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Two possible models of formation of an "ion-vortex ring" observed in experiments with charged particles in 
superfluid helium are considered. It is shown that an axisymmetric location of the ion with respect to the 
ring is unstable for large-size rings. A model Lagrangian is proposed for a model in which the ion is assumed 
to be fixed to the vortex filament. 

1. It can be regarded as establishedfl,2 l that quantized 
ring vortices with unit circulation are produced when 
charged particles move in helium. It follows from 
these experiments that an ion with a vortex can form a 
stable bound state. Cader3 l has determined experi
mentally the energy necessary to detach the ion from 
the vortex. It amounts to at least several times ten 
degrees. It is well known[4 l that the ion in liquid 
helium is a complicated formation. A positive ion 
drags with it, via electrostatic forces, a volume of 
liquid surrounding it. The effective radius of such a 
formation is ~7 A and the effective mass is of the 
order of one hundred times the mass of the helium 
atom m 4 • A negative ion complex is formed by an 
electron penetrating into the liquid and a spherical 
cavity formed around it. The cavity radius is ~15 A 
and the effective mass is ~250 m 4 • The dimensions of 
the vortex rings capturing the ions vary from ten to 
10 5 A. 

In classical hydrodynamics, the momentum, energy, 
and velocity of a vortex ring of radius R and circula
tion r are given byrsJ 

P = nprR', E = 1l2pr'R(1J- 'I,), 
v,. = r(1J- 'I,) I 4nR, 11 =In (BR I a,). (1) 

If we assume that these relations hold for quantum 
vortices, then the arbitrary radius of the core of the 
vortex is a 0 = 1.3 A, and r = 10-3 cm2/sec is the unit 
quantum of circulation. 

Two possibilities arise in natural fashion with re
spect to the structure of the bound state ''ion + vortex 
ring" in helium p, 2,a-8J. The first possibility is an 
axially-symmetrical placement of the ion relative to 
the vortex ring. This recalls the situation in classical 
hydrodynamicsr 9l. In the second possible model the 
ion lies on the vortex filament (according to Reif, raJ, 
the model of a snake that has swallowed a grapefruit). 
The purpose of the present paper is to analyze quanti
tatively the two models. 

2. We start the calculation with the axially-sym
metrical model, and leave aside questions connected 
with the dynamics of the formation of the vortex ring. 
The hydrodynamic problem, in which the ion complex 
is represented in the form of a sphere of radius a, can 
be solved accurately in terms of elliptic functions, but 
the corresponding calculations are quite cumbersome. 
Usually one deals with the case (not pertaining to the 
problem of vortex formation) in which the dimension 
of the vortex ring greatly exceeds the radius of the 
ion complex. In this case the calculation becomes 
much simpler. 

We consider thus a vortex ring with an ion moving 
along the z axis (we place the vortex ring at the origin 
and the ion at the point z = l). The ion moves with 
velocity u and the ring with velocity VE (expression 
(3)). At the point z = l, the vortex ring produces on 
its axis a velocity u1 = Y2 rR2( Z2 + R2 )-312 • Since the 
dimensions of the ion are small compared with R and 
H = (R2 + l2 )112 , we can neglect the change of the ring
induced velocity in the volume of the ion, and assume 
that the ion moves relative to the liquid with a velocity 
urel = u - u1 and produces a velocity potential 

<p = 1l2ure1a'(z -l) lr', 

where a is the radius of the ion and r is the distance 
from the center of the ion to the observation point. 
This leads to a change in the velocity of the elements 
of the vortex ring. Denoting the coordinate of the ring 
by Z, we obtain 

~=v,.+urel~{~-1) (2} 
dt 2H' H' ' 

dR 3 ,Rl (3) 
dt= -2Ureia H'. 

The presence of friction forces leads in the case of a 
quantum filament to a changeflOJ in Eq. (3). The fric
tion force Ffr depends on the temperature T and on 
the ring radiusPl, Ffr = a( T)TJ. Taking the friction 
force into account, we obtain 

dR I dt = -'l,urela'Rl I H'- aTJ I 2nprR. (3') 

Using the momentum conservation law, we write down 
the equation of motion for the "ion + vortex ring" 
system: 

d~J , d~J rei dP 
M-+ I.Mv.--+-= eE-F, dt . dt dt ,,. 

(4) 

Here M is the mass of the ion complex, MM/ 2 is the 
dynamically attached mass, M =~p/ Psol> E is the 
electric field directed along z, P = P - MuM, where P 
and P are respectively the momentum of the free 
vortex (1) and the momentum of the vortex in the pres
ence of the ion. 

Equations (2)-(4) determine completely the dynam
ics of the bound formation "ion+ vortex ring." The 
mutual positions of the ring and of the ion and their 
joint velocity (under the condition that the bound state 
exists) are determined by the radius of the ring, the 
value of which is obtained by solving the equation 

eE = Fr,(R). 

Let us consider the free motion of this bo~nd forma
tion. To this end we change over, first, to dimension-
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less quantities, introducing the following units: the 
distance R0 (which is the root of the equation 11 ( R0 ) 

= 21T), the velocity v0 = r/2R0 , and accordingly the 
time to= Ro/vo. Second, we introduce the small 
parameter € = a3/~, which we have in fact already 
used in the derivation of Eqs. (2) and (3). We write the 
equations of motion in terms of the dimensionless 
units, retaining the principal terms with respect to €; 
recognizing that the ring radius varies little, we 
represent it in the form R = L + ~, where L is a cer
tain equilibrium value of the dimensionless radius, and 
~ ~ € • The equations take the form 

as 3 Rl dZ X 
dt = -2Urel H,'' dt=L, (5) 

a L' as -;u(xu- H,,)=-2Ldt. 

Here H~ = l2 + L2 , X= 11/211, K = 2/3 ll + Y3 = 1.05. 
Introducing the ion coordinate z, we recast the 

system (5) in the form of a Lagrange equation with 
respect to the coordinates ~, z, and Z. The Lagrangian 
of the problem is given by 

!E = 2LS(t -x/ L) + 1/2(i- L'f H,')' + 112(x -1)i'. 

We change over to a new variable l = z - Z. Then 
i = z - x/L, and the part of the Lagrangian connected 
with the variable l takes the form 

x , f [X L' ]' 
!E,=2l +2 L+ (l'+L')''' . 

At l = 0 the system is in a state of stable equilibrium, 
with respect to which it can execute small oscillations 
with frequency wL 2 = [3( 1 - x)/ K ] 112 • We see that the 
motion becomes absolutely stable at x - 1, R - Ro 
R; 90 A. 

The presence of jointly-acting friction forces and 
an electric field leads to a shift of the point of stable 
equilibrium from the center of the ring farther on its 
axis. At a certain value of the field (and of the 
velocity) the joint motion becomes impossible, owing 
to the instability. Numerical calculations show that the 
presence of friction forces and of an electric field 
hardly alter the value of the critical ring dimension 
down to 1 °K. It follows from the foregoing that a 
model with an axially symmetrical placement of the 
ion can hardly account for the experimental data, since 
it does not agree with the fact that rings of much 
larger size exist. 

3. We proceed now to the structure of the bound 
state in a model in which the ion is assumed to be 
located on the core of the vortex filament. At T = 0 
the ionic negative complex captured by the vortex can 
form two states. First, the usual spherical "bubble" 
can land on a vortex, slightly altering its own shape 
and the shape of the adjacent section of the vortex 
filament. Second, the shape of the ''bubble" formed by 
the electron may become toroidal, and the axis of this 
torus coincides with the core of the vortex ring. Calcu
lations show, however, that at a fixed momentum the 
energy of the second state is ( R/ r 0 ) 213 times larger 
than that of the first, where R is the radius of the ring 
and r 0 is the radius of the cavity of the "free" nega
tive complex. (The comparison was made at a constant 
momentum or, equivalently, at a constant ring radius, 

since the momentum of the ion complex and the ion
induced change of the momentum of the ring can be 
neglected.) The first situation is therefore realized, 
and the particle mass in the effective Schrodinger 
equation describing the behavior of this ion should be 
taken to be of the order of the effective mass of the 
"free" negative ion complex, and the potential of the 
toroidal-symmetry field in which the effective particle 
moves should be taken to be the energy of the interac
tion of the ionic spherical ''bubble" with the vortex; 
this energy is apparently of hydrodynamic origin. In 
spectrum of such a quasiparticle, the groups of allowed 
states are separated from one another by an energy on 
the order of 0.01 eV, corresponding to optical transi
tions of the electron in a potential well. Each such 
group constitutes a set of bands (which intersect in the 
general case), characterized by "magnetic" and 
"orbital" numbers. 

The uncertainty of the ion momentum in the ground 
state, fi/R, is negligibly small in comparison with the 
uncertainty due to the thermal motion, (MkT)112 , start
ing with temperatures on the order of To~ fi2/kMR2 

~ TA q-1{l 0 /R)2 ( lo is the interatomic distance and 
q = M/m4). For example, for rings of radius R = 103 A 
this temperature amounts to 10-8 °K. Thus, the classi
cal delocalization practically always prevails over the 
quantum delocalization. On the other hand, there exists 
a temperature region (from 10-8 to 10-3 oK for 
R = 103 A), where the thermal uncertainty of the mo
mentum is small in comparison with the momentum of 
the translational motion of the ion. One can then speak 
of an ion that is immobile and pinned to the vortex 
filament. At higher temperatures, the ion can be re
garded as smeared over the core of the filament and 
the ring can be regarded as charged. We note once 
more that even in this case the resonant characteris
tics of such a formation are close to the characteris
tics of a "free" ionic complex. All the statements 
made above in this paragraph pertain also to a positive 
ion captured by a vortex ring. 

To calculate the model of the immobile ion, we 
consider first a closed filament of arbitrary shape. 
The velocity of the section of the filament under the 
influence of its remaining parts is given by the expres-
sion 

aR, r ,t, ds' [dR,, ] 
v(R,)=at= 4:nJ JR,-R,,J' ds'(R,-R,,) . (6} 

Here Rs specifies the equation of the filament in a 
natural parametric form. Expression (6) diverges 
logarithmically at small and large values of 1 s - s' J. 
The divergence at the upper limit is lifted because the 
filament is closed, and the lower limit in the integral 
of (6) is chosen to be the arbitrary radius a 0 of the 
core, and the integral is calculated with logarithmic 
accuracy. Since the value of the integral is determined 
by the behavior of the numerator at close values of s 
and s', we can therefore expand the function Rs', 
which is slowly varying in this sense, in terms of 
s' - s. As a result we obtain the local relation 

[ aR. aR, ] r a'R, 
.-at-a;- = 11 4n a~·· 

(7} 

From this equation we get, for example, an expression 
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for the velocity of the circular vortex (1 ), the disper
sion law of the oscillations of a linear vortex[1 1J, etc. 
Equation (7} can be obtained from the variational 
principle 

68, = 0, S, = s dt(T- U), 

T=~~asn.[ an, an,]. 
3 T as at 

As already noted, the radius of the vortex ring 
greatly exceeds the dimensions of the ion, and the 
radius of the ion is very slightly larger than the cor
relation radius. It is therefore reasonable to consider 
a model in which a pointlike ion is secured stationarily 
on the vortex filament. We assume first that the dy
namics of the "ion +vortex ring" system can be 
analyzed jointly, by imposing the constraint conditions 

S = S, + S, + S,.,, 6S = 0, 

S1 is the Lagrangian of the "free" ion complex, and 
Sint takes the foregoing constraints into account: 

S,n,= Jatpds6(s)F(R,-r,), 

(8} 

where ri is the radius vector of the ion; the length is 
reckoned from the point where the ion is secured. The 
Lagrange factor F has the meaning of the reaction 
force. 

From the equations obtained on the basis of the 
variational principle we determine the local frequency 
of oscillations of an ion fastened on a linear vortex 
filament. The equations of motion of the filament 

au. pf''ll a'u. 
pf--at=--:;;;- liz' -F,6(z), 

iJ u. pf''l] a 'uv 
-pfTt= ~"""Tz'-Fv6(z), 

where u is the vector of displacement in a plane per
pendicular to the vortex axis at the given point, and the 
equation of motion of the ion, Md2ri/de = F, should be 
solved simultaneously subject to the additional condi
tion u = ri at z = 0. The secular equation for the local 
frequency 

S~ dk 2npf 

-~ w + k''t]f/4n = Mw' 

leads to the result 

r ( 'll )'1, 
w = :ta' 4~-t' ' 

which is obviously valid also for ring of sufficiently 
large dimensions. The frequency is of the order of 
105 MHz. 

Illn this case the upper limit in the integral of (6) is the wavelength. 

(9} 

Let us examine the motion of the "ion + ring" con
figuration under the influence of the electric-field and 
friction forces. We .change over to a reference frame 
that moves with the ring (the origin is at the center of 
the ring), and represent Rs in the form 

iJe [ ae] R, =R,e+x, x=ae+b-+c e- . a(jJ litp 
(10) 

The vector e has the components cos <p, sin <p, and 0, 
where <p is the polar angle. Assuming x to be small, 
we linearize Eqs. (7) 

- r~+ pf''l] iJ'c- U'l] 6{tp)F 
P lit 4nR' litp' - 2nR + -R-' 

lie pf''ll ( li'a ) 
pfat•+ 4nR' iJtp' +a = O. 

The equation of motion of the ion is 

Md'c I dt'l.~o = eE + F- f. 

(11) 

Here f is the resistance force exerted on the ion by 
the normal component and by the impurities. Equations 
(11) allow us to determine the dispersion law of the 
oscillations of the free vortex ring 

f't] 
w=--n(n'-1)'1•, 

41l'R 2 

(12) 

We note that the spectrum of the oscillations of the 
"ion +vortex ring" system (9} and (12) can be investi
gated by the usual resonance methods. In the stationary 
case we can determine the shape of the deformed ring: 

a=b=O, c=aR(tp-n)'/pf'. 

The appearance of a discontinuity in the derivative is 
due to the neglect of the dimensions of the ion. 

In conclusion, the authors thank A. F. Andreev for 
valuable discussions. 
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