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A nonlinear partial differential equation is obtained, under conditions of applicability of the hydrodynamic 
approximation, and describes the time development of ion-sound stability in a fully ionized. plasma with a 
current. A stationary solution is obtained near the stability threshold. The characteristics of a stationary 
ion-sound wave are determined at both high and low supercriticalities of the system. 

1. It is well known that a homogeneous plasma in a 
constant electric field is unstable relative to excitation 
of ion-sound oscillations (see, for example,[ll), In a 
rarefied plasma, the ion-sound instability, which is due 
to the Cerenkov effect on electrons, is stabilized as a 
result of the quasilinear action of the excited oscilla­
tions on the electron distribution functionY• 3l In a 
more dense plasma, the instabilities are excitations 
with wavelength greater than the free path length of the 
electrons ( Ve > kVTe ). Here, in the case of a fully 
ionized plasma, the conversion of the energy of directed 
motion into oscillations is determined by the excitations 
of the temperature of the electrons, due to the finite 
electron thermal conductivity. 

In the present work, we have studied the nonlinear 
stage of development of the ion instability of a dense, 
fully ionized plasma, It is shown that in this case the 
saturation of the ion-sound instability is determined by 
the competition between the linear buildup of the un­
stable mode and the nonlinear damping due to the 
generation of its higher harmonics, the stability of 
which is determined by the ion viscosity. The mecha­
nism of generation of the harmonics in the given case 
can be assumed to be similar to the distortion of the 
profile of a sound wave of finite amplitude in ordinary 
gasdynamics. r4J 

2. We shall describe the behavior of the noniso­
thermal ( Te » Ti), fully ionized plasma in a constant 
electric field Eo on the basis of the following set of 
hydrodynamic equations: 

d,v, 1 
a;-=- NM VNT+TJAv,, (1) 

aN a;-+ div Nv, = 0, 
d,s 

NTdt = div(xVT). 

Here N = Ne = Ni is the density of the plasma; T is the 
temperature of the electrons, 1J = ( %) 0.96 Ti/Mvu is 
the specific ion viscosity, K = Nx = 3.16NTimvei is the 
electron thermal conductivity, m and M are the 
masses of the electron and the ion, s is the specific 
electron entropy, d a I dt = a I at + va- 'i1, and Va is the 
hydrodynamic velocity of the electrons (a =e) and ions 
(a = i). The set of equations (1) corresponds to the 
model of single-liquid hydrodynamics with variable 
temperature, under conditions when the thermal con­
ductivity of the plasma is determined by the electronic 
component and the viscosity by the ionic component. 
We assume for simplicity that the change in the elec­
tron temperature takes place mainly because of the 
high thermal conductivity, which is valid for 1> 

k'x > ro, ku > k'TJ (2) 

( w and k are the characteristic frequency and wave 
vector of the excitations, u = -eEol0.51mve is the cur­
rent velocity of the electrons). 

The temperature oscillations under conditions (2) 
can be regarded as small and need be taken into ac­
count in (1) only in the leading linear terms. Here the 
system (1) reduces to the form 

(o/ot-T)otl +vV)v = -c'(V,;+ V,p), 
(3) 

op/ ot+ vVp + divv = 0, uV,p +xoA,; = 0. 

Here 

p=ln(N/No), -r:=T/T,, c=(T/!ri)'h; 

No and To are the equilibrium density and temperature, 
v is the perturbation of the velocity of the ions, 11 0 

= 1) (To), and xo = x( To). Eliminating the variables r 
and p from the system (3) (using the smallness of the 
dissipative terms), we obtain a nonlinear partial differ· 
ential equation for the description of the ion-sound 
instability: 

( iJ' c' {} 
--c'l! )v = [--uV +TJo-!!]v 
iJt' )(o · iJt 

1 iJv' {) 1 
-- V ---(vV)v---- V (vV)v'. 

2 {)t iJt 2 

(4) 

The left side of this equation determines the propaga­
tion velocity of the wave, the components in the square 
brackets in the right sign determine the current jump 
and the damping due to viscosity, and the last three 
terms describe the nonlinear effects. In th~ ~ii?-ear ap­
proximation, for excitations of the form e -lw +lk ·r, the 
spectrum of ion-sound oscillations follows from (4) 
(w-w+iy) 

(I) k 1 k' y=-- u-- '11•· 
2k'x• 2 

(5) 

As should be expected,[ 4 l upon satisfaction of conditions 
(2) the sound is propagated in the plasma at the iso­
thermal velocity (aPiop)¥2 = (TIM)112 • From_ the con­
dition of instability of the mode with the given wave 
vector 

ku > k'T),k'X• I w (6) 

it follows that the higher harmonics, which appear be­
cause of the nonlinear interaction of the waves, will be 
damped. Thus, the effective mechanism for stabiliza­
tion of the instability can be the transfer of energy 
from the linearly unstable harmonics into the higher 
harmonics, in which the energy is dissipated. 

1>We note that in ordinary gasdynamics, the condition X>'IJ is satisfied 
only in a medium with an anomalously high thermal conductivity.C41 

3. We now consider oscillations propagating along 
the field Eo, which, according to (6) are excited before 
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the others. For the description of their development, 
we use the one-dimensional equation (4), in which we 
omit the cubic nonlinear component for simplicity. 
Here we obtain the equation 

{)'v {)'v c• {)v a•v a•v• 
--c'-=--u-+TJo----.-, 

iJt' iJx' X• ox iJx' iJt ax at 
(7) 

which is similar to that investigated inrsJ for the case 
of ion-sound instability of a weakly ionized plasma. 
For the determination of the criticality of the system 
relative to excitation of the ion-sound mode of given 
wavelength, we introduce the parameter 

(8) 

where y + = cu/ 2 xo, y _ = k21J 0 /2, the instabilities cor­
respond to E > 0. as is well known,rsJ (see also rsl), 
near the stability threshold, when € « 1, the solution 
of Eq. (7) determines the establishment in the plasma 
of an ion-sound wave of almost harmonic profile, the 
square of the amplitude of which changes according to 
the law 

A (-r) = 3eA,e''[3e + A,(e" -1) ]-', (9) 

where T = yt, A = aa*, a = kv/y., v is a slowly chang­
ing complex amplitude of the unstable harmonic, A0 

= A( T = 0 ). According to Eq. (9 ), the instability is 
characterized by a soft excitation regime and, inasmuch 
as the stationary value of A( oo) = 3€, the amplitude of 
the established wave is proportional to the square root 
of the supercriticality. 

In the established state, all the quantities can be 
regarded as functions of the variable ~ = kx - wt. Here 
Eq. (4) reduces to the form 

1 d'w ( 1 Y+ ') dw ----- ll+w---w -+w=O. 
e + 1 d(;' 2 kc d£ 

(10) 

In this equation, w = kv/y., 0 = (kc = w)/y •• It is seen 
that the cubic nonlinear term contains the small 
parameter y./kc << 1 and therefore leads to small, 
unimportant effects. For example, if E << 1, setting 

w = w1e;' + w,e"' + C .c., 

we get from (10) 

w,w,• = 3e (1 + _!_...Y:!:_), kc-w = _i!_e (...Y:!:..) 1• 
2 kc w 2 kc , 

The cubic nonlinearity in (10) thus leads to a small 
shift in the frequency and an insignificant contribution 
to the amplitude of the wave. If we neglect these small 

effects, we can reduce Eq. (10) to the form 
1 d"w dw 

-----w-+w=O, 
e + 1 dG' ds 

(11) 

in which periodic solutions correspond to 0 = orsJ or 

w/k=c. (12) 

The condition (12) determines the propagation velocity 
of the, wave for arbitrary E. Analysis of Eq. (11) 
showsrs,sJ that the wave front becomes steeper with in­
crease in the supercriticality E and for E » 1 the 
stationary wave is characterized by an almost sawtooth 
profile and the amplitude 

kvm= = 1l'Y+ = nuc I 2x.o = eE, I (T,M)'f>. (13) 

An estimate of the amplitude of the wave for E >> 1 can 
easily be obtained if we consider that the rate of growth 
of the amplitude in this case is dw/ d~ ~ 1. Assuming 
that the maximum value w = Wmax is obtained within a 
half period (T~ = 27T), i.e., dw/d~ ~ Wmax/7T, whence 
we obtain Wmax ~ 1T, which agrees with (13 ). 

It should be noted that the result (13) is valid, 
strictly speaking, only in the one-dimensional case 
(magnetized plasma or small transverse parameters), 
since in the opposite case, the possible development of 
ion-sound turbulencef 7l could significantly change the 
stationary state for € > 1. 

The author is grateful to A. A. Galeev and A. A. 
Rukhadze for discussion of the work. 
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