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An investigation is carried out on excitation decay whose probability changes suddenly and in a 
noncorrelated manner as a result of migration over randomly distributed centers that interact with each other 
more strongly than they do with the energy acceptors. It is shown that hopping migration, just as diffusion, 
renders the decay exponential and increases its rate, but leads to a different dependence on donor 
concentration and interaction parameters. The existence of an upper limit for the deactivation rate during 
concentration quenching is established. 

THE deactivation of an excited donor impurity by en­
ergy transfer to acceptors that are stochastically dis­
tributed around it is usually effected through a direct 
multipole interaction between them. The kinetics of 
this process have been thoroughly investigated in the 
statistical limit, i.e., assuming that the excitation does 
not leave the impurity center at which it arose. It has 
been established, in particular, that owing to the dif­
ference between the acceptor surrounding of the differ­
ent donors there is a sufficiently wide probability dis­
tribution rp ( w) dw of their deactivation. This results 
in a non-exponential decay of the entire aggregate of 
donors, which takes the following form in the case of 
weak dipole-dipole interaction[ll: 

where 

.. 
No= J e-~<p{w)aw = e-<••>"', 

0 

(1) 

<p(w)= (4:w.rh exp (- 4! ). !:J. = f6n' ac' 
9 . (1a) 

Here a is the interaction constant and determines the 
rate of deactivation by one acceptor, namely a/R6 ( R 
is the distance from the acceptor to the donor), and c 
is the density of the acceptors in the sample. Allowance 
for the real dimensions of the particlesf2l or for the 
possibility of a strong interaction between them[3 l 
makes the decay process more complicated, in that a 
short exponential section appears in its earlier stage. 
This effect, however, becomes appreciable only at very 
high acceptor concentrations, when the fraction of the 
donor-acceptor pairs that are in direct or strong con­
tact with one another is appreciable. 

The changes due to the increase of the donor con­
centration are much more significant. The interaction 
between them leads to a resonant migration of the ex­
citation, causing the acceptor ambient of the latter to 
change several times during the decay process. The 
motion of the excitation over the system of donors 
places in an equal position those donors at which the 
deactivation is quite slow, leading in turn to exponen­
tialization of the decay process during its final stage. 
The parameter of this exponential, which determines 
the actual rate of luminescence quenching in concen­
trated solid solutions, depends not only on c and a, 
but also on the migration rate d/r 6 of the energy over 
the donors (r is the distance between the donors), i.e., 
in final analysis on their concentration n and on the 
interaction force d. 

A very closely related problem is encountered when 
spin-lattice relaxation of nuclei is accelerated by a 
paramagnetic impurity. This problem was investigated 
under the assumption that the migration of the spin 
excitation over the crystal can be regarded as a real 
diffusion, with a coefficient specified by the scale of 
the dipole-dipole interaction of the nuclei in terms of 
the period of the latticer4 ' 5 l. The same model was cal­
culated as applied to exciton quenching by impurities 
in molecular crystalsr6l. Mathematically, the problem 
turned out to be far from simple, and a rigorous solu­
tion was obtained only for models with limited interac­
tion[7•8l. In the case of real dipole-dipole interaction, 
it is possible to consider only the asymptotic form of 
the decay process under rather significant assump­
tions[9'10l. 

On the other hand, if the donor molecules do not 
form a real lattice but are stochastically distributed, 
then the very introduction of a diffusion coefficient (in 
coordinate space) becomes problematic. Such a prob­
lem is more conveniently considered from a different 
point of view, assuming that the excitation migration 
leads to random walks of w(t). This is particularly 
important if a « d, when the migrating donor comes 
close to the acceptor in a single step and abruptly 
rather than gradually and in many steps, and in this 
sense it is more similar to individual particle colli­
sions in the gas phase than to diffusion[ 11l. Such a 
situation is impossible in nuclear resonance, since the 
interaction between the nuclei is certainly weaker than 
the interaction with the electron, but is perfectly 
realistic in the case of molecular and atomic excita­
tions, in view of the resonant character of the donor­
donor energy transfer. 

DECAY KINETICS 

There is, however, also an appreciable difference 
from the gas variant of the theory. In free transla­
tional motion of the particles, the interaction between 
them is turned on only during the collision time, since 
the hopping of the excitation from donor to donor no­
where interrupts the process, and only modulates its 
velocity. Therefore in the most general definition of 
the decay law 

N(t) = (exp [- J w(t)dt]), 
0 

(2) 

w(t) is a random function of the time and varies 
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steadily, in jumps, but remains constant between the 
jumps, while the averaging (denoted by the angle 
brackets) extends over all the realizations of this ran­
dom process. 

Problems of this type are encountered in the theory 
of the broadening of spectrallines£121. Our problem 
also reduces formally to them if the factor -1 in (2) 
is replaced by i. From the stochastic point of view, 
the closest to our problem is that of the Doppler broad­
ening of a spectrum, in which the line shift is a Markov 
random variable similar to w(t). The analogy becomes 
complete if it is recognized that the actual modulation 
of the decay process is effected only by hops with the 
same, most probable, migration rate, since smaller 
rates are immaterial, and larger ones do not lead to 
noticeable spatial displacements, and consequently do 
not change the acceptor ambient around the donor. 

The most probable migration rate, as seen from 
(1a), is 

1 /To= il/6 = (2n/3)'dn', 

if the interaction between the donors is of the dipole­
dipole type. Hops with such a rate occur over a dis­
tance 

To= (d-co)'1• > (a-co)''• = R., 

(3) 

(4) 

where Rw is the radius of the spherical region around 
the acceptor which is the zone of the strong interaction, 
within which the particles are as a rule deactivated be­
fore they leave (Fig. 1). The inequality (4) is a refor­
mulation of the assumption concerning the relative 
strength of the interaction of the excited molecules 
with the acceptor and the donor, namely d ~a. Its 
sign indicates that under these assumptions the excita­
tion can jumpwise leave the zone of the strong interac­
tion or, to the contrary, fall into it from the periphery1>. 
In other words, each jump can change the strong inter­
action into a weak one and vice-versa. It is therefore 
natural to expect no connection whatever between the 
successively realized values of w (a Markov process 
without correlation). In this case it follows directly 
from the general theory of sudden modulation[l2 • 13 l that 

1 < 

N(-c)=No(T)e-•''•+-J N,(T-t)e-<•-01'•N(t)dt. (5) 
To 0 

The kernel of this equation is the static-decay charac­
teristic defined in (1 ), in which one can introduce if 
necessary all the aforementioned corrections. Its solu­
tion includes the quasistatic limit as a particular case 
and, in addition, contains the information of interest to 
us concerning the decay under conditions of strong 
excitation migration. 

Substituting (1) in (5) and changing over to the 
dimensionless time t = T /To, we obtain 

' 
N(t) = exp{-q"ft- t}+ J exp{-q}'(t- t')- (t- t') }N(t')dt', (6) 

0 

from which we see immediately that the boundary be­

l)When d<a the inequality (4) is reversed and the excitation overcomes 
the zone of strong interaction, executing many small steps. This causes 
a strong correlation between the successive values of w and physically 
brings the hopping model closer to the diffusion model, the only 
difference being, incidentally, that the diffusion goes over the impurity 
band (over randomly scattered donors). 

FIG. I. Transfer via migration 
from excited donors (e) through 
unexcited ones (0) to acceptors 
(e). 0 

v.e 
l 0 

tween the quasistatic and semi -exponential decays is 
the parameter value q = .J ~To, although at both q ~ 1 
and q « 1 there exist both exponential and non-expo­
nential sections separated by a time boundary t = tb. 
To verify this, let us consider the two limiting cases 
separately. 

LIMITING SITUATIONS 

In the quasi static limit (q ~ 1 ), the solution can be 
obtained by successive approximations if the free term 
of (6) is regarded as the zeroth approximation. In the 
first approximation we obtain 

where 

N(t) = e-'[e-•'' + I(t) ], 

t +T 

l(t) =-J exp[ -l'T + t' -l'T- t']dt', 
2T -T 

I(t) first increases linearly with time, but it reaches 
the asymptotic limit already at T ~ 1, and then 

(7) 

N=exp[-q"ft--t](1+4q-'+ ... ), t>2/q'. (8) 

The time boundary between the purely statistical decay 
(1) and the exponential asymptotic behavior observed 
in (8) is given by the formula tb = q2 , i.e., 

When T > Tb, the decay proceeds at an excitation 
migration rate 1/T o· 

(9) 

To obtain an idea of the opposite situation ( q « 1 ), 
it is simplest to use the standard meth<,>d of solving 
Volterra equations with difference kernels. This en­
ables us to obtain a general solution (see (6)) in the 
form of an inverse Laplace transform 

N=...!...·+s'~L(p)exp(pt) dp (10) 
2niL,oo 1- L(p} ' 

in which L( p) is the Laplace transform of the kernel 
of the equation and is equal to . . 1 1-v~ 

L(p)= JN~(t)e-<•+•>'dt =--{1-- _q_e.,"U+•> 
• 1+p 2 1+p 

X [ 1- Cl> ( 2}'1 q+ p ) ]} 

for N0(t) as defined in (1). When q « 1 this expres­
sion becomes much simpler and enables us to separate 
from (10) the exponential asymptotic form 

N(-c) = e-•• (11) 

with the parameter 

k= q-y-;,[1-_!_( 2_- l'n)+L(~-1)- ... ]. (lla) 
2T0 2 l'n 2 8 4 

The principal term in k can be represented in the 
form 
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(12) 

and has a simple physical meaning: it is equal to the 
number of acceptors that fall into the strong-interac­
tion zone around the migrating donor per unit time, 
i.e., after 1/To jumps. Apart from a numerical factor, 
it coincides with the estimate given in r 111 for this 
quantity. The remaining terms in k are corrections 
that are nonlinear in the concentration. 

From the formal point of view, it is very interesting 
to compare the exponential-decay parameters obtained 
for different kernels of (5). It turns out that in the 
first approximation 

m { L\2To { e-t>-"'/2 (13a) 
it= -rt• ~Q(t)e-'''•dt= L\ __ forN 0 (t)=e-Q<t>= e-tJ.' , (13b) 

0 o y' nl\f4-r0 e- l"~ (13c) 

when the condition t:..T 0 « 1, which is common to all 
cases, is satisfied. If we resort to the already men­
tioned analogy with the theory of spectral line shapes, 
then N( T) take on the meaning of correlation functions 

T 
of exp[i J t:..wdt], and their Fourier expansions give the 

0 

shapes of the observed spectra. In the static case, this 
shape is given by the spectrum No(T), but in the limit 
under consideration (t:..To « 1) we are dealing with a 
rapid frequency exchange, which transforms the static 
contour into a Lorentz contour of width k. The case 
(13a) corresponds to a Gaussian shape of the static 
spectrum, (13b) to a Lorentz shape, and (13c) is even 
sharper than the Lorentz shape and is typical of static 
spectra of gasesP2 l. This difference between the 
shapes explains also the different response to fre­
quency exchange. The Gaussian spectrum becomes 
narrower by the motion, the Lorentz shape does not 
become deformed at all, and in the third case a broad­
ening of the center takes place, perfectly similar to 
impact broadening of gas lines. 

The emphasized difference is important also for the 
understanding of the physical nature of the mechanisms 
of self-quenching of luminescence. It is easy to see 
that the square-root dependence of N0 ( T) has a time 
derivative that diverges at zero, thereby distinguishing 
it radically from all other kernels considered in (13). 
This singularity corresponds to the fact that in a sam­
ple with diverging interaction, of the type a/Rn, there 
are always donors in which the excitation vanishes at 
an arbitrarily fast rate. The migration of the excita­
tion over the sample accelerates its decay only because 
it provides access to these donors (energy sinks). The 
higher the migration frequency, the faster is the exci­
tation transferred to the place where it is destroyed, 
and the more effective the self-quenching. It is not at 
all obligatory that the quenching at the sinks be caused 
by the acceptor impurity. The decay probability and 
its dispersion can have an arbitrary origin. All that 
matters is that the difference between the lifetime of 
the various donors be appreciable and that the static 
decay be less steep than the exponential one. 

A specific feature of the hopping mechanism is the 
difference between the decay rates on its exponential 
section in the limiting situations under consideration. 
Both in the diffusion and in the impact variant of the 

theory, the structure of the exponential parameter does 
not change with changing q, and only the boundary be­
tween the static and exponential sections shifts. This 
uncovers a possibility of a clear-cut identification of 
the mechanism by direct comparison of the asymptotic 
form of the decay at small and large donor concentra­
tions. In the former case, the rate of quenching should 
be quadratic in n, as follows from (3), whereas in the 
latter, according to (3) and (12), this dependence be­
comes linear: 

k = n (2n /3}'1•cnfad. (14) 

The aggregate of the results (1), (3), and (14) leaves 
also a possibility for self-control. A study of the 
quasistatic decay as a function of the donor and ac­
ceptor concentrations make it possible in principle to 
determine both parameters of the theory, a and d, 
after which no leeway remains in formula (14) not only 
with respect to the concentration dependence, but also 
with respect to the absolute magnitude. Valuable addi­
tional information is contained also in the temperature 
dependences oft:.., 1/To, and k, which can appear in 
this parameters only via a(T) and d(T). A comparison 
of the temperature dependences may contribute not only 
to identification of the mechanism r 111, but also to a 
clarification of the nature of the elementary transport 
act. 

ULTRAFAST MIGRATION 

Caution must be exercised, however, when the con­
centration of the donors is increased, since the ano­
malies of N0 ( T ), which occur at the very start of the 
decay, becomes significant at a very high migration 
rate. These deviations from (1 ), as already noted, are 
due to strong or limited interaction between the donor 
and the acceptor. The existence of an upper limit for 
the transition probability eliminates the divergence of 
dNo/dT as T = 0, and by the same token limits the 
growth of the quenching rate with increasing 1/To. This 
follows formally from the fact that the non-exponential 
kinetics of the type (1) gives way to the exponential 
lawr31 , namely, at times T < ws(Rot1 we have 

No('t) ·;, exp (-km't}, (15) 

with [l4J 

k,. = 4n~ J w,(R)R'dR, (15a) 
.... 

Therefore, when To<< Ws(Rot\ i.e., when 

n>(! f'.{ w,(:,) f, (16) 

it is precisely (15) that should be retained in (5) as the 
kernel. The equation then reduces to a differential one 
and has a rigorous solution that coincides exactly with 
(15). Thus, the parameter (15a) is indeed the maximum 
possible quenching rate under the conditions of the 
fastest migration 

k n [ 2 v, ] ,.=-cw,.vm 1--arctg- ; 
2 n v. 

Vo=~nR,', Vm=i_nRm'=~nlf a • 
3 3 3 f w,. 
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---- FIG. 2. Asymptotic exponential 
- decay parameters vs. hopping 

frequency. 

T.Os(ll,) >;'' 

Decay of the entire aggregate of donors at such a rate 
is possible in the static case only at exceedingly high 
acceptor concentrations: c ~ v~ or c ~ v0\ which 
ensure the presence of at least one acceptor near each 
donor. On the other hand, if migration does take place, 
then such a decay can be realized at any acceptor con­
centration, via rapid energy transfer to the optimal 
sink, i.e., at an increase corresponding to (16) in the 
sample donor density. 

Thus, the existence of extremely large decay prob­
abilities leads to saturation of the rate constant with 
acceleration of the migration (Fig. 2). This phenomenon 
was noted also within the framework of the diffusion 
model of migration£151. It is explained physically by the 
fact that the limiting stage of the process in the case 
of very fast motion of the excitation is the leakage of 
energy into the lattice. It is the rate of this process 
which governs the limiting values: 

km = { 'f,n'c'/awm for Wm < a/R,' 
'/,n'ca/R,' for Wm >afRo' 

Naturally, they do not depend on d or n, but differ in 
the degree to which the donor-acceptor interaction 
constant a( T) is raised in these expressions. 
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