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Oscillations of the space charge in an electron beam passing through a region with trapped electrons are 
considered in the geometrical optics approximation. It is shown that the presence of trapped particles leads 
to the appearance of instabilities in the beam. For perturbation frequencies such that w<fi and w>fi, where 
fi is the captured electron oscillation frequency, instability of the beam type develops. For perturbation 
frequencies w=±nfi, the instability is due to resonant interaction between the captured electrons and plane 
wave field. 

1. It is known that the presence of trapped particles 
can exert an appreciable influence on plasma instability. 
Several investiga.tionsr1•2J have been devoted to the 
kinetic instability of potential oscillations, which 
arises in toroidal systems as a result of the appear­
ance of particle traps, so that the particles are divided 
into untrapped and trapped. This instability is appar­
ently the most dangerous in systems with rarefied 
plasmafll. A similar situation takes place in adiabatic 
electron guns used in some microwave devices. The 
electron current is shaped in them by means of an in­
homogeneous magnetic field. Such a gun contains a 
trap made up of a magnetic mirror and focusing elec­
trodes. We consider in the present paper the hydrody­
namic instability, produced as a result of the presence 
of trapped particles, of a nonrelativistic electron 
current in an adiabatic gun. 

2. We consider the following simplified one-dimen­
sional model. Captured electrons are contained in a 
specified potential well. Passing through them is a 
homogeneous monoenergetic beam of electrons. We 
assume that the energy of the untrapped electrons is 
high enough to be able to neglect the influence of the 
well potential on the motion. The shape of the potential 
well is chosen to be parabolic for simplicity. We as­
sume also the presence of an immobile ionic back­
ground that cancels out the space charge. The per­
turbed motion of the untrapped and the trapped elec­
trons is described by the following linearized system 
of equations : 
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Here F o and f0 are the unperturbed distribution func­
tions of the untrapped and the trapped electrons, re­
spectively, F and fare the perturbations of the dis­
tribution functions, and 0 is the frequency of the oscil­
lations of the trapped electrons. 

We choose the unperturbed electron distribution 
function of the untrapped electrons in the form of a a 
function 

F, = NfJ(v- V,) 1 

where N is the density of the untrapped electrons and 
V 1 is their velocity. The unperturbed distribution func-
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tion of the trapped electrons, satisfying the equation 

8J. fJj, 
v--Q'x-=0 

fJx ·av 1 

should be a function of the i~tegral of motion 

1f2mv' + 1/2mt;l'x' = e, 

where ~ is the total energy of the electron in the well. 
The unperturbed distribution function of the trapped 
electrons is chosen therefore in the form 

/o= (nQ/L'n:}6(v'+'Q'x'-V,'). 

Here n is the total number of electrons trapped in the 
well, 
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and ~ 0 is the total energy of the trapped electrons. 
Integrating (1) and (2) along the trajectories of the 

unperturbed motion and taking the constants of the 
motion a F 0 /av and af0 /aw (here w = v2 + 0 2x2) out­
side the integral sign, we obtain 

' e fJF, J i:Jcp d I F=--- t, 
m i:Jv -~ax 

e 8/o s' fJcp I /=2-- v-dt. 
m i:Jw_~ i:Jx 

The unperturbed trajectories of the untrapped and 
trapped particles are described by the respective equa­
tions 

x(t} -x(t1 } = v(t-t1 }, 

w•t. w•t. 
x(t)- x(t1) =-sin Qt- -sin Qt1 

~l Q • 

Representing the potential cp in the form 
+• 

q> = E q>. exp {- i(w + nQ)t + ikx} 

we obtain in the geometrical-optics approximation 
( kL ~ 1) expressions for the perturbations of the 
distribution functions 

F=-.!::.._fJF.~ q>. exp{-i(w+nQ}t+ikx} 
m i:Jv_ • .l::!~ w-kv+nQ 

/= -~!!.!.. fi cp.rs-'1,(6)/,(6} 
m ow.f::..~ w-(r-n)Q 

X exp{- i(w + nQ + sQ- rQ)t + ikx} 1 

where ~ = kV2/0 ~ 1. 

(4) 

(5) 

Integrating (4) and (5) over the velocities and sub-
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stituting the obtained expressions in (3 ), we obtain an 
infinite system of equations with respect to cpn: 

~ {[ Wpi
2 

] 00pz
2 

I+ 
.t_.'P• 1 (OJ+n!J-kV,)' 6.,-Q[1+(-1) "] 

X fi. s(s-'/,(s)l,+'-•(6)) 1_}=o 
"-' OJ + nQ - sQ ' 
••-aa 

where Js(lJ is a Bessel function, 6nl is the Kron­
ecker symbol, wp1 = 4?Te2N/m, wp2 = 4e2n/mL3 , and 

(6) 

the prime denotes differentiation with respect to ~. In 
the derivation of (6) it was assumed that v2 ~ 0 2x2. 
The convergence of the determinant of a system of this 
type was proved by Ivanov and Murav'evf3 l. This makes 
it possible to confine ourselves in the derivation of the 
dispersion equation to a finite number of columns and 
lines in the determinant. Equating to zero the third­
order determinant, we obtain 

ro,.z 
1 - ~--=-:-::--:-: 

(OJ-kV,)' 
2w • .' \1 {!l_) 1_s_ = O. 
Q ~- 6 OJ-sQ 

(7) 

3. For oscillation frequencies w =nO + w1, where 
1 w d « 0, we neglect all the terms of the sum with the 
exception of s = n, and obtain in place of (7) the 
simpler dispersion equation 

' 2 ' I' I 1- OJ,, -~~(-"-) =0 (8) 
(kV,-nQ-OJ,)' Q OJ, 6 · 

We consider the case when kV 1 is not too close to nO. 
It is easy to solve (8) approximately by using the con­
dition 0 ~ w 1• Expanding for this purpose the second 
term in powers of w/ ( kV 1 - nO) and discarding all 
terms of order wU(kV1 - n0)2, we obtain the follow­
ing quadratic equation for w 1 

_20J,,' OJ,'- [ 1- OJ.,' ] OJ,+ 20J.,' n (!.l...) I= 0. (9) 
(kV,- nQ)' (kV,- nQ)' OJ 6 

The roots of this equation become complex when 

[ 1 OJ,,• ]' 16.0J,,'OJ••' (1•') 1 

- < n-. 
(kV,- nQ)' Q(kV,- nQ)' 6 

We see that when n > 0 and n < kV 1/0 the oscilla­
tions are unstable for all wavelengths at which 

(10) 

(~- 1J~)' > 0. If n > 0 and n > kV1/D, the oscillations 
are unstable for wavelengths satisfying the inequality 
( ~- 1J~)' < 0. At n < 0, the oscillations are unstable 
for wavelengths satisfying the inequality (~- 1JA)' < 0. 
The instability increment at values n ~ 1 is maximal 
for wavelengths of the order of V 1/ wp1 and is equal to 

-[(kV,)' w.,• {/.') 1
]''• v- ~---n-

Q OJp,' s . 
(11) 

We consider the case kV 1 - no ~ w 1. Taking into 
account the smallness of the ratio w1/0, we neglect 
the unity term in (8) and obtain the following quadratic 
equation for w 1 

2o;;•'n( 1~)' OJ,'- [• 47;''n( 1~')' (kV,-nQ)-w,,']w• 

+2 ro~' n( 1;') 1 (kV;-nQ)'=0. (12) 

Equation (12) is valid if wpd wp2 ~ 1/kL « 1. The 
roots of this equation are complex under the condition 

oo.,• < (80J.,'fQ)n(I.'/S) 1 (kV,-nQ). 

The maximum instability increment reaches in this 

case a value on the order of 
OJ,,' kV, 

v~--, kV,exp--. 
OJ,, Q 

4. For frequencies that are not multiples of 0, the 
dispersion equation (7) can be solved approximately in 
two limiting cases, w ~ 0 and w « 0. If w ~ 0, 
then we expand the denominator under the summation 
sign in a series, and retain terms up to ( ll/ w?. In the 
retained terms of the series, the infinite sums can be 
easily evaluated and the dispersion equation takes the 
form 

1 w.,• _ w.,• _ 9 oo.,'(kV,)' = 0 (13 ) 
(oo-kV,)' OJ' 4 ro' · 

If the density of the trapped particles is low in com­
parison with the density of the untrapped particles, 
which is usually the case in an adiabatic gun, then, 
following Mikhallovskil [41, we can obtain a solution of 
(13). The roots of this equation are complex when 
kV 1 < wp1. The maximum instability increment is 
reached at kV 1 ~ wp1 and is equal to 

V = OJ.,2-'1•3'ka'", (14) 

where a = wpd Wp1· 
For frequencies w « 0, expanding in (7) the 

denominator under the summation sign in a series and 
discarding all terms with ( w/ 0 )3 and higher, we obtain 

i-~+ 20J,,' { 1-}0')
1 +4ro.,' •[_!_ ~ {.!!._)'] 1 

_ ( 15 ) 
(kV,)' Q' s Q' ro 6 .t_. s -0. 

•=• 
Recognizing that the argument of the Bessel function 
~ ~ 1 and that ( J s / s )2 decreases very rapidly with 
increasing number s, we can neglect in (14) all the 
terms in the sum, starting with s = 2. We have in this 
case the equation 

(j) • 2 ' 1 /' I 4 I / 1 I 

1- (k;>+ 7;' {~) f- 00~: oo'(i-) =0, 

from which we obtain 

co=~[{.!l_)l]-'''[~ 2w.,• -t]'" 
20Jpz 6 (kl',)' + (kV;) 1 • 

We have neglected here J~ in comparison with unity, 
which is perfectly admissible, since ~ ~ 1. We see 
that if the condition 

OJ.,' I (kV,)' + 20J.,'/ (kV,)' < 1, 

is satisfied, the perturbations will increase for wave­
lengths satisfying the relation ( ~ - 1J~)' > 0. On the 
other hand, if we satisfy the condition 

·OJ,.'/ (kV,)' + 20J,,'/ (kV,)' > 1, 

the perturbations increase for wavelengths satisfying 
the inequality ( ~- 1JD < 0. 

5. The results can be understood from the following 
physical considerations. For waves whose length is 
much shorter than the well dimension, we can neglect 
the inhomogeneity of the density of the trapped parti­
cles. Regarding the trapped particles as two opposing 
beams, we can readily see that the instability for fre­
quencies that are not multiples of 0 has the character 
of two-stream instability. For frequencies that are 
multiples of 0, the instability is due to the following 
cause. The trapped particles constitute a harmonic 
oscillator. The field of the untrapped electrons 
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~ exp (ikx - iwt) can be regarded in this case as an 
external perturbation acting on the oscillator. It is 
known that if the external force depends on the spatial 
coordinate, then resonance will be observed if the 
external-force frequency is a multiple of the oscillator 
frequency. Consequently, the instability at the pertur­
bation harmonics that are multiples of n is due to the 
resonant interaction between the trapped electrons and 
the inhomogeneous field of the untrapped ones. 

6. Let us consider the conditions under which the 
obtained instabilities are decisive. The oscillation fre­
quency of the trapped electrons depends, generally 
speaking, on their energy. The appearance of instabil­
ity causes the trapped electrons to become redistri­
buted with respect to energy, with a certain equili­
brium temperature T ~ mV~/2, where mVU2 is the 
energy of the trapped electrons. The results will be 
valid, however, if 

(16) 

where VT ~ V 2 is the thermal velocity of the trapped 
electrons. 

In the case of frequencies that are not multiples of 
n, the maximum instability increment is given by (14), 
and the condition (16) will be satisfied if 

(n, In,) (V, i V,)' > 1, 

which coincides with the usual condition for the validity 

of the hydrodynamic analysis of two-stream instability. 
For perturbation frequencies that are multiples of n, 
it is impossible to satisfy the inequality (16), since 
y ~ w 1 « n and kV 2 In ~ 1. However, if the initial 
distribution function of the trapped electrons is close 
to a a-function, then the resonant instabilities do as­
sume a role. The reason is that a certain time is re­
quired for the initial distribution to "spread out." 
This time is determined by the quantity (ant\ where 
an is the correction to the fundamental frequency n 
and is necessitated by allowance for the anharmonic 
terms in the potential energy. If 1/ an ~ 1/y' then 
resonant instability sets in. 
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