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A nonlinear theory is developed for the excitation of a monochromatic wave during the interaction between
an electron beam with a large thermal spread and plasma. By a suitable choice of the dimensionless
variables, the set of equations describing the excitation of the wave by resonant beam particles and their
motion under the action of this wave is reduced to a universal set, i.e., a set which is independent of the
beam and plasma parameters. Numerical methods are used to solve the set of equations obtained in this way.
The time dependence of the wave amplitude under nonlinear conditions is established and the characteristic

trajectories of resonant particles on the phase plane are investigated.

l. It is known that the nonlinear restriction on the
Landau damping of a plasma wave is connected with the
trapping of resonant plasma particles in the potential
well produced by the wave. The trapped particles exe-
cute phase oscillations relative to the wave. However,
the mean energy transfer between the particles and the
wave during one period is zero, and the wave amplitude
becomes an oscillating function of time at a frequency of
the order of the oscillation frequency of the particles in
the wave, i.e. Q = kvegp,/m, where ¢, is the amplitude
of the potential and k the wave number. The phase mix-
ing of the trapped particles due to the dependence of the
oscillation period in the well on the particle energy
leads to damping of the oscillations and to the establish-
ment of a wave with time-independent amplitude. These
qualitative features of the interaction between a mono-
chromatic wave and plasma were eluc1dated by
Mazitov,"'" Al’tshul’ and Karpman[ and O’ Neil F*]
who considered the nonlinear damping of a plasma wave
of sufficiently large amplitude £ > y1, where yy, is
the linear Landau damping rate. It was found that, in
this case, it was possible to obtain an approximate
analytic solution of the problem by considering first the
motion of the resonant particles in a wave of constant
amplitude, and then taking into account the reaction of
these particles on the wave.

Similar nonlinear effects should also occur during
the excitation of a monochromatic plasma wave by an
electron beam. In such problems, however, we do not
have the small parameter y,/Q < 1. During the linear
stage of the instability, when the wave amplitude is
sufficiently small, we have yy >> 1. Subsequently, how-
ever, the amphtude reaches values for which resonant
partftles with velocities [v — w/k| ~ y,/k, which excite
the wave, are trapped by the potential well and yL/Q
~ 1. This is why the solution of the problem of the ex-
citation of a monochromatic plasma wave can be ob-
tained only by numerical methods. A problem of this
kind was solved for the case of the instability of a mono-
energetic beam in plasma inf*™®), In the present paper
we shall consider the kinetic mstablllty which arises
during the interaction between a beam with a large
thermal spread and plasma.”

2. The instability which we are considering is the
DThe excitation of a monochromatic wave by an electron beam with a

large thermal spread has also been treated numerically by Fried et
al.l
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inverse of the Landau damping effect during the pres-
ence of a beam in plasma. The linear growth rate dur-
ing this instability is of the form
o 2
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where fo(v) is the equilibrium distribution function for
the beam in plasma, Vph = wp/k is the phase velocity of
the wave, and the wave frequency w,, is equal to the
Langmuir frequency. We shall suppose that the spec-
trum of the plasma oscillations is such that the fre-
quency density is low and there is only one harmonic of
the spectrum in the phase velocity interval for which
afo/avph > 0. It is found that the excitation of the mono-
chromatic wave occurs under these conditions. This
can also be achieved by the initial modulation of the
beam with an amplitude exceeding the fluctuation ampli-
tude. For low beam densities, when y, < @p the am-
plitude of the wave exc1ted by the beam is also suffi-
ciently small, epo K mv? he For such amplitudes the
oscillations of the thermal plasma particles which de-
termine the wave dispersion are found to remain linear.
Essentially nonlinear effects appear only in the motion
of the resonant particles with velocities close to the
phase velocity of the wave, which determine the time
dependence of the wave amplitude. The electric field in
the wave can then be sought in the form

E(t, z)=E() (2)

To determine the function E(t) we shall use the fol-
lowing set of equations which describes the motion of
resonant particles in the field of the wave and the change
in the wave amplitude due to the interaction with these
\particles: dv’

dt

Yo = (v=vph) (1)

ysin(kr — w,t).

E(t) sin kg,
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—E(t)— = —jE(t,z) = eE(l)
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These equatlons are referred to the frame attached to
the wave, i.e. v = v—v h,E—x pht jres

= —ef dv’ (Vph + V)i is the current of resonant particles,
the bar represent averaging over one wavelength A, and
£, and vo are the initial values of the coordinate and
velocity of the particle which occupies the point £, v’ at
time t in phase space. The integral on the right-hand

—vym



NONLINEAR THEORY OF KINETIC INSTABILITY

side of Eq. (4) is evaluated within the finite interval of
the resonant-particle velocities — vi® < v/ < v, In der-
iving Eq. (4), we used the Liouville theorem on the con-
servation of the phase volume, dédv’ = d£,dvo, and the
condition that the distribution function remains constant
on the particle trajectories, f(t, £, v) = fo(vph + Vo) [the
initial perturbation of the equilibrium distribution func-
tion in Eq. (4) can be neglected] .

It is important to note that the change in the field
phase due to the beam particles is neglected in Egs. (3)
and (4), and this is valid only for beams with sufficient
thermal spread, so that the width Av of the distribution
function satisfies the condition

Av > Yeqo/m.

@)

It is well known that the main contribution to the change
in the field phase is due to beam particles with suffi-
ciently high velocities v’ ~ Av. Thus, in the linear
theory, the phase change is proportional to

dfs , , v’
f"ﬁ(v + vph)—;},—.

When condition (5) is satisfied the oscillations of parti-
cles with velocities v’ & Av remain linear. The field
phase due to the beam then varies linearly with time,
and this leads merely to a negligibly small (~y1,/w)
change in the frequency and phase velocity.

When the beam spread is not too large, i.e. AV
~ Vego/m, so that the wave substantially disturbs the
motion of all the beam particles, we must take into ac-
count not only the change in the amplitude but also in
the field ;[)hase during the instability. This case is dis-
cussed in'",

During linearization with respect to the amplitude of
the oscillations, Egs. (3) and (4) lead to an exponential
increase in the field amplitude with time. In fact, if we
integrate the equations of motion in this approximation,
we obtain

ik vyt
E= oot — E(t)[ex};ikv(jfy)z ) —ccl. (6)

This form is valid when E(t) > E(0), in which case the
first term which depends on the initial field amplitude
can be neglected in £ (t).

Substituting the resulting expression in Eq. (4) and
confining our attention to the approximation which is
linear in 8¢ = £ — £o— vot, we have, after integration
with respect to £,

m
dE  4me? T dvy vy’ fo (Vpht Vo)
— 0 “Y0J0 E 0
dt m k(’)IJY Sm (kzv°/2+Y2)a E’

—vp

(7)

i.e.

E(t) ~ e,

(8)
and the growth rate is given by
kv, _ kv, [y ]{
1+k2v0m2/vz f :
When v — «, the growth rate y tends to yy . Particles
with velocities substantially greater than y/k provide
an appreciable contribution to the growth rate (the quan-
tity y, — » falls relatively slowly, i.e., ~y/kvil, as v{®
increases). As a result, the interval AvI®S of resonant-
particle velocities turns out to be numerically large in
comparison with y/k, i.e., AvI®S ~ (3—5)y/k.

Equation (8), which follows from the linear theory, is
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valid for low enough amplitudes when the width of the
region in which the particles are captured by the wave
is much less than the resonant particle velocity inter-
val, i.e. Vego/m << AvTeS, As time increases, the am-
plitude reaches the value

(9

@0 ~ g(Av'")ﬂ
for which a substantial part of the resonant particles is
found to be trapped in the potential well produced by the
wave. The oscillations then cease to grow and, owing to
the presence of the captured particles, the amplitude ex-
hibits oscillations which are damped as a result of the
phase mixing of these particles. We note that a formula
similar to that given by Eq. (9) was reported earlier
in"®®J, As noted above, the absence of a small param-
eter from Egs. (3) and (4) means that they can be solved
only by numerical methods. In terms of the dimension-

less variables o’ . -

vV [
= e — = —k , T=1%ct, & =
Y 21y, t 2n ST=w i

the last relation corresponds to ¢o = Emy2 /ek® , we
P L
can rewrite Eqs. (3) and (4) in the form

(10)

my.?

dv - & i f—c— =
T e T (11)
Vs ot
%fi —=16n S dt, S dvvosin 2L (5, Lo ). (12)
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In deriving this set of equations, we used the fact that,
since Av > AvI€S the distribution for the resonant
particles can be written in the form

fo(v'+vpR) = fo(vpn) +v0fo/Ovpn (13)
and we have eliminated the integral with respect to
£o < 0 by using the conditions

V(=L —v0,7) = —v (L, V0, 7). (14)

E(—Eo —Va, T) = —L (Lo, Vo, 7).
Accordingly, the set of equations given by Eqs. (11) and
(12) has a useful form which does not depend on any of
the parameters and, therefore, the sulution of the prob-
lem of the excitation of a wave by an electron beam with
large thermal spread reduces to the determination by
numezl)'ical methods of the single dimensionless function
E(7).

Equations (11) and (12) were integrated on a computer
using the Runge-Kutta method. We have processed 4000
resonant-particle trajectories for which the initial co-
ordinates were varied within the range 0 < £, < 0.5
with a step of A¢, = 1/14 and velocities within the range
—2 < vy < 2 with a step of Ay, = 1/125 (for a given total
number of particles this initial ensemble was found to
be optimal and ensured that the amplitude was calcula-
ted to better than 5%). Figures 1 and 2 show & and
y = &'d & /dt as functions of 7 for the case &(0) = 0.01,
which were obtained as a result of the numerical inte-
gration of Egs. (11) and (12). For small 7, when the
field amplitude is comparable with the initial amplitude,
the growth rate oscillates rapidly with time. This is fol-
lowed by the exponential increase in the amplitude with
the growth rate y = 0.90y1,, which corresponds to the
linear theory (for comparison, we note that, for the
chosen value of the maximum velocity of the resonant
particles v“)n = 4my1,/k, the growth rate given by Eq. (8)

IThe universal form was obtained only for Av> Avres, and if this is valid
we can use the representation given by Eq. (13).
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18 y = 0.89y1). The increase in the amplitude is then
slowed down and, when 7 = 8.8, the field amplitude
reaches the maximum value g;;x)ax = 9.4. Oscillations
in &(7) appear for large 7 and the swing of the oscilla-
tions in the case of a beam with a large thermal spread
is small: A& ~ (1/10— 1/T)&max."

As the amplitude increases, a substantial part of the
resonant beam particles is trapped in the potential well
produced by the wave. Figures 3 and 4 show charac-
teristic trajectories of the resonant particles on the
phase plane. The numbers marked against these trajec-
tories correspond to values of time 7 at which the par-
ticle is located at the given point on the phase plane, and
the initial positions are indicated by the asterisks. Fig-
ure 3 shows the phase trajectories of particles with
Vo = 0. For sufficiently large 7 these particles assume
considerable velocities in the wave field and travel on
closed trajectories corresponding to trapped particles.
Particles with large vo, whose trajectories are shown in
Fig. 4, are found to escape for low 7 and move on trajec-
tories close to the unperturbed trajectories ¢ = {o + VoT.
However, as the field amplitude increases, they are also
trapped by the wave, provided only that |vo| < 0.6, which
corresponds to [vo| < 3.5y ,/k. Thus, for example, a
particle with initial coordinates vo = —0.2, {o = 0.1,
which moves along the unperturbed trajectory for 7 = 3,
cuts the boundary of the region which we are consider-
ing, £ =-0.5, and the subsequent trajectory, shown in
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FIG. 3

9Preliminary results of the mntegration of Egs. (11) and (12) were
reported earlier in'l. The use of the Euler method in* during the
integration of Eqgs. (11) and (12) led to considerable uncertainties. As a
result, the function £(7) reported in!! was close to the true function
only for 7 <10. For large 7 the discrepancy became very substantial,
and this led in!* to the erroneous conclusion that the mean value
about which the amplitude oscillated decreased with time. This was
brought to our attention by R. Z. Sagdeev.

FIG. 2. y(1)/vL as a function of 7.

Fig. 4, corresponds to a symmetrically located particle
with ¢o = 1.1 (because of the periodicity of the trajec-
tories of escaping particles, we have shown in Fig. 4
only the part of these trajectories corresponding to
—0.5< £ <0.5). When 7 = 5, the trajectory is greatly
disturbed by the wave field and is found to be closed. A
particle with initial coordinates £o= 0.26, vo =—0.6
travels in a similar way with the only difference that,
in this case, the trajectory cuts the boundary of the reg-
ion ¢ =—0.5 four times (for 7 = 1.4, 2.8, 4.5, and 6.8)
before it is trapped by the wave field. Subsequently,
when 7 = 10.5 and when the field amplitude is at a mini-
mum, these particles leave the potential well, but are
then again trapped by the wave and execute motions on
a closed trajectory.

The phase mixing of resonant particles is illustrated
in Figs. 5 and 6. These figures show lines correspond-
ing to vo = const, i.e. f = const, on the phase plane at
different instants of time: i.e. 7 = 5.8 in Fig. 5 (linear
stage) and 7 = 8.8 in Fig. 6 (maximum field). The rota-
tion of the particles on the phase plane ensures that the
v’ = 0 line (thick line in Figs. 5 and 6) eventually takes
the form of a complicated spiral. The multiply-connec-
ted region bounded by this spiral contains spirals
corresponding to vo > 0 on which f > f(0) (thin lines)
and spirals on which vo < 0 and f < £(0) (broken lines).
It is clear that for large 7 the distribution function for
¢ = const is a highly oscillating function of velocity.
The mixing of resonant particles on the phase plane
should lead to the damping of the oscillations of &(7)
shown in Fig. 1. However, this process cannot be in-
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vestigated on the computer because of the accumulation
of relative errors.

We note in conclusion that the energy of the mono-
chromatic plasma wave excited by a beam with a large
thermal spread is

E? [ 4n = &*'nymvAv (v, | kAv)?

and is usually much less than the beam energy
(y1,/kAv < 1), since only a small part of the beam
participates in the wave excitation.

We are indebted to Ya. B. Fainberg and R. Z.
Sagdeev for discussions, and to Yu. N. Dnestrovskii,
D. P. Kostomarov, A. A. Ivanov, and T. Soboleva for
assistance in this research.
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