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The influence of Stark quantization in a semiconductor on the heating of the electrons is investigated. A 
model is considered in which the allowed electron band has a finite width along the direction of the electric 
field and is infinite across the field, while the phonon energy and the lattice temperature are smaller than the 
width of the band. It is shown that the ultraquantum range of field intensities breaks up into two parts. In 
weaker fields the energy dissipation does not depend on the field strength E and therefore the current 
j"'E- 1; on the other hand in stronger fields the energy dissipation decreases with increasing E, and therefore 
the current falls off faster than E - 1• 

INTRODUCTION 

IN the majority of cases the physical phenomena as­
sociated with the heating of electrons in semiconductors 
by a strong electric field E are insensitive to the finite 
width li i.r· of the conduction band, since usually the field 
E is so weak, and the scattering is so large, that the 
average energy (i:.') of the electrons turns out to be 
very much smaller than li-':. However, if the field E 
becomes sufficiently large, then it may turn out that 
(·' ) ~ lit;, and then it is necessary to take the finite 
width of the conduction band into consideration. It should 
be kept in mind here that two substantially different 
situations are possible. In weaker fields the electron 
increases its energy up to the top of the band by means 
of "diffusion," thereby undergoing many collisions. In 
stronger fields the electron increases its energy up to 
the top of the band by "dynamical" means, being accel­
erated by the field during the time interval between two 
collisions. In the first situation the finite width of the 
band can be taken into account within the framework of 
the classical kinetic equationPJ and simply amounts to 
a restriction of the momentum space; on the other hand 
quantum effects are essential in the second situation, 
these effects being due to the quantization of the periodic 
motion of the electron reflected from the boundaries of 
the Brillouin zone (the Stark levels). Recent experimen­
taldata offer evidence that these levels play a role in 
galvanomagnetic phenomenaPJ A very general theory 
of the influence of Stark levels on electron heating has 
been developed by Bryksin and FirsoJ3 J on the basis of 
a diagram technique. However, if we confine our atten­
tion to the case of a weak electron-phonon coupling, 
then we can use the more easily understood quantum­
kinetic equation of[4J and thereby obtain, in a simpler 
way, a whole series of results, including some which 
were not previously known. 

To obtain results in a more understandable form, we 
employ the following model for the energy spectrum. 
In the first place it is assumed that the forbidden bands 
are much wider than the allowed bands, so that inter­
band tunneling due to the influence of the field is unim­
portant. Second, we assume that the electrons are es­
sentially free when they are moving transverse to the 
field, but are essentially bound when moving along the 
field, that is, 
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"'( ) P.L1 Pua 
"' p = 2m -/18cos 71 . (1) 

Here p 11 and p1 denote the components of p along and 
transverse to the field E, m is the effective mass in the 
transverse direction, li(~' is the half-width of the band in 
the longitudinal direction, and a is the lattice period 
along E. Actually Eq. (1) means that the band is much 
wider across E than along E, and the energies ;r;· of in­
terest to us are much lower than the transverse width 
of the band. 

With regard to the electron-phonon interaction, we 
shall assume that it is weak, that it occurs with phonons 
which are in equilibrium at a low temperature T « l!i;~·, 

and that the energy of the important phonons is small: 
nn « lir'. It is also assumed that the scattering by 
phonons has the same kind of axial symmetry about the 
direction of E as the spectrum has. For orientation, we 
note that the Stark levels appear when eEa » n/T (Tis 
the electronic relaxation time); this gives the condition 
E > 104 V/cm for typical value~;> a= 5 x 10-e em and 
T = 10-12 sec. 

We point out that an energy spectrum which approxi­
mately corresponds to (1) may exist in crystals with a 
graphite structure when the field is oriented along the 
hexagonal axis, and it may also exist in "superlattices," 
which can be obtained by forming alloys with periodic­
ally varying concentrations.cs,oJ In the latter case 
a = 10-6 em, and the Stark levels can be observed in 
weaker fields, E > 103 V/cm. Certain aspects of the 
kinetic effects in such "superstructures" have been 
considered iJ8 ' 10J. 

1. THE QUANTUM KINETIC EQUATION 

Let us start from the general equation (1.16) given 
in[4 J; for the case we are interested in it is necessary 
to write this equation down in the Bloch-function repre­
sentation instead of the plane-wave representation. For 
the assumed model of the spectrum, the equation (with­
out any magnetic field) retains the form of (3.8) in[4 J, 
the only difference being that the meaning of the elec­
tron-phonon interaction constant lcql 2 is changed some­
what; we now denote this constant by B(q) (where q is 
the phonon momentum). We also modify the collision 
term by making the following substitution in Eq. (1.20) 
ofC4 J 
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It is assumed here, as it were, that the collision act is 
completed by the instant t under considerationPJ In 
other words, this substitution means 

PI /C- ht~ (/C) -+ -in6 (/C), 

i.e., it corresponds to the fact that the electron transi­
tions under the influence of the electron-phonon inter­
action remain, but the renormalization of the electron 
spectrum under the influence of this interaction is not 
taken into consideration. 

After this has been done the equation for the Wigner 
density f(p), which in the present case coincides with 
the diagonal element of the electron density matrix, will 
have the following form: 

eE.!_f(p)=l(flp), (1.1) 
iJpu 

where the collision term is formally analogous to the 
classical term 

l(fip) = fdp'[f(p')W(p',p)- j(p)W(p,p')]. (1.2) 

iJ 
eE-f'(p) = /(f'ip). (1.8) 

iJpu 

It follows from Eq. (1.7) that f0 depends only on p 1 and 
furthermore 

I 1 p II • • 
I (Pl.• Pu }= e:zr J dpn I(!'/ Pl.• Pu) + C (PJ.)• (1.9) 

-1J1ftf) 

where b = 27T/a is the reciprocal lattice vector along E 
and C is an arbitrary function. From the periodicity of 
f with respect to p 11 (the period being equal to lib) it fol­
lows that 

(1.10) 

which is the equation for the determination of f0 • 

We introduce the total number of electrons having a 
given transverse momentum, i.e., the number of elec­
trons on the trajectory of the rapid motion: 

F(pL) = J dp 11j'(p) = libf'(PL), (1.11) 

and the transition probability averaged over the initial 
trajectory of the rapid motion and summed over the 
final trajectory of this motion is given by 

The "transition probability" W consists of two parts W(p_j_,p_j_') = ~ : 1 ~dpu'W(p,p'). (1.12) 

which correspond to the emission and absorption of 
phonons: Then Eq. (1.10) takes the form 

W(p, p') = W+(p, p') + W-(p, p') (1.3) 

W±(p, p') = f dq 2: B(q) [ N(q)+ ~ ± +] .S(p- p' + q) 
(1.4) 

XD±(p, p', Q(q) ), 

where N(q) denotes the equilibrium number of phonons 
and 

1 +~ • ' 
D±(p,p',Q)= Re-f dt exp{_:_ Jat' 

2:rtli h 
-~ 0 

X [/C(p- eEt')- /C(p'- eEt') + liQ)}. (1. 5) 

The "probability" W depends on the field E through the 
functions IY, and the quantum nature of Eq. (1.1) is con­
tained in this fact. The transition to the classical equa­
tion is evident from the equation 

lim D±(p,p', Q) = 6(/C(p)- /C(p')+ liQ). 
E-o 

It is obvious that the Stark "levels" will appear only 
if they are not washed out by the collisions, i.e., if the 
distance eEa between these levels is very large com­
pared to n/T, where T is the effective time for the scat­
tering of an electron by phonons. But, on the other 
hand, this condition means that WET ~ 1, that is, the 
collisions are a slow process in comparison with the 
oscillations along the field, which have a frequency 
wE = eEa/n. Therefore Eq. (1.1) can be iterated with 
respect to the collision term. Proceeding in analogy to 
what was done in[sJ, let us set 

/(p) =I' (p) +I' (p), (1.6) 

where f' is small in comparison with f0 , and then by 
iterating with respect to I we have 

eE!._f'(p) = 0, 
iJpu (1. 7) 

J dp_j_[F(pL') W(p_j_',p_j_)- F(p_j_) W(p_j_,p_j_')] = 0. (1.13) 

This is the kinetic equation from which the fast process, 
namely the dynamic motion under the influence of the 
field, has been eliminated. 

The description employed here is very similar in 
form to the classical description. Let us indicate how 
this description goes over into the quantum description 
containing the Stark levels. In order to do this, we de­
fine 

(1.14) 

which is catually the energy of the "zero" Stark level, 
and we then write down 

/C(pL, Pul = e(pL) + ~/C(p_j_, Pu). (1.15) 

Then Eq. (1.5) can be transformed into 
+• 

D±(p,p',Q)= ,E .S(e(p_j_)-e(pL')=FIIQ+seEa)D,(p,p'), (1.16) 

. ' 
D,(p,p') = Re~~dte-''"E' exp { T f dt'[A/C(p 

2:rt 0 

(1.17) 

- eEt')- ~/C(p'- eEt')] }= D,(-p,- p') = D_,(p',p). 

By substituting (1.16) into (1.4) we find 

+~ 

W±(p_j_,p_j_')= .E W,±(p_j_,p_j_'), (1.18) 

' 2n r 1 1 1 
W,±(pL,P.c')= l dqhB(q)\ N(q)+2±2 . (1.19) 

X~ ?~1 ~ dp 11'6(p- p' + q)D,(p,p').S(e(p_j_)- e(p_j_')+ liQ(q)+ seEa). 

The delta-function in Eq. (1.19) corresponds to the con-
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servation law associated with a transition between two 
Stark levels: np 1 - n' p~ with n' = n- s. Such a transi­
tion is simply a displacement of the state through a dis­
tance as toward the side of decreasing potential energy 
(for s > 0), and Ds represents the extent of the overlap 
of the wave functions of the initial and the shifted states. 
This interpretation is confirmed by an investigation of 
the quantity Ds. The expression inside the square 
brackets in Eq. (1.5) is a periodic function oft with fre­
quency wE, an amplitude of the order of A?, and a mean 
value equal to zero. Therefore its integral is a periodic 
function of the same frequency with an amplitude of the 
order of AS/w. It is clear therefore that we have 
Ds- Os, 0 in the ultraquantum case Ai~)t'iwE- 0. This 
corresponds to the localization of the Stark functions 
within the limits of a single cell. Hence it is also clear 
that the quantity D~ is of the order of unity in the quasi­
classical case Ai /t'iCI.'E- co for s ~ A::/nwE; this 
corresponds to an effective overlap distance sa~::: A.?/eE, 
i.e., it corresponds to the size of the region in which the 
Stark functions are localized. 

If we start from the very beginning with a distribu­
tion fn(P 1) over the Stark levels, then it is obvious that 
the homogeneity of the system this distribution should 
not depend on n, since states with different values of n 
differ only by a spatial displacement along the field. 
After this remark, it now becomes clear that Eq. (1.13) 
is the equation of balance between the Stark levels. 

2. THE SOLUTION OF THE KINETIC EQUATION 

In the model which we are using, where the spectrum 
and the scattering are axially symmetric about the 
direction of E, the function F does not depend on the 
direction of p 1 , but depends only on E = p~ /2m; there­
fore one can write 

1 ~ 

F(pL) =--n(e), J den(e) = n, 
2.nm o 

(2.1) 

where n is the total electron concentration and 2'1Tm is 
the density of states in the two-dimensional problem. 
Subsequently Eq. (1.13) can be integrated over the angle 
x between p 1 and p~; as a result one obtains the follow­
ing equation on the transverse-energy axis: . 

J de1 [n(e')W(e1,e)-n(e)W(e,e1)]=0 (2.2) 
0 

where it is convenient to normalize the probability in 
the following manner: 

W(s, e') = 2nm J :~ W(pL, P1.1 ). (2.3) 

We now notice that we have W(E, E1
) = W(E', E) in the 

limit as fiG- 0, and therefore the solution will be n(E) 
= const. One might think that the solution will be a 
slowly varying function for small values of tin, and 
therefore the integral equation can be transformed into 
the Fokker- Planck equation. On the other hand, in the 
limit as E - co the probabilities W s with s ;o! 0 are in­
significant. In this ca~e one can verify by direct substi­
tution that n(E) ~ e-EIT. As will be demonstrated 
belOW, the first limiting case iS Valid for li {l 
« (Aii>) 2(2N + 1)/eEa, and the second limiting case is 
valid for eEa » (M~)2(2N + 1)/lin. If these two inequali-

ties are regarded as a limitation on the field strength, 
then we obtain the following two regions: 

I) eEa <. (t-../8) 2 (2N + 1) I hQ, 

II) eEa > (M')'(2N + 1)/ liQ. (2.4) 

It is seen that the two indicated limiting cases span the 
entire range of electric field strengths, where region I 
includes both the quasiclassical region eEa << l>.i~· and 
the ultraquantum region eEa » A!' . 

To estimate the validity of either approximation, we 
use the scattering model in which 

B(q) = B = const, Q (q) = Q = const. 

One can easily calculate the probability W(E, E1
) for this 

model. 
First we introduce the reciprocal lifetime of the 

classical kinetic equation into this model 

1 1 1 1 s -=-+·-· -= dp1 W±(p,p1
) IE=O· 

T -r+-r- -r± 
(2.5) 

As will be clear from what follows, we will be interes­
ted in those values of p such that E »A(~·, lin. If this is 
taken into account in the integration over p', then we ob­
tain 

1 IT±= 2nmb·2nB(N + '/2 ± '/,), 

1 /T = 2nmb·2nB(2N + 1) == (2N + 1)/ To. 
(2.6) 

From Eq. (1.17) it is seen that in our model the energy 
spectrum Ds does not depend on p 1 , and the integral 
over p 11 and pl1 appearing in Eq. (1.20) can be evaluated: 

rh djJII rh I 1- I 2 ( tJ./8 • aqll) (2 7) jfib 'jdp116(p11- P11 + qii)D,(pii,pll) =I, 2 eEasm2i! • 

where J s is a Bessel function. Subsequently, one can 
easily find from Eq. (1.20) 

1 ( A/8) W,±(e,e1)=-A, -- 6(e-e1 =FhQ+seEa), 
-r± eEa 

(2.8) 

where 

A,(6)= ~::!.(~sin·~). (2.9) 

Now let us examine region I of field strengths. By 
transforming the integral collision term into a differen­
tial term,r7J instead of Eq. (2.2) we have the equation 

a 
--;;;-!(e)= 0. 

Here J denotes the flux on the energy axis 

/(e)=- [ ~ (M,(e)n(e) )+ M,(e)n(e)] 

(2.10) 

(2.11) 

which can be expressed in terms of the first and second 
moments: 

M,(e)= J de1 W(e,e1)(e-e1 ), (2.12) 
0 

M2(e) = '/2 J de1W(e, e1 ) (e- e1 ) 2. 
0 

Since one must have J( E) - 0 in the limit E - co, then 
J(E) = 0, and from Eq. (2.10) we obtain the distribution 

1 { s' 1 M,(e1
)} 

n(e)- M,(e) exp - o de M2(el) . (2.13) 
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The conditions for the validity of the Fokker- Planck 
approximation involve the smallness of the neglected 
terms 

iJ' iJ' a;; (M,n), iJe' (M,n). 

Assuming that the moments depend on E according to a 
power law, one can differentiate only the exponential 
dependence of non E and thus obtain the following esti­
mate: 

( iJ ) •-• ( iJ ) ,_, ( M ) •-• a; (M,n) ~ M, a; n~ M, M: n. 

Then the conditions for the validity of the Fokker­
Planck approximation become 

(2.14) 

In order to estimate the validity conditions, and also 
the average energy E, we turn to our scattering model, 
where one can easily calculate the moments. We have 
the following results: 

1 
M,=-liQ, 

'to 

1 1 
M, = z'T;'{2N + 1) {L\<'t)', 

1· 1 
M, = --liQ(L\<'t)', 

2 'to 

M, = { '/.,-ro-'{2N + 1) (L\<'t)' for eEa<~it;, L\<'t, 
'/,.-r,-'(2N+1)(L'1<'t)'{eEa)' for eEa';JPL\<'t. 

(2.15) 

The first three moments turn out to be identical for the 
quasiclassical and ultraquantum cases. 

In this model the energy distribution turns out to be 
given by 

n{e)- exp(- ;.) , {L'1<'t)' 
r· = 21iSJ (2N + 1), (2.16) 

so that the average transverse energy, T*, is very large 
compared tot...:::· or 110, as was assumed. The condition 
on the moment Ma gives (in both the quasiclassical case 
and the ultraquantum case) fin~ t.(·;·(2N + 1), which is 
automatically satisfied. In the quasiclassical case the 
condition on ¥& reduces to the same inequality, but in 
the ultraquantum case it coincides with condition I from 
(2.4), which also proves the validity of the Fokker­
Planck expansion in the field- strength region I. 

In the quasiclassical case the probability does not 
depend on the field strength, and therefore the distribu­
tion n( E) also does not depend on the field strength (this 
result is independent of the model). In calculating the 
moments in the ultraquantum case it is seen that W0 

gives the major contribution to M1, while the probabili­
ties W± 1 give the major contribution to M:J. By expand­
ing the Bessel functions which appear there, one can 
see that M1 and M:J will turn out to be independent of E. 
Thus, in both regions the distribution turns out to be 
independent of the field in the lowest-order approxima­
tion. It is also clear from our estimates of the moments 
that, in both regions the ratio M1/M2, and therefore the 
average energy also, are of the same order of magni­
tude even though they may differ by a numerical factor 
of the order of unity. Therefore there is a weak depen­
dence of the distribution and of the average energy onE 
in the transition region, eEa Rj t.E. We also note that 
the distribution n( E) does not depend on the absolute 
magnitude of the scattering (in the scattering model, 

n(E) does not depend on the value of the constant T). 
Now let us proceed to an investigation of field­

strength region IT, and let us write down 

n{e) = no{e) + n1{e), (2.17) 

(2.18) 

One can easily verify that no( E) is the solution of Eq. 
(2.2) provided we only keep the terms W s with s = 0 in 
the expression for W. Assuming that the terms W s with 
s ¢0 are small, and using the method of successive ap­
proximations, we obtain the following equation for the 
determination of n1: 

J de'[n,(e') W,(e', e)- n, {e) W,(e, e')] 

=- J de'[n,(e')W,(e', e)- n,(e) W,(e, e') ]. 

(2.19) 

Here we have neglected those terms W s with lsi ~ 2 
because they are small and of higher order in t..E/eEa. 
The terms with s = -1, which are generally of the same 
order of magnitude as the terms with s = + 1, do not 
give any contribution because the arguments of the 
corresponding delta functions cannot vanish for E > 0. 

Let us consider the right-hand side of the last equa­
tion in more detail. By using Eqs. (2.3) and (1.19) and 
neglecting the quantity 110 in W1 in comparison with 
eEa, we find that the first term is a source, acting near 
E = eEa in a region whose width is of the order of T, 
and the second term is a sink of the same strength near 
E = 0, in a region of the same width. Now it becomes 
clear that if we write the general solution of the in­
homogeneous Eq. (2.19) in the form 

where the first term is the general solution of the 
homogeneous equation corresponding to (2.19) and the 
second term is a particular solution of the inhomogene­
ous Eq. (2.19), then n1 describes the motion of the elec­
trons from the source to the sink over the distance eEa. 
The characteristic length of variation of such a quantity 
n1 is eEa, which is larger than T*; therefore the integ­
ral operator on the left-hand side of Eq. (2.19), which 
operates on n1, can be transformed into the Fokker­
Planck form, and the sources can be regarded as delta­
functions. Taking all of this into consideration, the 
equation for nl now takes the form 

a A, 
--J,(e) = n-- [t'l{e)-ll{e- eEa)] 

Be -r{E) ' 
(2.20) 

where J1 is obtained from J by replacing n by n1. Here 
T(E) is determined by formula (2.6) for any arbitrary 
scattering mechanism; in (2.6) the quantity B(2N + 1), 
which depends on q, must be averaged over q 11 using the 
weight function (2.7) and calculated for values of q1 
such that q~2m = eEa. For the scattering model T(E) 
= T. By integrating expression (2.20) we find 

J, (e)= f - nA, 't{~) , e < eEa (2.21) 

1 0, e > eEa 

From this it follows that the distribution n1( E) has the 
form (2.13) in the region E > eEa, and it falls to zero 
over a distance of the order ofT*; in the range of field 
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strengths under consideration this distance is much 
smaller than eEa, i.e., one essentially has 111 = 0 in this 
region. For E < eEa it is necessary to find the slowly­
varying solution of Eq. (2.20), which can be obtained if 
we discard in J 1 the term containing the derivative. As 
a result we have 

_ ( )- {nA.!-r(E)M,(e), n, e- 0 
e<eEa 

e > eEa · 
(2.22) 

The constant c is determined from the condition that the 
normalization remains the same, .. J dei'i,(e) = 0, 

which gives 

(2.23) 

The condition for the validity of the approximation 
under considera!!-on is that the number of elect;:ons in 
the distribution n1 and in the distribution ce-E/ T must 
be small. By using our scattering model we find 

i'i,(e)= li~ A,(2N + 1), c = -.!:~A,(2N + 1). (2.24) 
" T liQ 

Using these results for estimates, and noting that 
A1 ll:l (6? /eEa) 2 , one can see that the validity condition 
coincides with condition II in (2.4). 

Just as in the field- strength region I, the distribu­
tion does not depend on the absolute magnitude of the 
scattering. 

3. CALCULATION OF THE CURRENT 

The current is calculated in analogy to the classical 
case 

i = J dpevu(P)f(p) = Q/E, (3.1) 

where 

Q =- S dp~(p)/(fo!P) 

= J dpj(p) J dp'[~~(p)- ~~(p')]W(p,p'), (3.2) 

Q may be interpreted as the loss of kinetic energy dur­
ing collisions, i.e., as the Joule heating. The expres­
sion for j in terms of Q is obtained after substitution of 
(1.9), v 11 = a;:/ap 11 , and integration by parts. "The second 
expression for Q is obtained after substituting the 
representation (1.15) into (3.2), using (1.10) and then 
(1.2), and finally redesignating the integration variables 
in one term. 

A formula for the current, which can be interpreted 
from the viewpoint of Stark levels, is obtained after 
substituting relations (1.14), (1.4), and (1.16) into (3.2) 
and taking (1.10) into consideration. This gives 

Q = Q+ + Q-, (3 3) 

Q±= .Esdq 2:B(q)[N(q)+ !±f]SdpJ.JdpJ.'/(pJ.) • 

X b(pJ.- p.!.'+q1.)6(e(pJ.')- e(p1.') + liQ(q) + seEa)R.(pJ., P1.'; qu), 

R,(p.L,P.l.'; q11l = J dp11 J dpn'[~~(p)- ~~(p')]D,(p,p')ll(pu- Pn'- qu) 

= R,(pJ.,PJ.';- qu) = -R_,(pJ.',pJ.; q11l· (3.4) 

The symmetry property can be verified with the aid 
of Eq. (1.17). Formula (3.3) shows that the current 
arises during np1 - n'p1 transitions (where n' = n- s) 
between different Stark states, accompanied by the 
emission or absorption of a phonon. 

If the energy : (p) is separated into the sum of the 
longitudinal and transverse parts, then R does not de­
pend on the transverse momenta, and then it follows 
from the symmetry properties that Ro = 0. In this case 
the transitions with s = 0 do not give any contribution to 
the current, that is, there is no contribution unless the 
longitudinal quantum number changes. This is quite 
understandable because if the energy is additive then 
the wave function of the coordinates along E does not 
depend on p 1 , and therefore a change of only p 1 does not 
displace the electron along E. If the energy is nonaddi­
tive, then the transitions involving only a change of p1 
also contribute to the current. 

In the model we have been using, the spectrum is 
given by 

, ( ~~ . aqu) R.(q 11 ) = 2nlieEsJ, 2--sm- . 
eEa 2/i 

(3.5) 

Now let us go on to the explicit calculation of Q, first 
considering the field- strength region I. In the quasi­
classical part of this region we must use the classical 
transition probabilities in Eq. (3.2). The energy delta 
functions in these transition probabilities contain the 
longitudinal energies of the electron and the phonon 
energy, these energies being small in comparison with 
the electron's transverse energy. However, it is im­
possible to neglect these energies since Q would then be 
equal to zero after integrating over p 11 and p~ 1 • There­
fore one should expand the delta functions, keeping the 
longitudinal energies and neglecting the energy of the 
phonon. The situation is analogous in the ultraquantum 
part of the field- strength region I; here in calculating 
Q one can keep only the terms with s = ± 1 in the summa­
tion over s and neglect the phonon energy in comparison 
with the transverse energy. However, it is impossible 
to neglect± eEa because then the terms with s = + 1 and 
s = -1 in the summation will exactly cancel each other 
since Rs is odd in s. In both cases the integration over 
the angles of p 1 and p~ can be carried out by using the 
formula 

~ dQJ 1 dql'II(PJ.- P1.' + qJ.) = ~e (x), (3.6) 
ix 

where () is the Heaviside step function and 

x = (2m)'[2e~ + 2e'~ + 2ee'- e'- e"- ~·]; ~ = q1.' /2m. 

As a result we obtain a single formula for the entire 
region I of field strengths: 

Q = 2~ (2d~)' J dq 2: B(q) (2N(q)+1)sin'~~~ (3. 7) 

xJde(- ana(:) )e(4e-~)[(4e-~)~]-'"· 

We obtain a very simple answer for our scattering 
model: 

liQ liQ 
Q=27,n=2--c(2N+i) n, (3.8) 

this result is valid in order of magnitude for the general 
case. Since n(E), and therefore Q as well, do not depend 
on E, it follows that j ~ E-1 • 
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In the field- strength region II, in calculating Q one 
can substitute the distribution n0( E) into Eq. (3.2), re­
placing the exponential by a delta function; then one 
finds 

. (M')' 
Q= n. 

2-r(E)eEa 
(3.9) 

This gives j ~ E-2 for our scattering model. 
The authors express their gratitude to E. I. Rashba 

for a discussion of this work. 
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