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First-derivative discontinuities of the space-time metric tensor which is the solution of the Einstein
gravitational equations are investigated. Expressions are obtained for discontinuities on nonisotropic and
isotropic hypersurfaces. It is shown that for a nonisotropic discontinuity hypersurface the expression in the
general case contains four scalars. It is proven that in this case there exists a coordinate system in which the
first derivatives of the metric tensor are continuous. For an isotropic discontinuity hypersurface the
expression for the discontinuity contains six scalars in the general case. First derivative discontinuities of a
spherically symmetric space-time metric tensor are considered in various coordinate systems.

IT is known that the metric space-time tensor gjk of
general relativity theory, which is a solution of Ein-
stein’s gravitation equations, can have discontinuous
first derivatives. The presence of these discontinuities
depends in many respects on the choice of the coordi-
nate system. Indeed, let the functions fl(x!,...,x%),
which define the transition from the coordinate system
x! to the coordinates X!, be continuous together with
their first derivatives. The second derivatives of the
function f! are at least piecewise smooth. Since the
transformation law for dgjik/8x) is given by
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it follows that continuity of the derivatives agik/ 8%y is
determined by the continuity of bglm/axn and by the
continuity of the second derivatives of the transforma-
tion functions. Therefore the derivatives 8gj /X!
will be discontinuous in the coordinate system X! even
if the derivatives 9gjy, /ax™ are continuous, if the
second derivatives of the transformation functions are
piecewise smooth. In other words, if the first deriva-
tives of gjk are discontinuous in a given system of
coordinates and there exists another coordinate system
in which they are continuous, then the functions that
transform the first system of coordinates into the
second have discontinuous second derivatives.

A simple example confirming the foregoing is the
Schwarzschild exact solution. In terms of the curva-
ture coordinates, this solution is'"]
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where
do®* = d@* + sin*0dg?>, ga’ =2m.

The metric ds? determines space-time in a sphere
of radius a and filled with a homogeneous liquid, and
ds? defines space-time outside the sphere. By calcu-
lating the derivaties of the metrics (1) and (2) and by
comparing them at r = a, we easily verify that the
derivatives with respect to r of the metric tensor
component at dr? are different. Therefore the deriva-
tives of the metrics (1) and (2) are not continuous func-
tions. On the other hand, Rosen!®) has shown that the
complete Schwarzschild solution has continuous first
derivatives in a homogeneous coordinate system. This
means that the functions that transform the curvature

coordinates into homogeneous coordinates should have
discontinuous second derivatives at r = a.

This paper deals with discontinuities of the first
derivatives of the metric tensor gjk. Section 1 gives
the conditions for joining the discontinuity of the first
derivatives on the hypersurface. In Sec. 2, a repre-
sentation is obtained for the discontinuities on a non-
isotropic hypersurface. It is shown that in this case
the discontinuities are determined by four scalars
specified on the discontinuity hypersurface. It is
proved that in a semi-geodesic coordinate system the
derivatives 9gjk/9x] are continuous if the discontinuity
hypersurface is non-singular. A representation of the
discontinuities on an isotropic hypersurface is obtained
in Sec. 3. It is shown that in this case the discontinuities
of the first derivatives of the metric tensor are deter-
mined by six scalars specified on the discontinuity hy-
persurface. The discontinuities of the derivatives of
the metric tensor of spherically-symmetrical space-
time in special coordinate systems are considered in
Sec. 4.

1. CONDITIONS FOR JOINING THE FIRST DERIVA-
TIVES OF THE METRIC TENSOR ON THE DISCON-
TINUITY HYPERSURFACE

Let gjx be the space-time metric tensor of general
relativity theory, which is a solution of Einstein’s
gravitational equation, and let S be a sufficiently
smooth hypersurface, and let the first derivatives
dgijk/9x) becomes discontinuous on going through this
surface. Such a hypersurface can be the boundary be-
tween regions of space filled with substances having
different properties, or the boundary between a sub-
stance and vacuum. If the energy-momentum tensor of
the substance has on the hypersurface S a singularity
of the §-function type, such a hypersurface is called
singular with energy-momentum density §Tjk. The
analog of a singular hypersurface in Newtonian gravi-
tation theory is a simple layer.

Let the hypersurface S divide the region in which
gik is defined into two subregions §, and Q_, in each
of which gjk are continuous together with their first
and second derivatives. The tensor gjk is continuous
in the entire region of definition. We define the discon-
tinuities of the first derivatives of gji in the following
manner:
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where M, Mj, and M;j belongto S, Q,, and ., re-
spectlvely In the definition of [dgjk/dx)] we assume
that the limit of the right-hand side of the expression
exists and does not depend on the sequence of the
points M!. From the definition (1.1) and from the law
governing the transformation of the derivatives
dgik/0x] it follows that their discontinuity is a tensor
wgth respect to the coordinate transformations of class
C*.

The discontinuities (1.1) should be joined on the
hypersurface S. The joining conditions take the form(®]

(To? — /s (8" T'mi' — g™ ') — *2(8Tw! + 8Ti) In; =0, (1.2)

If Sis a non-singular hypersurface. In the case of a
singular hypersurface with energy-momentum density
6Tjk, the joining conditions are

[I‘a - l/zga\ (g""l",,.: — g""I‘,,.H) — l/z (bf’rul + ah!rﬂl) ]n;‘ =0T (1 -3)

In (1.2) and (1.3), nj is the four-dimensional normal
to S.

Let us transform the conditions (1.2) and (1.3).
Contracting, for example, (1.3) with gjkx, we obtain

[T i — g™ Tilng = 8T, (1.4)
and the conditions (1.3) become
[Tof — /2 (8/Tw' — 8:Tu") 1ny = 6T — /2gabT. (1.5)
In the case of a nonsingular hypersurface, we obtain
[T — /2(8/Tw + 6'T!) Iny = 0. (1.6)

From the kinematic joining conditions!*®! it follows
that

[0ga | 82'] = hany, 1.7)
where hjk is a symmetrical tensor specified on S.
Using (1.7), we can easily show that
[Tw'] = */og" (huma + hami — hani), (1.8)
[Ti] = on, 20 = hag™*. (1.9)

Substituting (1.8) and (1.9) in (1.5), we obtain after
simple transformations the joining conditions in the
form

a1 (hun’ — om) + ans (nan' — ony)

— "o (nlnl) = 8Ta— '/zgixaTzl. (1 10)

Contracting (1.10) with nK and taking (1.4) into account,
we can show that the singular density tensor §Tjk
should satisfy the condition

ST an* = 0. (1.11)

1t follows from (1.7) that the discontinuities of the de-
rivatives 8gjk/0x) are determined by the tensor hji.
We obtain a representation for the discontinuities by
determining hjig from the joining conditions (1.10).

2. REPRESENTATION OF DISCONTINUITIES ON A
NON-ISOTROPIC HYPERSURFACE

Let S be a non-isotropic hypersurface. Then
(nn;) # 0 and, contracting (1.10) with gjk, we obtain

(han* — 20n)n' = —8T", (2.1)
from which it follows that
nA
h:‘ P — i = —_— zl 10 .
s — 20n. ) 8T/ + =, (2 2)

In (2.2), 7i is a vector specified on S and orthogonal
to nl in the metric gjk. Substituting (2.2) in (1.10), we
obtain

n.n,

(n'ny)

where aj = onj + 7i is an arbitrary vector specified on
S. It is easily seen that the vector aj is determmed by
four scalars namely the projections on nl and T(a)
where 7.y, are linearly-independent vectors on S,
orthogonal to nl in the metric gik- Expression (2. 3)
gives a representation of the discontinuities of the first
derivatives of the tensor gji on a singular hypersur-
face. Putting 5Tjkx =0 in (2.3), we obtain a representa-
tion of hjk on a non-singular hypersurface:

1
(R'n) hay = muaa + nags — 2 (6Tm — - 80T + 8T ) (2.3)

(2.4)

The presence of nontrivial solutions (2.4) of the joining
conditions (1.10) with zero right-hand sides indicates
that the space-time metric is not smooth in the general
coordinate system, i.e., the first derivatives are dis-
continuous.

It follows from (2.4) that the discontinuities of the
first derivatives of gjk on a non-isotropic hypersur-
face with §Tjk = 0 are determined by the vector aj.

The obtained representation allows us to prove the
following statement: in a coordinate system xl, one of
the coordinate hypersurface of which (x' = const) coin-
cides with a non-singular hypersurface S and is ortho-
gonal to the remaining coordinate hypersurfaces, the
first derivatives dgjk/9x) are continuous, with the
possible exception of the derivative 9g,,/9x*.

Let us prove this. In the indicated coordinate sys-
tem, the normalto S is givenby nj =0,i= 1, n, = 1.
From the representation (2.4) it follows that hjx = 0
if i, k # 1, Further, since gj =0 when i= 1, it fol-
lows that h;i =0, i# 1. On the other hand, we have
from (2.4)

(n'nx)hm = nity + Nati.

(m'n)hs =a, i1,
from which it follows that aj = 0 when i # 1, Conse-
quently, the tensor hjix has only one component

(n'mi) by = 2a,, (2.5)

which can possibly differ from zero. Therefore only
the derivative 98g,,/9x' can be discontinuous.

Using the foregoing statement, we can readily prove
that the first derivatives of the tensor gjx are con-
tinuous in a semi-geodesic coordinate system construc-
ted on the basis of S. Indeed, in the semi-geodesic co-
ordinate system constructed on the basis of S, the
equation of the hypersurface S takes the form x' =0
where x' is the canonical parameter of the geodesics
drawn through each point of S in the direction of n'.

In such a coordinate system g!! =0 if i=1 and g1,
=+1"), By virtue of the previous proof where we have
aj =0, i=#1 and from (2.5) we have a, = 0. It follows
then from the representation (2.4) that hjx = 0, and
therefore the first derivatives of gjx are continuous,
i.e., the semi-geodesic system of coordinates is admis-
sible according to Lichnerowicz'"].

In the case of a singular hypersurface, it is easy to
show that, in the coordinate system indicated above,
hjk is determined by Tjk and is given by
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(nlnl)hih = —2(6T|‘n — ‘/zgméTxl + l/zgai"n-nh(‘STzl).

We note that the joining conditions (1.10) on a non-
isotropic hypersurface are equivalent to the conditions
(') bty = — 2(8Tw — *:80dT) TarTeers (2.6)
if S is singular and
2.7)

in the case of a non-singular hypersurface. The equiva-
lence follows from the representations (2.3) and (2.4).

i k
hih"%ﬂl)r(ﬂ) =0

3. REPRESENTATIONS OF DISCONTINUITIES ON AN
ISOTROPIC HYPERSURFACE

Let S be an isotropic discontinuity hypersurface,
(n n;} = 0. Then the joining conditions (1.10) on
S take the form

‘/zni(hﬂnl - O'nn) + !amn (hunl - O'ni) = Ty — ‘/zgmGTzl. (3 -1)

Let £1, be vectors on 8, different from nl and
linearly-independent at each point of S. The symbol
(a) will henceforth stand for the indices pertaining to
the numbering of the vectors. The tensor hjk 1s de-
fined un1que1y by contractions of the type hlkn g( o)’

1k§(a)§(ﬁ), hlkn1 k, where @, 8 =1, 2, 3. Since the

tensor hjk is contained in the joining condition (3.1)
in the form h;jn™, it is impossible to determine con-

tractions of the type hikg(imgﬁg) from (3.1). Therefore

the tensor hjx on an isotropic hypersurface is defined
in the general case to within six arbitrary scalars
specified on S.

Let us make the choice of the vectors g o, more
precise. We separate the linearly- 1ndependent vectors
T(la which do not contain ni and are orthogonal to the
véctor nl in the metric gik- We shall show that at
each point of the hypersurface S the set of vectors
71 is two- dimensional. Indeed, let M, be a point on
S, and let n! be the normal to S at M,. Then there
exists a coordinate system in which the space-time
metric is

dSu? = (dz*)* — (dz')* — (dz*)* — (d2°)?,
and the vector n; takes the form (1 1,0, 0).

Assume that at M, the vector r is orthogonal to nl
and does not contain it, and then T(q, =7y, = 0, from
which it follows that the set of vectors 71 is two—
dimensional at each point of the hypersurot(ace S. We

denote these vectors by 7¢,, and T( 2y For E(n and

g(z) we choose the vector fields -r( 1, and 7(2,. The
vector field 5(3, cannot be orthgonal to nj, and there-
fore (5(3,n1) #= 0. We make its choice more precise by

means of the following conditions: (£3,n) =1, (£47q))
=0, (£(3)5(s)) = 0. These conditions define the vector

field g(' s, uniquely, We shall henceforth omit the index
3 of the vector gl

Let us fine the contractmns hlknlnk hjkn T}(a,,
hjxnizK. Contracting (2.1) with gjk, we obtain

hmnn = —6T1 (3.2)

Then, contracting (3.1) with 7(ia,gk and gigk we obtain
respectively

DENISOV

(3.3)
(3.4)

hmn“r:m) = '25Tih§i"?<:)»
han't* = o 4 6T ,EE,
Any symmetrical tensor can be represented in the

form of a bilinear symmetrical combination of four
linearly -independent vector fields, therefore

ho = Ania + BEEs + BT en + 24°1 (T @)
+ 2B%1q) (&) + 2Dn (&),

where A, B, A%, B®, B%P D are scalars on §, B*P
= BP2 the sign (...) denotes symmetrization over
the tensor indices contained in parentheses. Taking
into account (3.2), (3.3), (3.4), and the normalization

(3.5)

hjxg'® = 20, we obtain expressions for the scalars:
B= —8T! B*=28Tat'no™,
D =0+ 6TxEE", 0.B*® = — 26T,EE, (3 6)
where
Out = (T T®), 0ap0® =8> (a, B, p=1. 2).
We represent the scalars BYP in the form
B = —o™oTEE" + B, (3.7)

where B®P = BA® and B*Fg,, ; = 0. We write the
tensor hji in the form

0 8
ha = ha -t ha,

o 0
where hjik is determined by the density §Tjk, and hj
does not depend on §Tjk. Substituting (3.6) and (3.7) in
(3.5), we obtain

(3.8)
(3.9)

0
i = (niafi + nnai) -+ Bm%(zh"(l)hy
5
ha = (Ebr + Eabi) — T(a)Teno™87T1,EE",

where
a = An; + ot + A%T(ay,

b = niénglg" + '21<¢>,-0"‘"6T:,.§’1rp) - ’/ZE(aTl“

Expressions (3.8) and (3.9) give a representation of the
discontinuities on the isotropic hypersurface.

Introducing a special coordinate system, we can
subject the metric tensor gijk to four coordinate condi-
tions in''). Therefore, in such a coordinate system
four out of the six scalars in (3.8), which define the
discontinuity on the non-singular hypersurface, can be
set equal to zero. We introduce an isotropic semi-
geodesic system of coordinates constructed on the
basis of S!'1. In such a coordinate system, the space-
time metric takes the form

ds® = g dz'dz® + gopdr®dz® (o, B = (3.10)

where x* is a canonical parameter of the isotropic
geodesics and gsy does not depend on x*. The equation
of the hypersurface S in such a coordinate system is

x* = 0. Then the vector nj = (1, 0, 0, 0) and the vectors
Tni have a zero component 7,,,. The coordinate
conditions for the metric (3.10) yield hs = 0. On the
other hand, from the representation (3.8) we have

hu=a; + na. = 0,

1,2, 3),

from which it follows that aj = 0. Consequently, in this
coordinate system the tensor hjk is determined by two
scalars, and the discontinuity of the first derivatives

of gjk on the non-singular isotropic hypersurface can-
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not be eliminated in the general case.

The representations (2.4) and (3.8) enable us to
establish the qualitative difference between the dis-
continuities on an isotropic and a non-isotropic hyper-
surface. This difference can be determined in the
following manner. Let 7{y, be linearly-independent
vectors on S, which do not contain nj and are ortho-
gonal to n! in the metric gjx. We continue 7{,, in a
smooth manner into the vicinity of S. We define the
transverse components gy g, of the metric gjk by the
expression

4 L
Bap) = EaT()T(p)-

The discontinuity of the first derivatives of g, on §
is given by

[ag(ab)/az’] = hmT:a)T(.p)nj. (3 11 )

Substituting (2.4) in (3.11) we readily see that the first
derivatives of the transverse components of the metric
are continuous on a non-isotropic hypersurface with
6Tik = 0. In the case of an isotropic hypersurface, the
first derivatives of gy g, can have a discontinuity, as
can be readily verified by substituting (3.8) in (3.11).
Thus, the behavior of the derivatives ag, )/axJ on a
non-isotropic hypersurface differs qualitatively from
the behavior of the first derivatives of g, 5, on an
isotropic hypersurface--they are continuous in the
former case and may have a discontinuity in the latter.

We note that the joining conditions (3.1) can be
written in the form (3.2), (3.3), (3.4). The equivalence
of these conditions follows from the representation
(3.8), (3.9).

In those cases when space-time admits of a motion
group, the scalars in the representations (2.4) and (3.8)
should satisfy a system of differential equations and
their number can decrease.

4. DISCONTINUITIES OF THE FIRST DERIVATIVES
OF gix OF SPHERICALLY-SYMMETRICAL
SPACE-TIME

Let S be a hypersurface with §Tjg = 0, on passing
through which the first derivatives of the metric tensor
gik of spherically-symmetrical space-time can have a
discontinuity. We assume that in the vicinity of S the
tensor gjk is continuous. Then, if S is non-isotropic,
we can prove by using the representation (2.4) that in
a polar Gaussian coordinate system, in a homogeneous
coordinate system, and in an isothermal coordinate
system the first derivatives of gjk are continuous.

Let us prove this. We write the metric of spher-
ically-symmetrical space-time in the form'"

ds* = e'dt* — erdr* — e*(d9* + sin? Odg?), (4.1)

where v, A, and p are functions of r and t.
We number the coordinates in the following manner:

¢t 1,8, 9) > (' o', 2, 2).

If A =0 in (4.1), then the coordinate system is polar
Gaussian; if v = A we have an isothermal coordinate
system; if A =y, then the coordinate system is called
homogeneous. If e =r? we have curvature coordi-
nates. The continuity of the first derivatives of the
metric tensor (4.1) in the indicated coordinate systems

is proved if we demonstrate that the vector a;j in the
representation

(4.2)

(n'n) by = ainn + axnu

is a zero vector.

Since the hypersurface S is spherically-symmetrical,
it can be specified by a level r = r(t) and then n{
=(r, -1, 0, 0). The coordinate conditions for the metric
(4.1) are hjk =0, i # k. On the other hand, the repre-
sentation (4.2) yields

hoy =rfa;— ai, hi = Fa,,
hy = —a,, hyy = —a,,

s == Fas,

hy = 01

from which it follows that a, = a; = 0, a4 = ra,. Since
the vector nj has zero components n, and ns, it fol-
lows from (4.2) that hy = has = 0, i.e., the function
in (4.1) has continuous first derivatives. The non-
zero components of the tensor hjk are

(4.3)

where a4 = ra;. We assume that the coordinate system
is polar Gaussian. Then A =0, therefore h,; =0 and
(4.3) yields a, =a, =0, so that aj = 0 and the deriva-
tives of the metric tensor (4.1) are continuous in the
indicated coordinate system. The continuity of the

first derivatives of gjk in the isothermal and homogen-
eous coordinate systems is proved in similar fashion.
In curvature coordinates, the first derivatives of the
metric tensor have the nontrivial discontinuity

hu = 2i'a‘, hy = —2al,

hy = 27"2!11,

hyy = —2a,

and if S is static, only the derivative 8g;;/9r can be
discontinuous 9,

In the case of an isotropic hypersurface S, using the
representation (3.8), we can prove that the function p
in (4.1) has continuous first derivatives, and the metric
tensor itself has noncontinuous first derivatives in the
polar Gaussian and homogeneous coordinate systems.
In the isothermal coordinate system and in the curva-
ture coordinates, the discontinuities of 9gjk/9xJ are
nontrivial and are determined by a single scalar.

We note that the representations (2.4) and (3.8) can
be written in a different form, this being connected
with the possibility of representing gjk in the form of
a bilinear symmetrical expression of four linearly-
independent vectors. We can obtain a representation
for the singular density tensor §T;i by starting from
the condition (1.11). It is easy to verify that this
representation contains six scalars in the general case.
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