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The effect of fluctuations in the distribution of impurities on the thermodynamic and kinetic properties of 
dilute ferromagnetic alloys at temperatures much less than and much greater than the ordering temperature 
T. is investigated. It is assumed that the interaction between the impurities falls off exponentially with 
distance. Owing to the presence of fluctuations jn which the molecular-field energy is less than T., in 
impurity ferromagnets the contribution of local impurity spin flips to the thermodynamic and kinetic 
quantities for T <Tc is much greater, and falls off with temperature much more slowly, than in ordered 
ferromagnets, and may compete with the spin-wave contribution. For T> T., the interaction in pairs of 
closely spaced impurities causes a slow decrease of the corrections to the thermodynamic and kinetic 
quantities with increasing temperature. The results of the theory agree well with the experimental data on 
dilute PdFe alloys. 

1. INTRODUCTION 

AT the present time, a number of paramagnetic metals 
(Pd, Pt) are known which become ferromagnetic at 
small concentrations of the magnetic impurities 
(Fe, Co, Mn)[1J. If the impurity distribution is random, 
as it is natural to assume when their concentration is 
small, the ferromagnetic character of the ordering is 
evidence that their exchange interaction potential has 
positive sign. The low-temperature properties of an 
ordered ferromagnet are determined by the spin waves, 
since a local spin flip requires energy of the order of 
the Curie temperature T c· In an impurity ferromagnet, 
the situation, generally speaking, is different. As a 
consequence of the random impurity distribution, fluc­
tuations of the molecular field occur. At an impurity 
separated from its neighbors by a distance greater than 
the average, the acting molecular field His less than the 
molecular field He at impurities spaced at the average 
distance apart. Even at low temperatures, a spin flip is 
possible for such isolated impurities. 

The molecular-field distribution function W(H), 
which is the probability density that the value of the 
molecular field lies in the interval (H, H + dH), is pro­
portional, for H «He, to the probability of fluctuations 
in which one of the impurities is separated from the 
others by a distance greater than the average. Since the 
potential is of constant sign, W(H) decreases with H and 
tends to zero as H - 0. On the other hand, the contri­
bution of an impurity at which the molecular field 
H > T/IJ.e (IJ.e is the effective magneton) to the thermo­
dynamic quantities is proportional to exp(-IJ. eH/ T) and 
increases with decreasing H. Therefore, the main con­
tribution, proportional to exp[-IJ.eHopt(T)/T], is given 
by impurities situated in a certain oplimal field H0~t 
«He, which is determined by the form of the funcnon 
W(H) (i.e., the potential) and by the temperature. The 
contribution of impurities with the average spacing is 
proportional to exp(-IJ.eH/T) and is therefore small, 
despite the fact that there are many of them. Thus, in 
an impurity ferromagnet at temperatures that are not 
too low, but small compared with Tc, and at low impur­
ity concentrations, along with the spin waves local exci­
tations with an impurity- spin flip may also be important. 
Fluctuations in the distribution of impurities are also 
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important at high temperatures T » T c• since there are 
pairs of closely spaced impurities whose interaction 
energy V(r) ~ T. 

The effect of fluctuations in the impurity distribution 
on thermodynamic and kinetic phenomena in impurity 
ferromagnets is considered in the present paper. We 
assume that the exchange interaction of the impurities 
is described by the Heisenberg Hamiltonian 

~= -+ ~ V(r;;)S,S;, (1) 
ij 

where Si is a spin localized at the point ri, rij = ri- rj' 
and 

V(r) = V,e-' 1 ". (2) 

Such an interaction potential, of constant sign, describes 
well the properties of PdFe alloys in a wide range of 
Fe impurity concentrations. This follows both from 
theoretical considerations[2 J, and from the analysis of 
the concentration dependence of the Curie temperature 
Tc ~ IJ.eHc in this alloy carried out in Sec. 6 of this ar­
ticle. The distribution function W(H) has been deter­
mined by a method which is well-known from the theory 
of random walks[aJ and which has been applied by Klein 
and BroutC4J to the Ising model with a potential of alter­
nating sign. By means of this function, the magnetiza­
tion, specific heat and kinetic coefficients have been 
calculated. The principal temperature and concentration 
dependences of these quantities are determined by the 
factor exp[-vln3(SV0 /T)]. Here, v = 47TnR3/3 is the 
average number of impurities in the interaction radius 
R; n is the concentration of impurities. We shall assume 
that v « 1. In all the quantities considered, except the 
magnetization, there are also pre-exponential factors, 
which are large in the most interesting cases and in­
crease with increasing v and decreasing T. 

An analysis of the experimental data on the alloy 
PdFe for T « Tc confirms the conclusion that the con­
tribution of local spin flips to the thermodynamic and 
kinetic quantities may compete with the corresponding 
contribution of the spin waves. It has been found that, at 
iron concentrations with c < 1%, the local impurity­
spin flips determine the magnetic part of the specific 
heat and, apparently, give a contribution to the resis­
tance comparable with that of the spin waves. 1> 
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The thermodynamic and kinetic properties for 
T » T c can be investigated by means of the virial 
expansion in powers of the impurity concentration.[sJ 
The specific heat, the temperature-dependent part of 
the resistance and other phenomena absent in an or­
dered ferromagnet are connected with the system of 
magnetic levels of pairs of closely spaced impurities. 
These same pairs give the main contribution to the 
concentration correction to the Curie law for the sus­
ceptibility. For the interaction (2) treated in the pres­
ent article, the correction to the susceptibility propor­
tional to n2 depends on the temperature, forT« Vo, 
according to the law ln3(V0 /T), i.e., the Curie-Weiss 
law does not hold. 

2. THE MOLECULAR- FIELD DISTRIBUTION 
FUNCTION 

We shall consider the temperature region T « T c· 
In the molecular-field approximation, in place of (1) we 
have 

:M= 'l•fl· EH,(S,)- fl• EH,S, (3) 
I 

where the molecular field is 

H, = fJ.,-• E V(r,- r;)(S;), (4) 
j 

and (Sj) is the average spin. In going from (1) to (3), 
we have discarded thermodynamic fluctuations of the 
spins, which, as is well-known, lead to spin waves. It 
follows from (3) that the free energy of the impurities 
(the z- axis is the magnetization direction) is 

F = ~ 11· E HI(St>+ E F,, 
I i 

F, =_Tin sh[(S + 'f,)JJ.,H.!T] 
. sh(JJ.,H./T) 

(5) 

From the condition that the free energy be a minimum 
with respect to the distribution of molecular fields, 
a F/aHi = 0, it follows that the magnetization is 

(6) 

where Bs(H/ T) is the Brillouin function, and the specific 
heat of the magnetic system is 

CM= Ec,(H,)= E( fl·:· )'{ ~sh-' ~:~ (7) 
i i 

-(s+ ~)'sh-'[(s+-i-) fl:·n. 
Replacing the summation over the sites by averaging 
over the values of the molecular field H with the distri­
bution function W(H), we obtain for the specific heat and 

!)In the paper by Kitchens and TrousdaJel5l, the Mossbauer effect was 
investigated for T <Tc in the framework of a fluctuating-molecular-field 
model. The authors of this paper assumed that v> 1 and, consequently, 
W(H) has a Gaussian form. Since the value of R in PdFe is close to 
the lattice constant (cf. See 6), this inequality cannot be fulfilled. 
Besides, at large impurity concentrations, the temperature dependence 
of the magnetization is determined not by fluctuations of the 
molecular field, but by the spin waves. 

the magnetization per unit volume 
~ H 

M = nfl, IW(H)B. (r )dH, (8) 

C.=nJ W(H)C(H)dH. (8a) 
• 

According toC3J , the distribution function, normalized 
to unity, has the form 

1 1 N 

W(H) = -;;;v so( H--;. E V(r,;)S )'d'r, ... d'rN, (9) 
J-< 

where N is the total number of impurities and v is the 
volume of the system. In the right- hand side of (9), 
( Sj) has been replaced by S, since for T « T c ~ost of 
the spins are almost completely saturated. By making 
use of the integral representation of the 0-function, we 
obtain 

1 ~ 1 N 

W(H) = 2nv·' J dp J exp {- ip ( H --;,-E V(r;)S}} d'r, ... d'rN 
-~ Fl 

1 ~ [ 1 J ( iV(r)Sp } ] N 
= -~-.Ldpe-1H• -;;- d'rexp fl• . 

In the limit N-co, N/v = const, we have 

W(H)= _t_Jm dpe-•H•-D<•>, 
2:rt -~ 

D(p)=nJd'r(1-exp(iV~~Sp }]· 

(10) 

Substituting into this the expression for the potential 
and integrating by parts, we obtain 

D( ) - ivSV.p s' _,_ 1 , ( ipV.Sx) p ---- <= n xexp --- . 
fle 0 Jle 

(11) 

To calculate averages by means of the function W(H), 
its explicit form, as we shall see in the next Section, 
will not be required. It is sufficient to know its Fourier 
transform, i.e., the function e-D(p), But in order to 
make the following results more visualizable, it is 
useful to study the properties of the function W(H) in 
detail. We shall give a simple estimate for W(H) for 

V.S { r,} H<H,=-;;:exp -R , 
where r c R< n-1 / 3 • Since the molecular field has the same 
direction at each impurity, in order that the molecular 
field at a given impurity not exceed H it is necessary 
(but not sufficient) that there be no other impurities at 
a distance r = R ln(VoS/J.LeH) » rc from it. Therefore, 
using the nearest-neighbor distribution function w(r) 
= 4ur2exp(- 47Tnr3/ 3)[3J, we have 

W 1 v.s ( v.s) (H)<-9 3vln'--exp -vln'-- . 
~t,H JJ.,H 

(12) 

From (12) follows the obvious result W(O) = 0, which is 
true for any finite extended potential V(r) of constant 
sign. The function W(H) for fields greater than He but 
smaller than J.L~1V0S can be calculated by expanding the 
integrand function in (10) in powers of D(p): 

W(H) _ 3v 1 , V,S 3v' 1 , V,S 
--n----n--+ H fl,H H fl,H .... (13) 



DILUTE FERROMAGNETIC ALLOYS 1019 

As can be seen from ( 13), the expansion is taken in 
powers of the parameter vln3(VoSIJ.J.eH), i.e., it is valid 
for He« H « J.J.~1 SVo. With increasing H, the function 
W(H) in this region of the fields falls off slowly. It is 
clear that the maximum of W(H) is attained at H ~ He. 

The relation (13) is, essentially, an expansion in 
powers of the concentration. The first two terms in (13) 
can be interpreted as the contribution to the molecular 
field from interactions with one and two nearest neigh­
bors, separated from the impurity with molecular field 
H by a distance considerably less than the average dis­
tance between the impurities. By means of the virial 
expansion, we obtain, for example, the first term W1(H) 
in (13). In order that the value of the molecular field 
lie in the interval from H to H + dH, it is necessary that 
the distance between the impurities in the pair lie be­
tween r = R ln(V0S/J.J.eH) (at these r, the energy V(r)S 
= J.J.eH) and r + dr = r- RdH/H. The quantity W1(H)dH is 
equal to twice the number of such pairs, i.e., 

3v , VoS 
W,(H) = 4nnrjdr/d/Jil = 0 1n !Ji• 

Since the potential (2) is bounded, the field J.J.eH > VoS 
is created by a large number of closely spaced impuri­
ties (we neglect correlation in the distribution of impur­
ities). Therefore, for such fields, the virial expansion 
is inapplicable. We shall show that, for J.J.eH > VoS, the 
function W(H) falls off more rapidly than any power of 
H. For this, we calculate the moments of the function 
W(H) -fF' = s 1fmW(H)dH, m = 1, 2 .... 

0 

Substituting W(H) from (10) into this, we represent lfM 
in the form 

Integrating by parts m times, and using the fact that 
D(p)-"" as p - oo, we obtain 

- am 
H'" = (- i)m--e-D(ollo=O· 

dpm 

Carrying out the differentiation to terms of first order 
in v, we find, finally, 

- 6v ( V0S)'" Hm=- -- • 
m3 J.l.e 

(14) 

The existence of all the moments proves the assertion 
made above. It can be seen from (14) that the main con­
tribution to all the moments is made by impurities at 
which the molecular field is of order J.J. ~1V0S. Such 
fields are created by fluctuations consisting of pairs 
with distance between impurities of order R. The prob­
ability of these fluctuations is of order v. The large 
contribution of such fluctuations is connected with the 
slow falling off of the distribution function W(H) at large 
fields He< H < VoS. 

3. THE MAGNETIZATION AND SPECIFIC HEAT AT 
LOW TEMPERATURES 

According to (8), the average spin per impurity is 

We shall consider the integral 

A,= y J( cth y~ -1) W(H)dH, y > 0. (16) 

We represent coth(YJ.J.eH/T) in the form of a series in 
powers of exp(-2YJ.J.eH/T). The calculation of Ay is 
reduced to the calculation of integrals of the type -

<D(a) = J e-aHW(H)dH. 
0 

It can be seen from (10bthat the Fourier component of 
the function W(H) is e- (p). Using the connection be­
tween the Fourier component of a function and its Lapla 
Laplace transform, and taking into account that W(- H) 
= 0, we obtain 

Thus, 

~ [ ( 2ik!1•Y ) ] A,= y .l.exp -D -, -T- . (17) 
•=• 

According to (11), 

n( ik;ll· )= _ vVo~ky jdxln'xexp (- yV~kx). 

To within the exponentially small terms exp(- VoS/T), 
in this integral we can replace the upper limit by""· 
We then obtain 

(18) 

Here, the function 

f(x)=ln' :r + 3Cln'x +(3C' + n' /2)ln x + C(C' + n' /2}-ljl" (1),(19) 

where C is Euler's constant, and lj; is the logarithmic 
derivative of the gamma function. Since a = S + As+Y 
- A112, we have, according to (17) and (18), 2 

S (s .1 )~ { t( (2S+1)VoSk )} 
a = + + 2 £. exp - " T 

A= I (20) 

1 ~ { (SVok)} -2 .l.exp -vf T . 
It= I 

From the condition oa = S - a « 1, which was used in 
deriving the distribution function W(H), it follows that 
the relation (20) is valid for low temperatures satisfy­
ing the inequality vln3(SVo/T) » 1. On the other hand, 
as will be seen from Sec. 5, the high-temperature virial 
expansions are applicable for vln3(V0S/T) « 1. There­
fore, we should expect that a phase transition occurs 
when vln3(V0S/T) ~ 1, i.e., at temperature Tc ~ J.J.eHc 
~ exp(-1/an113), where a Rl R. We note that 
earlier[8 ' 9J, the Curie temperature was incorrectly 
identified with the average energy of the spins in the 
molecular field, this energy being proportional to the 
impurity concentration (cf. (14)). 

Ie> 3vln3(VoS/T) > 1, we can discard the first sum 
in formula (20) and retain only the term with k = 1 in 
the second sum. This means that the optimal molecular 
field Hopt » TIJ.J.e· Then, 

2%e quantity 3vln2(SV o/T) has the meaning of the average number of 
impurities positioned in a layer of thickness R at a distance R 
ln(V0Sff) from an impurity with molecular fieldp.)I::::T.' 
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rr=S- 1/2exp[-vj(SV,/T)). (21) 

It can be seen from (21), (19) and (12) that the tem­
perature dependence of the magnetization is closely 
connected with the form of the distribution function 
W(H) for small molecular fields. At not too low temper­
atures, the magnitude of vln2{V0S/T) in a sufficiently 
broad temperature range is of order unity and depends 
weakly on T. Since 

( 
3 V,S ) ( T ) , ln>(v0BfTl 

exp -vin~""' --
T V,S 

the temperature dependence of a can be described in 
this case by a power function with exponent close to 
unity. If 3 v ln2{V0S/T) « 1, but v ln3(V0S/T) » 1 as be­
fore, then many terms in the sums in (20) make a con­
tribution. Going over from the summation to integration 
over k, we find 

a= S- (S + '/,)exp{- v In'( s;,)}. (22) 

It is interesting that, in this region of temperature, oa 
falls off with temperature more slowly than linearly. 
Thus, the presence of fluctuations in which H « He 
leads to the result that the contribution of the molecular 
field to oo in impurity ferromagnets is much greater 
and falls off with temperature much more slowly than in 
ordered ferromagnets. Moreover, in certain ranges of 
concentration and temperature, the magnitude of oa, 
described by (20), falls off with temperature more 
slowly than indicated by the Bloch law. 

We proceed to calculate the magnetic part of the 
specific heat. The integral in (Sa) can be calculated 
similarly to the integral (15). We obtain 

00 1 d' SV k (2S + 1)' ri' 
C.=n~k dy2 exp( -vt(¥)]1.=,-n~ k dy' 

h=l ~=1 

xexp[-vt(ySV,k)]l . 
T V=2S+I 

(23) 

If 3vln2{VoS/T) > 1, then the second sum in (23) can be 
discarded and we can confine ourselves to one term in 
the first sum. Then, 

CM = nv[t.(1 + vf,)-6(In S~, +C)] exp[- vt(~') ]. 

sv sv 2 <24) 
f, = 3In'---i+ 6CinT+ ~ +'3C'. 

We see that, in contrast to oa, the specific heat contains 
an additional large pre- exponential factor, which increa­
ses with decreasing temperature. Therefore, the specific 
specific heat decreases with temperature more slowly 
than the magnetization. Consequently, the role of local 
impurity-spin flips turns out to be even more important 

" 
2 

J 

" 
FIG. I. Temperature dependence of the 

specific heat for different impurity concen­
trations: I) II= 10-2 , 2) II= 2 X 10-2 , 3) II= 

3 x w-2 , 4) 11 = 4 x w-2 , 6) 11 = 6 x w-2 . 

The specific heat is in arbitrary units. 

in the specific heat than in the magnetization. The tem­
perature dependence of the specific heat at different 
impurity concentrations, calculated from the formulas 
(24), is shown in Fig. 1. 

If 3v ln2(SV 0 /T) « 1, then the summation over k in 
(23) can be replaced by integration, and 

sv. { sv,} C,.= 3nvin(2S+1)In'rexp -vin'r . (25) 

Both the deviation of the average spin from saturation 
and the magnetic specific heat decrease rapidly with 
increasing impurity concentration. Therefore, at high 
concentrations, spin waves must play the principal role. 

4. KINETIC PHENOMENA AT LOW TEMPERATURES 

The kinetic phenomena in ferromagnetic metals below 
the transition point possess a number of features con­
nected with the s-d interaction. These phenomena in 
ordered ferromagnets were investigated by KasuyaC7J 
within the framework of molecular- field theory. To 
calculate the kinetic coefficients in our case, we must 
average the probability of scattering of electrons by a 
localized spin, obtained by KasuyaC7J, with W(H). We 
shall assume that the s- d- interaction constant I is small 
compared with the non-exchange interaction constant U. 
In this case, all the kinetic coefficients of interest to us 
are proportional to the s-d- scattering probability, i.e., 
we can average directly the expressions for the kinetic 
coefficients calculated by Kasuya[7J for a fixed value of 
the molecular field. 

We shall confine ourselves in this section to tem­
peratures for which 3v ln2{SV0 /T) > 1. After averaging 
with W(H), which is performed analogously to the aver­
aging of the thermodynamic quantities, we obtain for 
the resistivity p, the thermal e.m.f. a and the thermal 
conductivity K: 

Ll I ' 00 P: =' ( U) ~ W(H) { (S.'H 2(S,) fl~H [ exp ( fl;H) -1) -• }dH 

= 6S ( ~ )' v In' s;, exp [- vf ( ~~·)] , (26) 

2 I 'M a=-;-(u) f (S,)[S(S+1)-(S,(S,+1))] (fl;H) 2 

X [ 1-exp (- fl~H)] -• W(H)dH 

= 6~' ( ~) 3vin' s;, ( 1 +3vin2 s;,) exp [- vt(:•)] 
~ = tJ.L -~= -2 (.!...) 's (S,) fl•H [1 +_!_( tJ..H) '] 
x, L, Po U T n2 T 

X exp (- fl;H) [ 1- exp(- fl;H)] -2 W(H)dH (27) 

( I ) 2 SV, [ 1 ( . SV, ) = -6S 0 vin2 T 1+;;- 1+3vin'T 

(28) 

where Po and Ko are respectively the resistivity and 
thermal conductivity associated with the non- exchange 
scattering of electrons by impurities, llP = p- po, llK 

= K- Ko, Lis the Lorentz number, Lois the Sommer­
feld value of L, and llL = L- L0 • As can be seen from 
formulas (26)- (28), all the calculated kinetic coeffi-
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cients decrease with temperature and with increasing 
impurity concentration more slowly than the magnetiza­
tion, owing to the large pre-exponential factors. Thus, 
local impurity- spin flips are as important for the 
kinetic phenomena as for the thermodynamic properties 
of impurity ferromagnets. 

5. HIGH TEMPERATURES. THE VIRIAL EXPANSION 
IN POWERS OF THE CONCENTRATION 

Fluctuations in the distribution of impurities give 
rise to unusual properties of an impurity ferromagnet 
compared with an ordered ferromagnet, not only below 
the transition temperature, but also above it. At tem­
perature V0 ~ T ~ JJ.e He Rl T C• the main role is played 
by pairs of impurities, whose interaction energy V(r) 
;? T. The distance between impurities in such pairs is 

v. 
r(T)~Rlny, R<r(T)<r,, 

and their number is of order vln3 (V0 /T) « 1. The sys­
tem of magnetic levels in these pairs affects the ther­
modynamic and kinetic properties of the impurity ferro­
magnet. In the work of Larkin, Mel'nikov and 
Khmel'nitskii[sJ, a virial-expansion method has been 
developed for magnetic impurities in metals, when the 
Rudermann-Kittel-Kasuya- Yosida (RKKY) indirect ex­
change gives rise to an interaction between impurities, 
oscillating with distance. This method is also com­
pletely applicable in the present case of the positive 
potential (2). 

According to[sJ , the first virial correction to the 
free energy per unit volume is 

F = - T n' fd' ( V(r) J.L•h)· 
2 rep 2T'T' 

~ shz(i+'/•) { [ . 1 . . ]} cp(y,z)=ln~ sli.(z/:!) exp y S(S+1)- 2 /(J+1) 
J-• 

_ 21n shz(S+'/a) 
sh(z/2) 

(29) 

where h is the external magnetic field. For the correc­
tion to the magnetic susceptibility due to the interaction 
of the impurities, it follows from (29) and (2) that 

V0/IT dx T 
~X=- 3vxo J -. -In'_:_ 

0 :& v. (30) 

•• 
X { 1-Ej(j + 1) (2j + 1)exp(ze;)I2S(S + 1) .E (2j + 1)exp(xe;) }• 

J=O i 

where Ej = Y2j(j + 1), and xo = nll~S(S + 1)/3T. If 
T « V0 72, then, integrating by parts and confining our­
selves to the leading term in ln(Vo/T), we obtain 

dX = - 8-xov ln' V, , (31) 
S+1 T 

This correction is small when vln3(V0 /T) « 1, as it 
should be. The physical nature of the result (31) lies in 
the following. Two non-interacting impurities with spin 
S make a contribution proportional to 2S(S + 1) to the 
susceptibility. If there is ferromagnetic interaction be­
tween the impurities, and the first excited level of the 
pair differs from the ground level by an amount of order 
Tor greater, then this pair gives the same contribution 
to the magnetic susceptibility as one impurity with spin 
2S. It is proportional to 2S(2S + 1). The number of 

pairs with interaction energy V(r) ~ T is of order 
n2R3 ln3(V0 /T). Therefore, .t.x ~ vnln3(Vo/T). It is inter­
esting that, according to (31), the temperature depen­
dence of the susceptibility for Tc « T « Vo/2 differs 
from the Curie- Weiss law. The molecular-field method, 
within the framework of which this law is usually ob­
tained, is not applicable here, because impurities whose 
interaction is important are spaced at distances much 
less than rc. In the case of the RKKY interaction, the 
virial expansion leads to the antiferromagnetic Curie­
Weiss law[sJ. The negative sign of the correction in 
this case follows naturally from the alternating sign of 
the interaction and from the random distribution of the 
impurities, while the form of the temperature depen­
dence is connected with the fact that VRKKY ~ r-3 • 

ForT ~ V0 /2, we can expand the exponential in 
(30) in powers of x. Then 

dX = S(S + i)xovV, IT. (32) 

Formula (32), in contrast to (31), gives a Curie-Weiss 
law for the magnetic susceptibility, with constant 
8 = S(S + 1)vV0 • This difference is explained by the fact 
that, for T ~ V 0 , the main contribution at all tempera­
tures is given by pairs with distance between the im­
purities of order R. We note that the paramagnetic 
Curie- Weiss temperature 8, unlike the transition tem­
perature Tc, is proportional to the impurity concentra­
tion. For the magnetic part of the specific heat per unit 
volume, it follows from (29) that 

3 V 0/ZT T 
C,.=-vn J dxxln'.:_'\'1exp[x(e;+et)](2i+1)(2j'+1) 

16 v. ~ 
0 jjf 

X(j- j')'(j + j' + 1)'[ E (2i" + 1)exp(xe;n)] -•. (33) 
I" 

For T « V0 , to within terms of order ln-1(Vo/T), we ob­
tain 

c .. = 'I.Avn ln'(V, IT). (34) 

For S = %, the quantity A = ln(4/3). For large S, the 
factor A does not depend on Sand is of order unity. · 

It is not difficult to understand why the specific heat 
is of order vln2(Vo/T). Impurity pairs whose interaction 
energy does not differ too much from T give a contribu­
tion to the specific heat. The distance between such im­
purities can differ from R ln(V 0 /T) by not more than the 

·order of magnitude of R; therefore, the number of such 
pairs is of order vnli12(Vo/T). The corrections to all 
quantities due to transitions between levels have the 
same temperature dependence (cf., e.g., the correction 
to the Lorentz number (37) below). ForT ~ V0 , the 
specific heat C M ~ nv(V o/T)2 • It can be seen from (24) 
and (34) that the specific heat has a maximum at a cer­
tain temperature of order Tc. 

We shall examine the effect of interaction between 
the impurities on the kinetic phenomena. We shall as­
sume the interaction between the electrons and the im­
purities to be a point interaction. Then the scattering 
cross-section does not depend on the scattering angle, 
so that we can introduce a relaxation time into the 
kinetic equation. By making use of the expression for 
the impurity-spin correlator from[sJ, we obtain for the 
relaxation time associated with the presence ·of pairs, 
for S = %, 
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9 ""'r dx Tx 
T-' (e)= -nvP(2m'e) 'I• J -ln'-

4n' 0 x V, 

{ 1+e• /o(6+x)/o(6-x) 
X 1 + 3e• /.'(6) 

(35) 

where E is the electron energy, ~ = (E- EF)/T, and f0(~) 
is the Fermi function. Since the scattering described 
by the relaxation time (35) is inelastic, it leads to a 
deviation of the Lorentz number from the Sommerfeld 
value. The virial corrections to the resistivity and 
Lorentz number have the form (forT< V0 /2) 

~· = - _3_'Y ( _!___) 2 In' v. 
p 16n U T ' 

(36) 

!!.L 3 [ 2 ( 1 ) ] ( I ) 2 
2 V, -=- 1+-,F, --,3,1 v- In-. 

L 8n n' 3 U T 
(37) 

Here, 1 F1 is the confluent hypergeometric function. The 
interaction of the impurities makes an impurity- spin 
flip in the scattering more difficult. Therefore, the cor­
rection (36) to the resistivity is negative. With increase 
of temperature, the role of the interaction is decreased, 
so that, in an impurity ferromagnet, the magnetic part 
of the resistivity increases with temperature for T >> 
T » Tc also. 

6. IMPURITY FERROMAGNETISM OF Pd ALLOYS 

The theory developed above can be applied to explain 
the properties of dilute alloys of Pd with Fe and Co. 
The interaction of the impurity spins in Pd is realized 
by means of indirect exchange of d- band holesPJ Be­
cause of the strong correlation in a narrow d-band, this 
interaction, apart from the usual part oscillating with the 
distance between the impurities, contains a positive part 
whi_ch falls off ~ith distance according. to t~e law V(r) 
= r 1e- r/ R and 1s greater than the osclllatmg part at 
not too great distancesPJ It is this ferromagnetic 
interaction which leads to the result that Pd alloys with 
magnetic impurities, unlike alloys of the CuMn type, go 
over into the ferromagnetic state at low temperatures. 
As already noted in Sec. 4, we should expect that, in the 
case of the potential ( 2), this transition should occur at 
temperatures satisfying the condition v ln3 (SV 0 /T) ~ 1, 
i.e., at temperatures of the order of the interaction en­
ergy of spins situated at distances of the order of the 
average distance from each other. In this case, the tr 
transition temperature T c should depend on the impurity 
concentration like 

In T, = In V,- 1/ an'". (38) 

where V c R~ zV 0 , z is the average number of impurities 
whose interaction energy with a given impurity is of 
order Tc, and a R~ R. In Fig. 2, we show the dependence 
of ln T c on n -113 , constructed from the experimental data 
of Crangle and Scott[lo], who determined T c as the point 
at which the magnetization goes to zero. It can be seen 
that, in a wide range of concentratio~s, the dependence 
(38) is very well fulfilled with a = 4 A and V c = 900°K. 
The transition temperature Tc found by Williams and 
LoramCuJ from the discontinuity in the electrical resis­
tivity p(T) also obeys (38), but with slightly different 
parameters V c and a. The good agreement of (38) with 
experiment is evidence th,l!t the potential (2), which, for 
r > R, is close to r-1e-r/R obtained in[2J, correctly 
describes the interaction of iron impurities in Pd. 

FIG. 2. Dependence of Tc on 
the impurity concentration c in 
%, according to the data of [ 10 ) 

for PdFe alloys. 

In a number of papersC12 ' 13J, the magnetic part of 
the specific heat in PdFe alloys with Fe concentrations 
of 0.1% and higher has been measured. The magnetic 
part of the specific heat as a function of temperature 
displays a maximum at temperatures T m close to T c· 
At temperatures below Tm, the specific heat falls off 
rapidly with the temperature and decreases with in­
crease of impurity concentration. These features in the 
dependence of the magnetic specific heat on temperature 
and concentration agree qualitatively with our theory. 
Detailed quantitative dataC 12 ' 13J are given only for tem­
peratures in the range 1.4-4.2°K. The temperature de­
pendence of the magnetic part of the specific heat for 
samples with concentration c > 1%, according to the 
experimental dataC 12 ' 13J, is well described by spin-wave 
theory in the indicated temperature range, and for 
c < 1% falls off more slowly than the spin-wave contri­
bution, which is proportional to T312 • We have calculated 
the contribution of the molecular field to CM by the 
formula (24). By selecting the parameters Rand SV0 

(R = 2.5 A and SVo = 170°K}, we can match the calcula­
ted specific heat with the experimental specific heatC 12J 
in the whole of the indicated temperature range for a 
sample with c = 0.72% (Fig. 3). In this case, v = 3.1 
x 10-2 • The value obtained for R is close to the R found 
from neutron m~asurementsC~4J (R Sll:l 3 A}, and close to 
the value a= 4 A found by means of Fig. 2. The magni­
tude of the parameter SV 0 agrees reasonably with the 
value of V clz, if we assume that z is of the order of 
several units. For c = 1.52%, the values of CM at low 
temperatures, calculated with these parameters, are 
several times smaller than the experimental values, 
indicating, in accordance with[12J, the important contri­
bution of the spin waves. The increasing role of spin 
waves with increase of the concentration is connected 
with the fact that the specific heat (23) falls off almost 
exponentially with increase of v. For c = 0.36%, form­
ula (23) is applicable only for T :s 1.5°K; it can be 
seen fror;n Fig. 3 that, at this temperature, the calcula­
ted value of the specific heat is close to the experimen­
tal value. At yet lower concentrations, the region of 
applicability of formula (23) lies below 1.4 °K. For a 
sample with c = 0.09%, the specific heat CM, according 

, C/T, mJ·mole·• deg·• 

FIG. 3. Specific heat of PdF e. The 16 

points are the experimental results of 
[ 12 ) for samples with Fe concentra- 111 
tions c = 0.36% (I), c = 0. 72% (2), 
c = 1.52% (3). The straight line is the 
measured specific heat of pure Pd. The 12 
curves are the calculated values of the 
specific heat; X is the calculated spe-
cific heat for c = 0.36% and T = , 10 
!.4°K. 

11 16 rz 
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toC12J, in the interval 1.4-4.2°K lying above Tc, decrea­
ses with increasing T. This temperature dependence 
can be well described by the law ln2(V0 /T) (cf. (34)). 

The kinetic phenomena in PdFe alloys are determined 
by the s-electrons. The resistivity of PdFe samples for 
T « T c and with impurity concentration in the range 
0.1-1% was measured by Williams and Loram[11J. 
According toC11J , the resistivity tlp is proportional to 
n-1T3/ 2 • In the framework of standard spin-wave theory, 
which Williams and LoramC11J use to interpret their re­
sults, flP ~n-1/,.sf.!. On the other hand, one can show 
that the temperature dependence of the resistance tlp 
calculated from formula (26) in the ranges of tempera­
ture and concentration correspon~ng to the experimen­
tal conditions inC11J is close to T3 • But the concentra­
tion dependence is found to be stronger than n -;;1 • Appar­
ently, the experimentally observed temperature and 
concentration dependences of the resistivity are a conse­
quence of the fact that the spin waves and local excita­
tions with a spin flip give a commensurate contribute to 
the resistivity. The difference between the specific heat 
and the resistivity in this respect is connected with the 
fact that the specific heat (24) contains a larger pre­
exponential factor than does the resistivity (26). We 
should therefore expect that the electron-scattering 
mechanism considered in the present paper will turn out 
to be even more important for the thermal e.m.f. and 
thermal conductivity than for the resistivity. 

CONCLUSION 

As already noted, the indirect-exchange energy in 
metals with strong correlation over distances greater 
than a certain r 0 » R is a function of the distance with 
alternating sign. Therefore, for sufficiently low con­
centrations, when r c > ro, such alloys should not go 
over into the ferromagnetic state even at T = 0. Their 
properties should, in this case, resemble the properties 
of alloys of the CuMn type. It does not appear to be pos­
sible to estimate the quantity r 0 reliably. The lower 
limit of the concentrations for which ferromagnetic 
ordering can appear has not been discovered experi­
mentally. 

The alternating-sign part of the potential does not 
affect the results obtained above, if the impurities con­
tributing to the quantities under consideration are se 
separated from their neighbors by a distance less than 
r 0 , i.e., if J..LeHopt(T)"" T3vln2(SV0 /T) > V(r0). At lower 

temperatures, those impurities for which the alternat­
ing- sign part of the potential aligns the spins both along 
and against the magnetization become important. Be­
cause of the collinear orientation of the spins, this 
leads to the result that W(O) "' 0 and, correspondingly, 
to a contribution to the specific heat that is linear in 
the temperature. 

We have nowhere taken into account the influence of 
the Kondo effect. For T << Tc, the Kondo effect is 
suppressed by the molecular field. One can show that 
the Kondo effect has no influence on the indirect inter­
action at high temperatures also. However, the effec­
tive magneton in (30) is a function of the temperature[1s]. 

The influence of the Kondo effect on the corrections to 
the resistivity that are quadratic in the concentration 
reduces to replacing the scattering amplitude of the 
electrons by its exact value at the Fermi surface. 
Consequently, the temperature dependence of the resis­
tivity, given by formula (36), is valid with logarithmic 
accuracy in the case I< 0, both forT » TK, and for 
T « TK, while if I > 0, it is valid only for T » TK 
(TK is the Kondo temperature). The formulas for the 
thermal conductivity and Lorentz number are applicable 
forT » TK. 
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