensor gik is continuous 
in the entire region of definition. We define the discon­
tinuities of the first derivatives of gik in the following 
manner: 

[ a g .. ]= lim ( ag .. (M/) 
ox' ox' 

1038 
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where M, Mz, and Mz belong to s, ~ ••. and ~-. re­
spectively. In the definition of [ogik/dxl] we assume 
that the limit of the right-hand side of the expression 
exists and does not depend on the sequence of the 
points M l. From the definition (1.1) and from the law 
governing the transformation of the derivatives 
a gik/axj it follows that their discontinuity is a tensor 
with respect to the coordinate transformations of class 
c2. 

The discontinuities (1.1) should be joined on the 
hypersurface S. The joining conditions take the form[ 3 J 

(r .. j- 'f,g,.(gimr mi- gm'r m/} - '/,(1)/f,/ + 1),1f;/) ]nj = 0, (1.2) 

If Sis a non-singular hypersurface. In the case of a 
singular hypersurface with energy-momentum density 
oTik, the joining conditions are 

[fo/- 'f,g .. (g1mf mi- g"''f m/} - '/,(b,1f,/ + 11,1r,.') ]n! = bT ... (1.3) 

In (1.2) and (1.3), nj is the four-dimensional normal 
to S. 

Let us transform the conditions (1.2) and (1.3). 
Contracting, for example, (1.3) with gik, we obtain 

[g1~r mi- gm•r m,1]n! = fJTi, 

and the conditions (1.3) become 

{1.4) 

[fo/- 1/,(6/f .. '- 6,1f"') ]nJ = liT"- 'f,g,.IITi. (1.5) 

In the case of a nonsingular hypersurface, we obtain 

[f,.J- '/,(fJ,lf .. ' + ll,lfJ) ]nJ = 0. (1.6) 

From the kinematic joining conditionsr4 ' 5l it follows 
that 

(1.7) 

where hik is a symmetrical tensor specified on S. 
Using (1.7), we can easily show that 

[f"'] = crn,, 2cr = h,.g". 

(1.8) 

(1.9) 

Substituting {1.8) and (1.9) in {1.5), we obtain after 
simple transformations the joining conditions in the 
form 

'f,rt,(h .. n'- crn,) + 'f,n,(n"n'- crn,) 
-'/,h.,(n'n,) =fJT"'-'f,g,.IITi. (1.10) 

Contracting (1.10) with nk and taking (1.4) into account, 
we can show that the singular density tensor oTik 
should satisfy the condition 

6T .. n' = 0. (1.11) 

It follows from {1.7) that the discontinuities of the de­
rivatives agik/i:lxj are determined by the tensor hik· 
We obtain a representation for the discontinuities by 
determining hik from the joining conditions (1.10). 

2, REPRESENTATION OF DISCONTINUITIES ON A 
NON-ISOTROPIC HYPERSURF ACE 

Let S be a non-isotropic hypersurface. Then 
(nlnz) ;.o 0 and, contracting {1.10) with gik, we obtain 

from which it follows that 

h,.n•- 2crn, = - ~ 6T,' + ,;1• 
(n'n,) 

(2.1) 

(2.2) 

In (2_.2), Ti is a vector specified on S and orthogonal 
to n1 in the metric gik· Substituting (2.2) in (1.10 ), we 
obtain 

(n'n,) h., = n,a, + n,a,- 2 (11r,.- _!__ g,.fJT,' + ~,n,) liT,') , (2 .3) 
2 (nn, 

where ai = ani + Ti is an arbitrary vector specified on 
S. It is easily seen that the vector ai is determined by 
four sca!ars, namely the projections on ni and Tta > 

where Tfa > are. linearly-independent vectors on S, 
orthogonal to n1 in the metric gik· Expression {2.3) 
gives a representation of the discontinuities of the first 
derivatives of the tensor gik on a singular hypersur­
face. Putting o Tik = 0 in {2 .3 ), we obtain a representa­
tion of hik on a non-singular hypersurface: 

(2.4) 

The presence of nontrivial solutions (2.4) of the joining 
conditions (1.10) with zero right-hand sides indicates 
that the space-time metric is not smooth in the general 
coordinate system, i.e., the first derivatives are dis­
continuous. 

It follows from (2 .4) that the discontinuities of the 
first derivatives of gik on a non-isotropic hypersur­
face with oTik = 0 are determined by the vector ai. 

The obtained representation allows us to prove the 
following statement: in a coordinate system xi, one of 
the coordinate hypersurface of which ( x 1 = const) coin­
cides with a non-singular hypersurface S and is ortho­
gonal to the remaining co9rdinate hypersurfaces, the 
first derivatives agik/axl are continuous, with the 
possible exception of the derivative i:lg 11 /ox1 • 

Let us prove this. In the indicated coordinate sys­
tem, the normal to S is given by ni = 0, i ;.o 1, n 1 = 1. 
From the representation {2.4) it follows that hik = 0 
if i, k ;.o 1. Further, since gi = 0 when i ;.o 1, it fol­
lows that hri = 0, i ;.o 1. On the other hand, we have 
from (2.4) 

(n'n,) h" = a,, i =I= 1, 

from which it follows that ai = 0 when i ;.o 1. Conse­
quently, the tensor hik has only one component 

(n'n,) h" = 2a., (2.5) 

which can possibly differ from zero. Therefore only 
the derivative og11 /dx1 can be discontinuous. 

Using the foregoing statement, we can readily prove 
that the first derivatives of the tensor gik are con­
tinuous in a semi-geodesic coordinate system construc­
ted on the basis of S. Indeed, in the semi-geodesic co­
ordinate system constructed on the basis of S, the 
equation of the hypersurface S takes the form x 1 = 0 
where x 1 is the canonical parameter of the geodesics 
drawn through each point of S .~n the direction of n 1• 

In such a coordinate system g11 = 0 if i ;.o 1 and g11 

= ± 1 Pl. By virtue of the previous proof where we have 
ai = 0, i"'" 1 and from (2.5) we have a 1 = 0. It follows 
then from the representation (2.4) that hik = 0, and 
therefore the first derivatives of gik are continuous, 
i.e., the semi-geodesic system of coordinates is admis­
sible according to LichnerowiczPl. 

In the case of a singular hypersurface, it is easy to 
show that, in the coordinate system indicated above, 
hik is determined by Tik and is given by 
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(n'n,)h,, = -2(6T,,- 'f,g,,oT/ + 'f,g,in,n,6T/). 

We note that the joining conditions (1.10) on a non­
isotropic hypersurface are equivalent to the conditions 

(n'n,)h .. -r,:lT;o> =- 2(6T,.- 'f,g"bT/)T,~JT~~h (2.6) 

if S is singular and 

(2.7) 

in the case of a non-singular hypersurface. The equiva­
lence follows from the representations (2.3) and (2.4). 

3. REPRESENTATIONS OF DISCONTINUITIES ON AN 
ISOTROPIC HYPERSURFACE 

Let S be an isotropic discontinuity hypersurface, 
i.e., (nlnl) = 0. Then the joining conditions (1.10) on 
S take the form 

'/,n,(h.,n'- crn,) + 'j,n,(h"n'- an,)= 6T .. -'f,g"'6T/. (3.1) 

Let t;fa, be vectors on S, different from ni and 
linearly-independent at each point of S. The symbol 
(a) will henceforth stand for the indices pertaining to 
the numbering of the vectors. The tensor hik is de­
fined uniquely by contractions of the type hiknit; ~ , 

. k . k ( ) 
hikl;~a,t;<f.ll' hikn1n , where a, f3 = 1, 2, 3. Since the 
tensor hik is contained in the joining condition (3 .1) 
in the form hiknk, it is impossible to determine con-

tractions of the type hikl;~mt;~, from (3.1). Therefore 

the tensor hik on an isotropic hypersurface is defined 
in the general case to within six arbitrary scalars 
specified on S. . 

Let us make the choice of the vectors t; 1~ more 
(u) 

precise. We separate the linearly-independent vectors 
Ti which do not contain ni and are orthogonal to the 
vlf<itor ni in the metric gik· We shall show that at 
each point of the hypersurface S the set of vectors 
Ti is two-dimensional. Indeed, let M 0 be a point on <a) . 
S, and let n1 be the normal to S at M0 • Then there 
exists a coordinate system in which the space-time 
metric is 

dSM,' = (dx')'- (dx')'- (dx')'- (dx')', 

and the vector ni takes the form q, 1, 0, 0). . 
Assume that at Mo the vector T1 is o>:>thogonal to n1 

and does not contain it, and then Tta, = T}QI) = 0, from 
which it follows that the set of vectors T1 is two-

<QO 
dimensional at each point of the hypersurtace S. We 
denote these vectors by TL, and T~ 21 • For ;t 11 and 

;L1 we choosE; the vector fields Tf11 and T~2 1 • The 
vector ~ield t; ~31 cannot be orthgonal to ni, and there­
fore (t;b1ni) ;o< 0. We make its choice more precise by 

means of the following conditions: ( 1; 13 1n) = 1, ( t;, 31T <a>) 
= 0, (1;< 31 1;< 31 ) = 0. These conditions define the vector 

field 1;~31 uniquely, We shall henceforth omit the index 
3 of the vector t; i . 

(3) • • k 
L.et us fine the contractions hikn1nk, hikn1T <a>, 

hikn1t; k. Contracting (2 .1) with gik, we obtain 

h"'n'n' = -6Ti. (3 .2) 

Then, contracting (3.1) with Ttm;k and ;i;k we obtain 
respectively 

h .. n''S' = cr + 6T"£''S'. (3 .4) 

Any symmetrical tensor can be represented in the 
form of a bilinear symmetrical combination of four 
linearly-independent vector fields, therefore 

h,, = An,n, + B£,£, + B~~T(a)<T<>J• + 2A~n(,T(al>) 
-t- 2B"-r<•l (,£,) + 2Dn(;£,), 

(3.5) 

where A, B, Aa, sa, Ba !3, D are scalars on S, J30!f3 
= B f3 a, the sign ( ... ) denotes symmetrization over 
the tensor indices contained in parentheses. Taking 
into .account (3 .2), (3 .3 ), (3 .4 ), and the normalization 
hikg1k = 2o-, we obtain expressions for the scalars: 

B = - 6T/, B" = 20T,.£'T~PJ~J, 
D = cr-t- 15T "'s's'. cr.~.B·~ = - 215T,.£'s', 

where 

cr.~= (T(a)T(O)), <Yapcr"J = 6.' (a, II. p = 1. 2). 

We represent the scalars Ba P in the form 

B~' = -~'15T ,.£'6' + B"', 

where satl = sf3a and safiaa{3 = 0. We write the 
tensor hik in the form 

0 g 
h,.=h .. -t-hu., 

(3.6) 

(3. 7) 

15 ° 0 
where hik is determined by the density 15Tik, and hik 
does not depend on 6Tik· Substituting (3.6) and (3.7) in 
(3.5), we obtain 

0 
h,. = (n,a, + n,a;) -j- B~'T<•>it"l'• (3 .8) 

5 

h .. = (6;b, + £,b,) - T(~)ll"(0)><1''15T,.'S'5", (3 .9) 

where 

Expressions (3 .8) and (3 .9) give a representation of the 
discontinuities on the isotropic hypersurface. 

Introducing a special coordinate system, we can 
subject the metric tensor gik to four coordinate condi­
tions infll. Therefore, in such a coordinate system 
four out of the six scalars in (3.8), which define the 
discontinuity on the non-singular hypersurface, can be 
set equal to zero. We introduce an isotropic semi­
geodesic system of coordinates constructed on the 
basis of sPl. In such a coordinate system, the space­
time metric takes the form 

ds' = g,.dx'dx" + g.,dx"dx' (a, II= 1, 2, 3), (3.10) 

where x 4 is a canonical parameter of the isotropic 
geodesics and g4 a does not depend on x 4 • The equation 
of the hypersurface S in such a coordinate system is 
x 4 = 0. Then the vector ni = ( 1, 0, 0, 0) and the vectors 
T<mi have a zero component T<a> 4 • The coordinate 
conditions for the metric (3 .1 0) yield h4i = 0. On the 
other hand, from the representation (3.8) we have 

hu=a,-t-n,a, =0, 

from which it follows that ai = 0. Consequently, in this 
coordinate system the tensor hik is determined by two 
scalars, and the discontinuity of the first derivatives 
of gik on the non-singular isotropic hypersurface can-
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not be eliminated in the general case. 
The representations (2.4) and (3.8) enable us to 

establish the qualitative difference between the dis­
continuities on an isotropic and a non-isotropic hyper­
surface. This difference can be determined in the 
following manner. Let rtm be linearly-independent 
vectors on S which do not contain ni and are ortho­
gonal to ni i~ the metric gik· We continue rfm in a 
smooth manner into the vicinity of S. We define the 
transverse components gill {3l of the metric gik by the 
expression 

The discontinuity of the first derivatives of g<()l_f3l on S 
is given by 

(3 .11) 

Substituting (2.4) in (3 .11) we readily see that the first 
derivatives of the transverse components of the metric 
are continuous on a non-isotropic hypersurface with 
oTik = 0. In the case of an isotropic hypersurface, the 
first derivatives of gw f3) can have a discontinuity, as 
can be readily verified by substituting (3.8) in (~.11). 
Thus, the behavior of the derivatives ag<()l_ f?,!axJ on a 
non-isotropic hypersurface differs qualitatively from 
the behavior of the first derivatives of g. ()I_ f3l on an 
isotropic hypersurface--they are continuous in the 
former case and may have a discontinuity in the latter. 

We note that the joining conditions (3.1) can be 
written in the form (3.2), (3.3), (3.4). The equivalence 
of these conditions follows from the representation 
(3.8), (3.9). 

In those cases when space-time admits of a motion 
group, the scalars in the representations (2 .4) and (3 .8) 
should satisfy a system of differential equations and 
their number can decrease. 

4. DISCONTINUITIES OF THE FffiST DERIVATIVES 
OF gik OF SPHERICALLY-SYMMETRICAL 
SPACE-TIME 

Let S be a hypersurface with oTik = 0, on passing 
through which the first derivatives of the metric tensor 
gik of spherically-symmetrical space-time can have a 
discontinuity. We assume that in the vicinity of S the 
tensor gik is continuous. Then, if S is non-isotropic, 
we can prove by using the representation (2.4) that in 
a polar Gaussian coordinate system, in a homogeneous 
coordinate system, and in an isothermal coordinate 
system the first derivatives of gik are continuous. 

Let us prove this. We write the metric of spher­
ically-symmetrical space-time in the form fll 

ds'= e•dt'- e'dr'- e•(dil' + sin'B~'), (4.1) 

where 11, A, and ll are functions of r and t. 
We number the coordinates in the following manner: 

(t, r, e, q>) -+ (x', x'' x', x'). 

If A = 0 in (4 .1 ), then the coordinate system is polar 
Gaussian; if 11 = A we have an isothermal coordinate 
system; if A = ll, then the coordinate system is called 
homogeneous. If ell = r 2, we have curvature coordi­
nates. The continuity of the first derivatives of the 
metric tensor (4 .1) in the indicated coordinate systems 

is proved if we demonstrate that the vector ai in the 
representation 

(4.2) 

is a zero vector. 
Since the hypersurface S is spherically-symmetrical, 

it can be specified by a level r = r(t) and then ni. 
= ( r, -1, 0, 0 ). The coordinate conditions for the metric 
(4.1) are hik = 0, i "'k. On the other hand, the repre­
sentation (4 .2) yields 

hu = fat - ai, hu = faa, hu = fa3, 
hu = -a2, ht3 = -a3, hJ, = 0, 

from which it follows that a2 = a3 = 0, a. = ra1. Since 
the vector ni has zero components n2 and n3, it fol­
lows from (4.2) that h22 = h33 = 0, i.e., the function IJ. 
in (4.1) has continuous first derivatives. The non­
zero components of the tensor hik are 

(4.3) 

where a 4 = ra1. We assume that the coordinate system 
is polar Gaussian. Then A = 0, therefore hu = 0 and 
{4 .3) yields a 4 = a 1 = 0, so that ai = 0 and the deriva­
tives of the metric tensor (4.1) are continuous in the 
indicated coordinate system. The continuity of the 
first derivatives of gik in the isothermal and homogen­
eous coordinate systems is proved in similar fashion. 
In curvature coordinates, the first derivatives of the 
metric tensor have the nontrivial discontinuity 

h,, = 2f'a,, hu = -2a, 

and if Sis static, only the derivative Bgu/or can be 
discontinuous rs, 61 • 

In the case of an isotropic hypersurface S, using the 
representation (3 .8 ), we can prove that the function ll 
in {4.1) has continuous first derivatives, and the metric 
tensor itself has noncontinuous first derivatives in the 
polar Gaussian and homogeneous coordinate systems. 
In the isothermal coordinate system and in the c;urva­
ture coordinates, the discontinuities of ogik/<lxl are 
nontrivial and are determined by a single scalar. 

We note that the representations (2.4) and (3.8) can 
be written in a different form, this being connected 
with the possibility of representing gik in the form of 
a bilinear symmetrical expression of four linearly­
independent vectors. We can obtain a representation 
for the singular density tensor oTik by starting from 
the condition (1.11). It is easy to verify that this 
representation contains six scalars in the general case. 
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