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Penetration of an electromagnetic wave into a plasma in which the electron concentration is a prescribed 
function of the coordinates is considered under anomalous skin effect conditions. An integral equation for the 
electromagnetic field in a plasma is derived for an arbitrary relation between the electron mean free path, 
field penetration depth and size of the transition region at the boundary. An exact solution of the integral 
equation is obtained for the case when the electron concentration depends on the coordinate exponentially 
and the mean free path is infinite. The surface resistance and reflection coefficient are calculated. 

P. L. KapitzaPl advanced the hypothesis that anomal
ous skin effect takes in a filamentary high-frequency 
high-pressure gas discharge. However, the boundary 
of the plasma in the gas discharge is not sharp, so that 
the usual theory of the anomalous skin effect in 
metals p,3 J is not directly applicable to a plasma. 

We develop here a theory of the anomalous skin ef
fect in a plasma in which the electron concentration ne 
is a function of one coordinate x. Such a situation can 
occur in a gas-discharge plasma of any type, consisting 
of hot electrons and cold ions whose concentrations as 
functions of the coordinates are established in accord
ance with the processes of heat exchange and ambi
polar diffusion. 

The initial system of equations describing the pene
tration of the electromagnetic wave into the plasma 
consists of the wave equation 

d'E, 4niro . 
dx2 . = -c,-J., (1) 

in which we neglect the displacement current in com
parison with the conduction current, and the kinetic 
equation for the electrons 

IJ I IJf eE, fJj eE.e'"' fJj - + v,-+ --------=- Verd/- f,). 
iJt iJx m iJv, m iJv, 

(2) 

Here f0 is the electron distribution function in the ab
sence of an alternating field Ey, which we shall as
sume for concreteness to be Maxwellian: 

( m )''• ( mv•} fo= ZnkT n,(x)exp --- . 
, 2kT,. 

(3) 

Eo( x) is the constant (in time) electric field acting on 
the electrons (including the a,ction exerted by the ions) 
and leading to the establishment of a specified concen
tration distribution ne(x). The potential cp (x) of this 
field is connected with ne(x) by the Boltzmann distri
bution formula 

n, (x) = n, exp ( -erp (x) I kT, ). (4) 

The electromagnetic field Ey(x) will be assumed to be 
weak. Putting 

f = fo + f,e'•', {5) 

and neglecting the term proportional to f1Ey, we obtain 

(. + )/ + iJf, eE, iJj, eE, iJf, (6) 
1ro v,~ 1 v,--+--=--. 

iJx m iJv, m av, 

It is expedient to seek a solution of the linearized 
kinetic equation (6) by the method of characteristics, 
just as in the case of objects with sharp boundariesr4 l. 
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FIG. I. Motion of electron in an exter
nal field with a potential <,O(x). x*(E) is the 
classical turning point. 

It is convenient to introduce in place of f 1 two functions 
f+ and L, describing electrons moving towards larger 
and smaller values of the coordinate x, respectively: 

f,= {!+. v,>O, 
f-. v, < 0. 

The functions f+ and L satisfy the equations 

8f± e IJrp 8f± iro + Veff eE,(x) iJf, 
-------± 1±=±-----

iJx mfv,J iJx aJv,J Jv,J mJv,J av,. 

The solution of the characteristic equation 

dx=-~dJv,J 
eiJrpfiJx 

is expressed in the form 

1/ 2mv/ + erp(x) =e. 

(7) 

(8) 

The characteristic (8) is an integral of the motion {in 
this case, the law of conservation of the total energy ~) 
of the electron in a field with a potential cp ( x). The 
general solution of (7) can now be represented in the 
form 

where 

/±(e, x) = exp[.+ ll>(x, x,) J { A±(e) 

±~ fJj, j E,(x')exp[±ID(x',x,)]dx' }. 
m av, r, 12(e- erp(x') )/m 

Jr, iro + Veff 
ll>(x,,x,)= . dx· 

r, 12(e-erp(x))/m . 

A+(~) and A_(~) are arbitrary integration functions, 
which are determined by the boundary conditions. As
sume, for concreteness, that ne(x) is a monotonic 
function that tends to zero as x - - oo. Then, in ac
cordance with formula {4 ), the potential cp ( x) is also 
a monotonic function, and .p (x) increases without limit 
as x - - oo. In this case the electron motion is infinite 
only in the x- +oo direction (see Fig. 1). Since the 
electromagnetic field should attenuate in the interior 
of the plasma, we can state that the distribution func
tion of the electrons moving towards x - - oo should 
tend to Maxwellian as x - oo, i.e., 

f- = 0, X= oo. (9) 
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The electrons moving towards decreasing x are re
flected backwards at the turning point x*(e), at which 
their velocity Vx becomes equal to zero. Thus, we 
arrive at a condition 

f+ =f-. :;; = :;;•. 

The conditions (9) and (10) determine uniquely the 
functions A.±( E). In accordance with formula (8 ), we 
obtain the relation 

eq>(z•) = e = eq>(z) + 'f,mv.', 

(10) 

which determines the turning point x*(x, vx) of the 
electron having a velocity vx at the point x. By de
termining the functions A.±( E) from the boundary con
ditions (9) and (10), we obtain f. and L: 

e 8/ • · ~ 
f+ =--' { J exp[<I>(z' • .z) l+J exp[ -ll>(z', x•)- <I>(x,x') 1} 

m avy %• :c• . 

E,(z')dz' 
X , v. > 0; (11) 

[v.' + 2e(rp(x)- rp(x'))/m]V• 

f-=_!_!J!J~ E,(x')ezn[-<I>(x',x)]d.x' , v,<O. (12) 
m av •• [v.'+2e(rp(x)-rp(x'))/mJV' 

Substituting the distribution functions (11) and (12) in 
the expression for the current density 

+• +m oo 

i.(x) =- e J v.f,dv =- e J dv, J vydv, J dv.(f+ + /-), 
-oo -oo 0 

and reversing the order of integration with respect to 
Vx and x', we obtain the connection between the current 
density of the plasma and the electromagnetic field 

j,(x)= ~n,_ {j E,(z')G(z,x')d.x'+ j E,(x')G(x',x)d.x'}, (13) 
f:rt mv -~ • 

where 

G(x', x) = exp(- erp(x)/kT,) 

~ { mv.'} e-<D(x•,•l + e-<D(#,z0 )-<D(z,xo) 

exp --- . dv. X~ 2kT, [v.'+2e(rp(x)-rp(x'))/mJV' (14) 

is the conductivity kernel; v = .J 2kTe/m is the average 
thermal velocity of the electrons. Substituting the cur
rent density (13) into the wave equation (1), we obtain 
an integra-differential equation for the electromagnetic 
field in the plasma: 

d"E ( ) ' • . ~ . 
~=i ~w- {JE,(.z')G(x,x')dx'+ JE,(x')G(x',x)dx'}·(15) 

dx2 "fn C2V -oo :c 

Here "-o = .J 41Te2Ji0 /m is the plasma frequency of the 
electrons. Equation (15) makes it possible, in principle, 
to find the field in the plasma for an arbitrary ratio of 
the electron mean free path l, the dimension a of the 
region in which the electron concentration changes sig
nificantly, and the depth of penetration 6 of the field. 

If the width of the transition region on the boundary 
is small compared with the wavelength outside the 
plasma, ka = wa/c « 1, then the fields outside the 
plasma and inside the plasma can be determined 
separately, just as in the case of a sharp boundary. 
Outside the plasma, at distances that are small com
pared with the wavelength c/ w but large in comparison 
with the width of the transition region a, the electron 
concentration tends to zero, and Eq. (15) goes over into 

d"E,(x) / dx' = 0, 

whence 

E,(x) =A(x+B), a~lxl~c/w. (16) 

The constant A in (16) is a normalization constant and 
is arbitrary by virtue of the linearity and homogeneity 
of (15). To solve the external problem it is thus neces
sary to know only one complex constant B, which is ob
tained by determining the distribution of the field inside 
the plasma. 

Let us establish a connection between the constant 
B and the coefficient for the reflection of the wave 
from the plasma. Outside the plasma, in the region 
1 x 1 ~ a, the electromagnetic field Ey(x) satisfies the 
wave equation 

d"E, ' w 
dx' + k E, = 0, k = -;-

Its general solution can be represented in the form 

E,(x) = c(e-''"-Te;>x), lxl >a. 

The coefficient r in (17) is, by definition, the coef
ficient of reflection of the wave from the plasma. In 
the region a « I x I « 1/k the exponentials in (17) 
can be expanded in series: 

E,(x)= -ik(1 + r)c (x-~~) a-<,lxl~_!_ 
•k1+r' k' 

Comparing this expression with (16), we get 

A= -ik(1 +r)c, 

whence 

1 1-r 
B=--~ 

ik 1 +r' 

(17) 

r = (1 + ikB)/(1- ikB). (18) 
To calculate the surface resistance of the plasma 

under the condition ka « 1, we can start, as in the 
case of an equilibrium low-temperature plasmaf5 l, 
from the usual definition r &J of the surface impedance: 

z = _ 4:rtiw E,(x) 1 
c' E.'(x) • a~lxl~k. 

The active part of this expression has the physical 
meaning of the surface resistance. In accordance with 
(16) we get 

4nw 
R=ReZ=-ImB c' . (19) 

In the limiting case of a small electron path l = v/1 iw 
+ Veff I , the variation of the potential if' ( x) over the 
path can be neglected, and, we can also put Ey(x') 
= Ey(x). Mter calculating the integral of the conduc
tivity kernel 

j G(x, x')d.x' + jc(x',x)dx' = l"nii'exp{~ erp(x)fkT,} 
-~ • IW + Veff 

expression (15) becomes an ordinary differential equa
tion 

d"E, w,'(x)E, 
_,_, = '(i . I ) , l~a, l~{J, 
""" c -!VeffW 

where w0(x) = .J41Te2ne{x)/m. 
In the opposite limiting case of an infinitely long 

electron path 
l>a, l>6 

we can put in (14) c)) = 0, we obtain the following ex
pression for the conductivity kernel: 

G(x,x') = exp{- Z:T_[rp(x)+ rp(x') 1} K,{ Z:T.Irp(x)- rp(x') I} .(20) 
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Here K0(x) is a Bessel function. Further investigation 
of Eq. (15) with the kernel (20) requires that a con
crete form of the potential rp (x) be specified. 

Let us consider the case when the potential depends 
linearly on the coordinate, rp (x) = -Eox:. Then the 
electron concentration depends on x exponentially 11 : 

n.(x) =no exp (xI a), a= kT. I eE0• 

Changing over to new variables ~ and f( ~) defined by 

x =a (s-In fiJo'::!_a'), /(s) = E.(x(S)), (21) 
Ync'v 

we reduce Eq. (15) with kernel (20) to the dimension
less form 

d'/(s) =t+Ji<s')e<HI'1''K ( ls-6'l )ds'- (22) 
. ds' -oo O 2 

Its asymptotic solution outside the plasma (as ~ - - co) 
is 

/(s)=a<s+~>. s-+-oo, (23) 

where (3 is a constant on the order of unity and a is a 
normalization constant. Comparing (16), (21), and (23), 
we get 

( ro.'«~a') B=a B +In-=-- . 
Ync'v 

(24) 

To calculate the constant f3 and to find the functions 
f( ~) in explicit form, it is necessary to solve Eq. (22) 
with a non-difference and non-degenerate kernel. There 
is no standard method for solving equations of this type 
in general form. In our case, however, we can find the 
solution of interest to us by a method first introduced 
by Hartman and Luttinger[7J and later by Kaner and 
MakarovfSJ. 

To solve (22) it is convenient to employ the bilateral 
Laplace transformation 

F(k)= +sime-'1 ds, f(s)=-1-. ·rF(k)e'1 dk, c=Rek. (25) 
2m . 

C-loa 

The real number c can be chosen arbitrarily inside the 
band in which F(k) is regular. Substituting (25) in (22) 
and noting that the integral 

tJ• e<>+•t,>• K, (M) du = . :TI 

·-~ 2 fk(k + 1) 

converges in the band -1 < Re k < 0, we obtain 
c+f• c+C• 

- 1- J k'F(k)e'1 dk =-1- J :rt F(k)e<•+~>ldk (26) 
2:rti o-ioo 2:rti o-ioo l'k(k + 1} 

In order for the function f( ~) to have the asymptotic 
form (23) as ~ - - co, it is necessary that the function 
F(k) have a pole of second order at zero. We seek a 
function F(k) which is regular in the band -1 < Re k 
< 1, with the exception of the point k = 0, at which 
F( k) has a pole of second order with a coefficient 
equal to a: 

lim k'F (k) = a. ...... (27) 

>>or course, the electron density in all of space cannot be described by 
the indicated formula. It is natural to assume that this formula gives 
the asymptotic behavior of n.(x) as x -+ - oo, and n.(x) tends to a 
constant limit n as x -+ + oo. In this case the formulas obtained by us 
are valid if a> 6, where 6 = (c2vm/41Te2iiw)113 • 

lmk 

FIG. 2. Band where the function F(k) is 
regular. 

~..-f----.Hc::..:;•f'-;i,__Rek 
Q I 

The function k2F( k) thus has no singularities in the 
band -1 < Re k < 1, and we can shift the contour in 
the left side of (26) to the right by unity (see Fig. 2), 
and then redesignate k by k + 1. As a result we obtain 

1 •+•• :rtF (k) -. J {(k+1)'F(k+1)- }e<•+<11 dk=0. (28) 
2m,_,_ l"k(k + 1) 

Since Eq. (28) should hold for any ~. the integrand 
vanishes identically: 

(k+ 1)'F(k+ 1) :rt F(k). (29) 
l"k(k+ 1) 

We thus obtain for F(k) a homogeneous functional 
equation. Putting 

u(k) = ln(F(k) !Yk), 

we obtain for u( k) the finite -difference equation 

u(k+ 1) -,-u(k) = lnn-3ln (k+ 1). 

Noting that the right-hand side can be represented in 
the form 

(k + 1)ln n:- kin :rt.- 3(Inr(k + 2) -In r(k + 1)), 

where r(x) is the gamma function, we obtain the 
general solution of (29) in the form 

F(k)- (n:)'l"k (k)· 
-r'(1+k)g · 

Here g( k) is an arbitrary periodic function with period 
unity. This function can be chosen such that F( k) has 
the required analytic properties. It can be shown that 
accurate to a constant factor this choice is unique. 
Accurate to a constant factor, the sought function g( k) 
is given by 

( 2:rti )''• g(k)= e-••.. . " . 1-e 2rnlr. 

Choosing the constant factor in accordance with the 
condition (27), we obtain the sought function F(k): 

F(k)=a (n:)'l"k- e-'""( 2n:i )''• (30) 
. r'(1 + k) 1- e-"''" . 

The field distribution in the plasma can now be 
represented in the form of a contour integral 

c+1• -

/(6)=~ J (n)'l"k ( 2:rti . )''•e-•••>+•ldk. (31) 
2:rti <-ioo r'(1 + k) 1- e-•··· 

As ~ - -co, the main contribution to the integral (31) 
is made by the pole at the point k = 0. Expanding the 
function (30) in Laurent series in the vicinity of the 
point k = 0 

F (k).= a (_.!_+Inn + 3C + :rtt/2 ) 
' k' k + ... 

( C = 0.577 ... is Euler's constant), we obtain in accord
ance with the residue theorem 

tm = a(s+Inn:+3C+ 1Mn), 6-+-oo, 

and thus 
~=lnn+3C+in/2. (32) 
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-I Q I . '" FIG. 3. Integration contour suitable 
for the calculation of the integral (31) 
as~-+ 00• 

Comparing (18), (19), (24), and (32) we obtain there
flection coefficient r and the surface resistance R: 

r=1+2~{-~+i(ln l'n{l),•(r)a• +3c)}. ~«1; 
c 2 c'v c 

R = 2n'ooa I c' = 2n' ·10-' wa [ohms]. 

Thus, the effective depth of penetration of the field in 
the case of an exponentially increasing electron concen
tration is of the order of a, which is the reciprocal of 
the argument of the exponential, and does not depend on 
the frequency. 

We obtain now the asymptotic expression for the 
field in the plasma as ~ - "". The main contribution 
to the integral (31) is made in this case by the small 
vicinity of the branch point k = -1. Shifting the inte
gration contour, as shown in Fig. 3, we obtain 

a e-1 

/(~)~- 4n''•~' 6-+oo. 

We call attention to the fact that in the case of the 
strongly anomalous skin effect, when the electron 
mean free path is infinitely large, the electrons ef
fectively "transport" the field as they move into the 
interior of the plasma. This leads to a slower damping 

of the field than in the ordinary skin effect. (In the 
ordinary skin effect, the field attenuates more rapidly 
than any exponential in a plasma with an exponentially 
increasing electron density.) 

The authors are grateful to Academician P. L. 
Kapitza for suggesting the problem and also to 
Academician I. M. Lifshitz, A. F. Andreev, and M. I. 
Kaganov for a discussion of the results. 
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