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A nonlinear theory is developed for the excitation of a monochromatic wave during the interaction between 
an electron beam with a large thermal spread and plasma. By a suitable choice of the dimensionless 
variables, the set of equations describing the excitation of the wave by resonant beam particles and their 
motion under the action of this wave is reduced to a universal set, i.e., a set which is independent of the 
beam and plasma parameters. Numerical methods are used to solve the set of equations obtained in this way. 
The time dependence of the wave amplitude under nonlinear conditions is established and the characteristic 
trajectories of. resonant particles on the phase plane are investigated. 

1. It is known that the nonlinear restriction on the 
Landau damping of a plasma wave is connected with the 
trapping of resonant plasma particles in the potential 
well produced by the wave. The trapped particles exe
cute phase oscillations relative to the wave. However, 
the mean energy transfer between the particles and the 
wave during one period is zero, and the wave amplitude 
becomes an oscillating function of time at a frequency of 
the order of the oscillation frequency of the particles in 
the wave, i.e. n = k../ecp0 /m, where ({Jo is the amplitude 
of the potential and k the wave number. The phase mix
ing of the trapped particles due to the dependence of the 
oscillation period in the well on the particle energy 
leads to damping of the oscillations and to the establish
ment of a wave with time-independent amplitude. These 
qualitative features of the interaction between a mono
chromatic wave and plasma were elucidated by 
MazitovPl Al'tshul' and KarpmanPJ and O'Neil,C3J 
who considered the nonlinear damping of a plasma wave 
of sufficiently large amplitude n » YL• where YL is 
the linear Landau damping rate. It was found that, in 
this case, it was possible to obtain an approximate 
analytic solution of the problem by considering first the 
motion of the resonant particles in a wave of constant 
amplitude, and then taking into account the reaction of 
these particles on the wave. 

Similar nonlinear effects should also occur during 
the excitation of a monochromatic plasma wave by an 
electron beam. In such problems, however, we do not 
have the small parameter yL/n « 1. During the linear 
stage of the instability, when the wave amplitude is 
sufficiently small, we have YL » 1. Subsequently, how
ever, the amplitude reaches values for which resonant 
part~les with velocities lv- w/kl - yL/k, which excite 
the wave, are trapped by the potential well and yL/n 
- 1. This is why the solution of the problem of the ex
citation of a monochromatic plasma wave can be ob
tained only by numerical methods. A problem of this 
kind was solved for the case of the instability of a mono
energetic beam in plasma irp-eJ. In the present paper 
we shall consider the kinetic instability which arises 
during the interaction between a beam with a large 
thermal spread and plasma. 1 ' 

2. The instability which we are considering is the 

1'The excitation of a monochromatic wave by an electron beam with a 
large thermal spread has also been treated numerically by Fried et 
al.[7J 

inverse of the Landau damping effect during the pres
ence of a beam in plasma. The linear growth rate dur
ing this instability is of the form 

2n•e• at. 
'VL = mk• ID•a;; (v = v ph) (1) 

where f0(v) is the equilibrium distribution function for 
the beam in plasma, vph = wp/k is the phase velocity of 
the wave, and the wave frequency wp is equal to the 
Langmuir frequency. We shall suppose that the spec
trum of the plasma oscillations is such that the fre
quency density is low and there is only one harmonic of 
the spectrum in the phase velocity interval for which 
afo/avph > 0. It is found that the excitation of the mono
chromatic wave occurs under these conditions. This 
can also be achieved by the initial modulation of the 
beam with an amplitude exceeding the fluctuation ampli
tude. For low beam densities, when YL << <o.'p• the am
plitude of the wave excited by the beam is also suffi
ciently small,· ecpo « mv~h· For such amplitudes the 
oscillations of the thermal plasma particles which de
termine the wave dispersion are found to remain linear. 
Essentially nonlinear effects appear only in the motion 
of the resonant particles with velocities close to the . 
phase velocity of the wave, which determine the time 
dependence of the wave amplitude. The electric field in 
the wave can then be sought in the form 

E(t, x)=E(t)sin(kx- w.t). (2) 

To determine the function E(t) we shall use the fol
lowing set of equations which describes the motion of 
resonant particles in the field of the wave and the change 
in the wave .amplitude due to the interaction with these 

.particles: dv' ~ . ds , 
-=--E(t)smks, -=v, 
dt m dt 
1 dE (3) 
-E(t)-=- j'"E(t, x) = eE(t) 
4n dt 

1 lJI flam 

XT J dso J dvo'(v.+v')sinkSf,(vi>h+v,'). (4) 
-ll! -v0m . 

These equations are referred to the frame attached to 
the wave, i.e. v' = v- vph' ~ = x- vpht; jres 
=- e J dv' (vph + v')f is the current of resonant particles, 
the bar represent averaging over one wavelength .A, and 
~ o and v~ are the initial values of the coordinate and 
velocity of the particle which occupies the point ~, v' at 
time t in phase space. The integral on the right-hand 
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.side of Eq. (4) is evaluated within the finite interval of 
the resonant-particle velocities- v~ < v' < v~. In der
iving Eq. (4), we used the Liouville theorem on ttie con
servation of the phase volume, d~dv' = d~ 0dv~, and the 
condition that the distribution function remains constant 
on the particle trajectories, f(t, ~, v) = f0(vph + v~) [the 
initial perturbation of the equilibrium distribution func
tion in Eq. (4) can be neglected]. 

It is important to note that the change in the field 
phase due to the beam particles is neglected in Eqs. (3) 
and (4), and this is valid only for beams with sufficient 
thermal spread, so that the width /lv of the distribution 
function satisfies the condition 

(5) 

It is well known that the main contribution to the change 
in the field phase is due to beam particles with suffi
ciently high velocities v' R< tw. Thus, in the linear 
theory, the phase change is proportional to 

f fJ/0 I {)v' 
a,;-(v + Vph)-;;;-· 

When condition (5) is satisfied the oscillations of parti
cles with velocities v' s:::~ llv remain linear. The field 
phase due to the beam then varies linearly with time, 
and this leads merely to a negligibly small (~yL/w) 
change in the frequency and phase velocity. 

When the beam spread is not too large, i.e. llV 
~ ../ecp0 jm, so that the wave substantially disturbs the 
motion of all the beam particles, we must take into ac
count not only the change in the amplitude but also in 
the field £hase during the instability. This case is dis
cussed in ?] • 

During linearization with respect to the amplitude of 
the oscillations, Eqs. (3) and (4) lead to an exponential 
increase in the field amplitude with time. In fact, if we 
integrate the equations of motion in this approximation, 
we obtain 

, e [expik(so+vo't) s =So+ vot- 2im E(t) (ikvo' + y)' C.C .) • (6) 

This form is valid when E(t) » E(O), in which case the 
first term which depends on the initial field amplitude 
can be neglected in ~ (t). 

Substituting the resulting expression in Eq. (4) and 
confining our attention to the approximation which is 
linear in 6~ = ~ - ~ 0 - v~, we have, after integration 
with respect to ~ o, 

!:§__ = 4ne2 k "( dvo'vo'fo (Veh+ vo') E (7) 
dt m Olp'\' ) m (k2Vo'1 + '\'2)2 ' 

-v, 
i.e. 

E(t) ~ e'', 

and the growth rate is given by 

(8) 

2 { kvom kv,m/y } (8 ') 
'V = '\'L- arctg--- . 

n y 1 + k'v,m'/y', 

When vlP- oo, the growth rate y tends to 'YL· Particle$ 
with velocities substantially greater than y/k provide 
an appreciable contribution to the growth rate (the quan
tity YL- y falls relatively slowly, i.e., ~y/kv~, as v~ 
increases). As a result, the intervalllvres of resonant
particle velocities turns out to be numerically large in 
comparison with y/k, i.e., llvres ~ (3-5)y/k. 

Equation (8), which follows from the linear theory, is 

'valid for low enough amplitudes when the width of the 
region in which the particles are captured by the wave 
is much less than the resonant particle velocity inter
val, i.e . ../ecp0 /m << !lvres. As time increases, the am
plitude reaches the value . m 

IJ>o- -;-(1.\v"')'. (9) 

for which a substantiai part of the resonant particles is 
found to be trapped in the potential well produced by the 
wave. The oscillations then cease to grow and, owing to 
the presence of the captured particles, the amplitude ex
hibits oscillations which are damped as a result of the 
phase mixing of these particles. We note that a formula 
similar to that given by Eq. (9) was reported earlier 
incs,sJ. As noted above, the absence of a small param
eter from Eqs. (3) and (4) means that they can be solved 
only by numerical methods. In terms of the dimension
less variables 

1 kv' 1 eEk 
V=--, ~=--->ks, 't'='\'Lt. 8=-- (10) 

2n '\'L 2n myL' 

(the last relation corresponds to cp0 = Emyi./ek2), we 
can rewrite Eqs. (3) and (4) in the form 

(11) 

(12) 

In deriving this set of equations, we used the fact that, 
since ll v » ll vres, the distribution for the resonant 
particles can be written in the form 

fo(v'+v.ehJ= /o(vp!J+v'fJj,jfJvph (13) 

and we have eliminated the integral with respect to 
to < 0 by using the conditions 

v(-~o, -vo,'t') = -v(~o,Vo,'t'),_ 
t(.=-~; -vo, 't') = -t;(~o, Vo, 't'). (14) 

Accordingly, the set of equations given by Eqs. (11) and 
(12) has a useful form which does not depend on any of 
the parameters and, therefore, the sulution of the prob
lem of the excitation of a wave by an electron beam with 
large thermal spread reduces to the determination by 
numerical methods of the single dimensionless function 
E(T). 2 > 

Equations (11) and (12) were integrated on a computer 
using the Runge-Kutta method. We have processed 4000 
resonant-particle trajectories for which the initial co
ordinates were varied within the range 0 < l:o < 0.5 
with a step of llto = 1/14 and velocities within the range 
-2 < v0 < 2 with a step of llv0 = 1/125 (for a given total 
number of particles this initial ensemble was found to 
be optimal and ensured that the amplitude was calcula
ted to better than 5%). Figures 1 and 2 show ¥ and 
y = lf-1d cr /dt as functions of T for the case ~(0) = 0.01, 
which were obtained as a result of the numerical inte
gration of Eqs. (11) and (12). For small T, when the 
field amplitude is comparable with the ini~ial amplitude, 
the growth rate oscillates rapidly with time. This is fol
lowed by the exponential increase in the amplitude with 
the growth rate y = 0.90yL, which corresponds to the 
linear theory (for comparison, we note that, for the 
chosen value of the maximum velocity of the resonant 
particles v~ = 47TyL/k, the growth rate given by Eq. (8) 

2lThe universal form was obtained only for !:J.v > t:J.vres, and if this is valid 
we can use the representation given by Eq. (13). 
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FIG. 1 

1s I' = 0.89yL)· The increase in the amplitude is then 
slowed down and, when T = 8.8, the field amplitude 
reaches the maximum value <f~ax = 9.4. Oscillations 
in &'(T) appear for large T and the swing of the oscilla
tions in the case of a beam with a large thermal spread 
is small: D.fff ~ (1/10- 1/7)~max· 3 > 

As the amplitude increases, a substantial part of the 
resonant beam particles is trapped in the potential well 
produced by the wave. Figures 3 and 4 show charac
teristic trajectories of the resonant particles on the 
phase plane. The numbers marked against these trajec
tories correspond to values of time T at which the par
ticle is located at the given point on the phase plane, and 
the initial positions are indicated by the asterisks. Fig
ure 3 shows the phase trajectories of particles with 
110 = 0. For sufficiently large T these particles assume 
considerable velocities in the wave field and travel on 
closed trajectories corresponding to trapped particles. 
Particles with large 11 0, whose trajectories are shown in 
Fig. 4, are found to escape for low T and move on trajec
tories close to the unperturbed trajectories ?: = ?:o +!loT. 
However, as the field amplitude increases, they are also 
trapped by the wave, provided only that lvol S 0.6, which 
corresponds to lvol S 3.5f'L/k. Thus, for example, a 
particle with initial coordinates llo = -0.2, ?:o = 0.1, 
which moves along the unperturbed trajectory forT= 3, 
cuts the boundary of the region which we are consider
ing,?: =-0.5, and the subsequent trajectory, shown in 

aa.---.----,----.----.----v.---~--------,----,--·--, 

~8L---~--~--~----~---L--~----~--~--~--~ 
-a~ -o.z o az o.t 

FIG. 3 

3>Preliminary results of the mtegration of Eqs. (11) and (12) were 
reported earlier in[•l. The use of the Euler method in[4l during the 
integration of Eqs. (11) and (12) led to considerable uncertainties. As a 
result, the function ~(r) reported in[•J was close to the true function 
only forT .;;; 10. For large T the discrepancy became very substantial, 
and this led in[•J to the erroneous conclusion that the mean value 
about which the amplitude oscillated decreased with time. This was 
brought to our attention by R. Z. Sagdeev. 

!.2 

FIG. 2. 'Y(r)f'YL as a function ofT. 

Fig. 4, corresponds to a symmetrically located particle 
with ?: 0 = 1.1 (because of the periodicity of the trajec
tories of escaping particles, we have shown in Fig. 4 
only the part of these trajectories corresponding to 
-0.5 < l; < 0.5). When T ? 5, the trajectory is greatly 
disturbed by the wave field and is found to be closed. A 
particle with initial coordinates ?: o = 0.26, llo =- 0.6 
travels in a similar way with the only difference that, 
in this case, the trajectory cuts the boundary of the reg
ion?: =-0.5 four times (forT= 1.4, 2.8, 4.5, and 6.8) 
before it is trapped by the wave field. Subsequently, 
when T = 10.5 and when the field amplitude is at a mini
mum, these particles leave the potential well, but are 
then again trapped by the wave and execute motions on 
a closed trajectory. 

The phase mixing of resonant particles is illustrated 
in Figs. 5 and 6. These figures show lines correspond
ing to v~ = const, i.e. f = const, on the phase plane at 
different instants of time: i.e. T = 5.8 in Fig. 5 (linear 
stage) and T = 8.8 in Fig. 6 (maximum field). The rota
tion of the particles on the phase plane ensures that the 
v' = 0 line (thick line in Figs. 5 and 6) eventually takes 
the form of a complicated spiral. The multiply- connec
ted region bounded by this spiral contains spirals 
corresponding to v~ > 0 on which f > f(O) (thin lines) 
and spirals on which v~ < 0 and f < f(O) (broken lines). 
It is clear that for large T the distribution function for 
(; = const is a highly oscillating function of velocity. 
The mixing of resonant particles on the phase plane 
should lead to the damping of the oscillations of ~( T) 
shown in Fig. 1. However, this process cannot be in-
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vestigated on the computer because of the accumulation 
of relative errors. 

We note in conclusion that the energy of the mono
chromatic plasma wave excited by a beam with a large 
thermal spread is 

E' I 4n = 8'n,mv!'J.v(yL I k!'J.v)' 

and is usually much less than the beam energy 
(yL/kt.v « 1), since only a small part of the beam 
participates in the wave excitation. 

We are indebted to Ya. B. Fainberg and R. Z. 
Sagdeev for discussions, and to Yu. N. Dnestrovski1, 
D. P. Kostomarov, A. A. Ivanov, and T. Sobol eva for 
assistance in this research. 
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