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The effect of the heat evolved in a sample on destruction of superconductivity by a current is considered for 
a cylindrical superconductor of the first kind. The distribution of temperature in the region occupied by the 
intermediate state is determined. The volt-ampere characteristics of the sample are determined. The resistance 
jump on transition to the intermediate state exceeds the London value which is 0.5. At current values I;:: I2 

the superconductivity is completely destroyed as a result of heating of the sample to the critical temperature 
Tc. The effect of the Kapitza temperature discontinuity at the boundary between the sample and liquid 
helium is considered in greater detail than in[141. In particular, the cause of the converse transition to the 
superconducting state on decrease of the current is explained. It is found that in the presence of a Kapitza 
discontinuity the sample cannot exist in a stationary state in a certain temperature range (T0, T 1) near the 
temperature of helium, T0• 

As shown by Andreev and the authorPl, thermal ef
fects can noticeably influence the electrodynamics of 
the intermediate state of type-I superconductors. This 
influence is particularly strong in dirty metals and in 
type-I alloys. In this case, as shown earlierPl, the 
dynamics of the intermediate state does not break up 
into purely electrodynamic and purely thermal parts, 
but constitutes a self-consistent problem in which both 
electromagnetic and thermal quantities must be deter
mined. In the same paperPl, we obtained a complete 
system of equations describing the dynamics of the 
intermediate state. In view of the nonlinearity of these 
equations, they cannot be solved in the general case. 
In certain particular cases, however, the problem be
comes simpler and can be solved. In the present paper, 
such a problem is solved for a cylindrical current
carrying sample. This is all the more interesting, be
cause the experimental data on the destruction of 
superconductivity by a currentr2-9 l disagree with the 
classical London solutionP0l. The reasons for this 
disparity are the finiteness of the structure of the in
termediate stater4,ll-l3J and the heat release in regions 
occupied by the normal method. The first attempt to 
determine the influence exerted on the current-induced 
destruction of superconductivity by Joule heat and by 
the temperature discontinuity at a boundary with liquid 
helium was made by Berkovich and LapirP4l, who ob
tained good agreement with experiment. They did not 
specify, however, the conditions under which their 
solution is valid (in particular, the temperature was 
assumed constant over the sample cross section), nor 
did they explain the reason for the inverse transition 
into the superconducting current when the current 
through the sample is decreased. Since we have ob
tained[!] equations with which to determine the tem
perature distribution in the intermediate state, the ef
fect of the heat released in the normal phase can be 
taken into account in the general case. We note that 
deviations from the London behavior, due to the already 
mentioned causes, can be of equal order of magnitude, 
and to determine which of them plays the principal role 
in each concrete case it is necessary to know the 
properties of the metal, its purity, and the temperature 
at which the experiment is performed. 

1. We consider a superconductor of the first kind in 

the form of a cylinder of radius r2, placed in liquid 
helium having a temperature T0 • If the current I 
through the sample is lower than the critical values 
Ic( T 0 ), then the sample is in the superconducting state. 
The electric resistance of the sample is then R = 0 and 
the temperature throughout its interior remains un
changed at T = T0 so long as I< Ic(T0 ). When the 
current reaches the critical value, the magnetic field 
on the surface becomes critical, H( r2) =He( T0), and 
the sample goes over into the intermediate state. At 
the first instant, when the temperature is still constant 
and equal to T 0 , the resistance increases jumpwise to 
a value R = %, and the intermediate state occupies the 
entire volume of the sample. The heat released in the 
normal regions raises the sample temperature until a 
stationary regime is established, in which heat balance 
is established at each point inside the sample and on 
the surface. 

If, as follows from the condition11 

di "E cE, ( vq = J = 4;i"" rotH),, 

the radial component of the heat flux density 
q = cEzH/ 47T, then the heat-balance condition determines 
the stationary temperature gradient V'T at each point 
of the sample: 

q = cE,H /4n = -x(r) VT(r), (1) 

where K(r) is the thermal conductivity at the point r. 
The Kapitza temperature jump is observed on the sur
face in the general case. For simplicity, using the 
theoretical expression for the jumpP5l 21 at an arbitrary 
value of the latter, we can write down the boundary 
condition on the sample surface in the form 

T'(r,) = T.' + Kq(r,), (2) 

where K = 15D(hsd/47T5pck4F (seer 15l). Thus, heating 
of the sample at a current I = Ic( T0 ) establishes a 
certain temperature distribution in it, and furthermore, 

1>Since we are interested in a stationary solution with axial symmetry, 
aht=ahz=ahA=O. It follows from the condition curl E=O that 
E,=const. Neglecting the Hall effect and taking the symmetry into 
account, we have H,=H,=O and HIP= H. 

2> A comparison of the experimental data on the value of the Kapitza 
jump with the theory can be found in[16•171. 

1000 



EFFECT OF JOULE HEAT ON DESTRUCTION OF SUPERCONDUCTIVITY 1001 

in the presence of a Kapitza jump, the temperature on 
the sample surface increases to T( r2) > T0 • As will 
be explained later on, this leads to an increase of the 
sample resistance to a value R(Ic(T0)) > Y2. The in
termediate state, if a Kapitza jump exists, will occupy 
as a result of the heating a volume smaller than the 
volume of the entire sample. 

Assume that at a certain current I the intermediate 
state occupies a certain volume whose boundary is de
noted by ri. Then the metal in the region ri ::s r ::s r 2 
is in the normal state. We introduce the dimensionless 
quantities 

x=rfr,, z=R/R.==r,'R, T= (T/T,)', (3) 
h=H(r)/H(r,), :i=l/1,, 

where Rn = 1/11ar~ is the resistance of the entire sam
ple in the normal state, a is the electric conductivity 
of the normal metal, Tc is the critical temperature of 
the superconductor, and I0 is defined by the relation 
2I0 /cr2 = Hc(T = 0) == Ho. Using Maxwell's equations 
and the boundary condition H( r 2) = 21/ cr2, we obtain 
the magnetic field in the region occupied by the normal 
metal: 

h(x) = zx+ (1-z) fx. (4) 

From (1), in which K(r) is the thermal conductivity 
of the normal metal, we obtain, using the Wiedemann
Franz law3, Kn(T) = Kn(Tc)T/Tc for the temperature 
dependence of the thermal conductivity as well as the 
boundary condition (2), the temperature distribution in 
the layer of normal metal, i.e., at XI ::s x ::s 1 (xi 

ri/r2): 

T(x) =(To'+ 26,zi')"' + 6,zi'[z(1- x')- (1- z) lnx'], 

c'H,' 
6, = -·-:':::-:--=--

8:rr'ox.(T,)T, 
c'H,'K 

6, = ---''---
16:rr'or,T,' 

(5) 

The electric field Ez = RI = Rni0 zi is constant over 
the entire cross section of the sample, in view of the 
condition curl E = 0 and the continuity at x =xi. 

We consider now the region 0 ::s x ::s XI occupied by 
the intermediate state. As indicated earlier[IJ, in the 
general case, in the macroscopic description of the 
intermediate state it is necessary to determine, in ad
dition to the macroscopic quantities, also (in a self
consistent manner) the parameters of its structure, 
i.e., the normal n to the layer boundaries and the 
velocity V of the structure (for layered structures). 
Since we are interested in sufficiently dirty metals (in 
pure metals the temperature is constant over the sam
ple cross section-see below), we can assume that a 
static London structure is realized: nz = 1, V = 0. 
Neglecting the effect of the magnetic field on the elec
tric and thermal conductivities of the metal, we obtain 
the densities of the electric current jz = aEz/Xn and 
of the heat flux q = -K11 VT, where Xn is the concentra
tion of the normal phase, K11 = XnKn + XsKs, Xs = 1 
- Xn, and Ks is the thermal conductivity of the super
conducting phase. Thus, the temperature distribution 
in the region occupied by the intermediate state is de
termined by Eq. (1), in which x< r) = Kii and H(r) is 

3Yrhis is possible, since we are interested in sufficiently dirty metals (see 
below) at low temperatures, when the electrons are scattered mainly 
by impurities. 

the magnetic field in the intermediate state, i.e., the 
critical field at the temperature at the given point r. 

We denote the dimensionless temperature and mag
netic field in this region by 'T and h. Then h(x) 
= Hc(T'(x))/iH0 or, using the simple parabolic tempera
ture dependence of the critical field, we have 

in(x) = 1- '!'(x). (6) 

The concentration of the normal phase is expressed in 
terms of the temperature by the formula 

x. = aE, = 4:rroE, 2ztx (7) 
j, c(rotH), 1-'t-xd't/dx' 

Equation (1) takes consequently the form 

k('f, x) 1 _ :~':;'l'/dx + 61(1- 't) = O, k = 1 + :· :· . (8) 

For comparison, we write down Eq. (1) for a normal 
metal: 

d,; -( 1-z} -;[;" + 26,zt' zx + -x- = 0. 

Without solving (8) in the general case, we consider 
three particular cases: low temperatures, high tem
peratures, and a pure metal. At low temperatures 
r « 1 the thermal conductivity of the superconducting 
phase can be neglected in comparison with the thermal 
conductivity of the normal phase, Ks << Kn· The coef
ficient k is then close to unity. Solving (8 ), we obtain 
the temperature distribution for this case : 

x('f) = cons~ exp [- 1 ].·. 
1- T 6,(1- i') 

(9) 

At high temperatures, r 'S 1, the thermal conductivi
ties of the normal and of the superconducting phases 
differ little, Ks R:: Kn· In this case kxn R~ 1 and Eq. (8) 
takes the form 

d't -;;;;' + 261zi ( 1 - 't) == 0, 

and its solution 

i'(x) = 1- const·exp(26,izx) 

depends very little on the coordinate. 

(10) 

In pure metals the parameter 0 I ~ ( KG- L~ 0 / l )2 
(where KG-Lis the parameter of the Ginzburg-Landau 
theory) is negligibly small and, as seen from (8 ), the 
temperature is constant in the intermediate state (and 
analogously when xi ::s x ::s 1 ). In the absence of a 
Kapitza jump, the temperature in the sample is equal 
to the helium temperature, T' = r = T 0• In our case we 
have the London destruction of superconductivity by a 
current. Taking Iii into account in the first order of 
smallness, we obtain the temperature distribution in 
the intermediate state in metals that are not too dirty: 

-B,t,• [ x..x. ( . x. ) ] 
'f(x) = canst- 1 _ I ln --+ 1 -- x , 

X, Xn Xn Xn 

I= fc(To)/lo = 1- To, X"= ii/2zLi, z" = '/.{1 + ( 1- (i,/i)']'i>} 

(11) 

is the London resistance, and Ks and Kn are taken at 
the temperature To. As seen from a comparison of 
Eqs. (9)-(11), the largest non-uniformity of the heating 
is observed at low temperatures in dirty samples. 
Figure 1 shows the dependence of the square of the 
relative temperature on the radius in the absence of a 
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FIG. I 

Kapitza jump at zero temperature of the helium (see 
(9), To= 0) and at the minimum current i = h, i.e., in 
the case when the entire volume of the sample is in the 
intermediate state (curve 1 ). For the parameter we 
have 61 = 0.1. For comparison, the same figure shows 
the distribution of the temperature in the non-super
conducting metal (curve 2) at the same values of the 
parameters ih To, and 61· 

2. Now, to complete the analysis of the problem, it 
remains to use the boundary conditions on the internal 
surface x = x1 = r1/r2. They reduce to a continuity of 
the magnetic field and of the temperature and to 
equality of the normal-phase concentration to unity. 
Taking (4), (6), and (7) into account, we can write 

1-z 1-i'(z,) zx,+-· --= . , 
z, z 

i'(z1) = -r(z,), 

di'" 
2zi.x1 = 1- i'(z,)- z,-d I . 

z •• 

(12) 

These equations determine the dependence of the un
known quantities x1, z, and const (which is contained 
in T'(x)) of the total current i through the sample. 
From the continuity of the heat flux at x = x1 and from 
the equation xn(x1) = 1 follows the continuity of the 
derivative of the temperature: dr/dx = dT/dx at x = x1. 
Taking this circumstance into account, we obtain a 
system of two equations for the determination of the 
sample resistance z and the radius x1 of the region 
occupied by the intermediate state: 

1-z 1--r(z,) d-r 'I (13) zz,+--= . , 2ziz1 =1--r(z1)-z,- , 
Xt ~ dx :ta 

where T(x) is defined in (5). 
Assume at first that there is no Kapitza jump ( 62 

= 0). Then at we obviously have x1 = 1. From (13) we 
obtain the value of the observed resistance jump 

f f 
Zt = 2 f- 6tit • 

(14) 

In pure metals 51 << 1 and at high temperatures To 
s 1 the current is i 1 « 1 and z1 ~ Y2. In dirty metals 
and in type-I alloys, on the other hand, we have 51 ;S 1, 
so that at not too high values of T the jump can exceed 
0.5 noticeably. Further, since the temperature in the 
sample approaches Tc with increasing current, and at 
the same time, as seen from the first equation of (13), 
we have x1 - 0 and z- 1, it follows that at a certain 
current h the sample becomes entirely normal: z1 
= 0, z = 1. In this case the radial temperature distri
bution is given by 

-r(x) ="to +<'l,i,'(1-x'). 

K/1,. 

8.5 

0.167 

o.m 
0.10 I 

D.QL...__---*--·--------,~' ~Q..I 
1.0 Z.l J.O 

FIG. 2. Curve 1-6 1 = 0.33 and (T0 /Tc)2 = 0.25; curve 2-6 1 = 0.5 
and (T0 /Tc)2 = 0.75; curve 3-London's theory. 

From the condition T ( 0) = 1 we obtain the current i2: 

We note that, unlike the London model, the value of 
this current is finite. Thus, the intermediate state 
exists at current i1 s i s h. 

(15) 

From (13), in the first approximation in terms of the 
actually small parameter a 1, we obtain z and x14> 

z(i/i,) = 1/2{1+ [1- (i,/i)'«l>(i/i1)]'1t}, (16) 

where 

z, (_!_) = t, f + 11,1,(1- t.) 
i, i 2z(l/11) 

( i ) ( i )' ( . i, 1 ) f, --:- = --:- ZL 2zL-1+--:-znln-, 
~~ Zt £ Xn 

Ill ( :. ) = 1- 26,i.j, -(6,1,)'(1- /,'). 

Figure 2 shows plots of the resistance z( i/ i 1) plotted 
in accordance with these formulas (solid curves). The 
deviation from the London curve (dashed) is most 
noticeable in dirty samples at low temperatures. We 
note that this deviation does not depend on the sample 
radius. Unfortunately, all the known experiments were 
performed on sufficiently pure samples of Sn and In 
(for which 61 « 1). Therefore the deviation from the 
London plot in these experiments is due to the influence 
of the structure of the intermediate state and to the 
presence of the Kapitza jump. It is desirable to per
form experiments with dirty metals and alloys (where 
Kn and CJ are low) at low T in large-diameter samples 
(where the influence of the structure and of the Kapitza 
jump is smallest). 

3. We now take into account the influence of the 
Kapitza temperature jump on the boundary of the sam
ple with the liquid helium. For the sake of clarity, we 
assume the temperature to be constant over the cross 
section of the sample (this is true at high temperatures 
To$ 1, and at low temperatures in pure metals lh << 1 

4>The exact solution of ( 13) reduces in the general case to a 
determination of z from the following transcendental equation: 

zx1 + 1-• =~{1-61i 1 (...!...)' z [•(1-x,')+(1-z)ln-1-]}• 
Xt l it Xt2 

1 1 1- 6k 
x1(•)= 3; {1-(1- k)'l•(cos u- 3'1• sin u)}, u =a arccos (1 - kl''•, 

k = 3a2 (1- z) I z, a= 26,iz. 
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at not too large currents, i « i2). In this case we ob
tain from (13) and (5) 

z = -{-{ 1 + [ 1 - I.·;.T> r } = ~ { 1 + r 1-( 1 ~ T-r r } . 
z,=(1-z)'hlz'h, -r=(t'o'+20,I'z)"'. (17) 

The solution of this equation takes in the general case 
the form 51 

z(l)= 1-j,-'(i), 
L 

f,(u) = -(1- t'o')l(1- u)'l• · 
2 

t'(i) = j,-'(i), 

{. [( o.) ( . 11, )]}-"' / 1(u)=(u'-To') 211, 1-2 u'+ll,u- t'o'+2 . . 

(18) 

In the case of a weak jump 62 « 1, at sufficiently high 
temperatures To ;S 1, we have T Rj To+ c5 2i2z/To, so that 
we obtain from (17) 

) - 1 1+AI2+[1+A-(t,/t)']''• (19) 
z(t- 2 1+(.MI2i,)' ' 

where t:.. = 62i1/To = 62( 1 - To)/To. This formula coin
cides with that obtained by Berkovich and Lapir[l4l, 
who cite also a fairly good agreement with experiment. 
At low temperatures To << 1 we can assume 
T Rj ( 2o2ez)1/2 in sufficiently pure metals. From (17) 
we have 

z(i) = f,-'(t), j,(u) = 1lu''•[2(1- u)'l• +(20,)''•], 

'r(i) = j,-'(t), f,(u) = u'{ 211, [( 1- ~·) u• + o,u- ~ n-•t .. (20) 

Since the destruction of superconductivity in the 
presence of a Kapitza jump has certain distinguishing 
features not noted earlierP4l, we shall discuss in 
greater detail the kinematics of the transitions in this 
case. We consider for convenience a weak jump. Let 
the superconducting sample, without current, be placed · 
in helium at T0 < Tc. We start to increase the current 
i through the sample. It is obvious that at i = h = 1 
- To a transition from the superconducting state to the 
intermediate one will set in. The heat flux released in 
the sample is 

q, = l'R I 2:n:r, = ai'z, a= 1,' I 2n'ur,'. 

On the other hand, the heat flux that can be transferred 
from the sample to the helium is (see (2)) 

h = h(T,) = 4T,' I K, 

where h is the thermal resistance of the boundary. 
Let us plot these fluxes in the ( Tq) plane (see Fig. 3 ). 
At the initial instant at i = i 1 we have z = }'2 and x1 
= 1, and the sample will become heated, since q1 
= aiU2 > q2 = 0. We move along the q1( T) curve from 
the point A to the point B, where qill = q2B, i.e., the 
stationary temperature TB = T(i1) is reached. The ob
served resistance jump z1 = z( i 1) is consequently 
(see (19)) 

S)f!l to f4 1 in (18) and (20) are functions inverse to f, to f •. 

FIG. 3 

We note that the region occupied by the intermediate 
state has become smaller as a result of the heating, 
x1 < 1. (In the case of an arbitrary jump (Eqs. (18) and 
(20)), z 1 is obtained by solving fourth-degree equa
tions.) With increasing current (i > It) we move up
ward along the q2( T) curve until, at a certain current 
i2, the stationary temperature reaches the critical 
value Tc, i.e., TB = 1. From (17) we obtain in the 
general case 

. - ( ,1--r,• )"' 
'·-~. Za= 1, z,(t.)= 0. (21) 

When i =:: h, the sample is in the normal state. If 
we decrease the current (i < h) then moving downward 
along the q2( T) curve, as shown in Fig. 3, we reach the 
boundary curve q1 bound = ql( is) at a certain current 
is. With further decrease of the current, the heat 
fluxes q1 and q2 can no longer be equal. Since q1 < q2 
the sample will be cooled, the current becomes less 
than critical, and superconductivity is restored. The 
condition for the absence of a solution of the equation8> 
q1 = q2 determines the value of the current is: 

t - i, z(la)=_!, 1+A >. ~ 
1

- (1+ A)''•' 2 1 + A/2 2 ' 

Ai, , 1 t 
T(l,)= t'o+~2 +. •, a:,(Ja)= ( ...!. 

L1 1+11)"' i, 

At low temperatures we obtain from (20) (in the 
general case, a cubic equation is obtained for is): 

. -"'[ (0')"' ( II')"']-' ,, = z, 3 ~ + 2 +- ' 8 8 

1 { II,. [II,,. ( lla)']"'}' 1 
Za=2 1-S+ 4+ S . >2, 

(22) 

1(23) 

t'(l,)=(211,)"'[3(!")"' +(2+ :·tr. z.=( 1 ~.~~·)"' <1. 

It is interesting to note that in addition to deviations 
from the London behavior and the presence of hysteresis 
in the current dependence of the sample resistance 
z( i), there is in this case a very pronounced singular
ity 7>, in that the temperature region from T 0 to T (is) 
becomes inaccessible. Namely, at such values of the 
current the sample cannot be in the stationary state at 
these temperatures. We note also that in the presence 
of a Kapitza jump the intermediate state never 
"climbs out" to the sample surface: max x1 = x1( is) 
< 1. This must be taken into account in experiments 
aimed at observing the structure of the intermediate 
state. 
6lit can be shown that in the general case this condition is equivalent to 
dz(i)/di= oo at i=i3• 

7lThis fact was pointed out by A. F. Andreev. 
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In conclusion, I am grateful to A. F. Andreev for 
valuable consultations and for a useful discussion of 
the work. 
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