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Elementary excitation transfer events involving simultaneous quantum emission and absorption by colliding 
atoms are considered. The probabilities of these events can be high and can strongly influence the kinetics of 
atomic level populations in a strong electromagnetic field with a frequency close to resonance. The conditions 
required for the relevant experiments are discussed briefly. 

WE shall use the expression" radiative collision of 
atoms"[1 ' 2J to name the collisional transfer of excita
tion from one atom to another, through the respective 
emission and absroption of a light quantum having a fre
quency close to the energy difference between the tran
sitions occurring in the colliding atoms. A reaction 
wherein atom X goes from state 2 to state 1, atom Y 
goes from state 1 to state 2 (Fig. 1), and a quantum of 
frequency w is emitted, will be described by1 > 

X(2) + Y(1) ~ X(1) + Y(2) + lioo. (I) 

We are here considering fr~uencies w that are close to 
the frequency Wo = (Eft+ E 12);1i and that are emitted 
predominantly when the separation of the atoms consid
erably exceeds their diameters. At close distances the 
atomic levels are considerably distorted. The energy 
difference of the transitions then differs appreciably 
from tlw 0 ; consequently only a negligibly small probabil
ity remains that a quantum of frequency w Re wo will be 
emitted at close distances. 2 > This situation will be dis
cussed in greater detail in Sec. 3. 

Reaction (I) will be studied by the methods of per
turbation theory. The unperturbed Hamiltonian will be 
the sum of the Hamiltonians of the interacting atoms; 
the perturbation will be the interaction of the atoms with 
each other and with an electromagnetic field. Assuming 
that the characteristic "transit time" is much shorter 
than the half-lives of the levels [determined by all proc
esses except (I)], the resonance case could be limited 
to a two-level scheme. It is clear, however, that in the 
first order of perturbation theory the transition matrix 
element (along with the probability of the considered 
collision) will vanish, because reaction (I) then repre
sents simultaneous transitions to new states of three 
pair-wise interacting objects. The appropriate matrix 
element will be different from zero only in the second
order perturbation case. The relations required for the 
study of reaction (I) will now be presented in Sec. 1. 

1. In the Hamiltonian 

(1.1) 

of a quantum object let y(t) represent a small perturba
tion of the Hamiltonian Ho. Using the equations for the 
coefficients ay (t) in the expansion of the s¥stem' s wave 
function in terms of the eigenfunctions of Ho, it can be 
shownC2J that a resonance transition, i.e., a transition 
between states y1 and y2, for which the quantity 

1>State 2 is not necessarily the frrst excited state of the atom. 
2>We disregard accidental equality of h (1)0 and the difference between 
the energy levels at close distances. 
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is sufficiently small, is described by the differential 
equations 

(1.2) 

where 

~ Vv.vVyyb 
Vv.vb = Vv.vb + l....J ~v _ ~v (a, b = 1. 2). 

'V+Y1oV1 b 

(1.3) 

For the applicability of (1.2) it is sufficient to fulfill 
the small-perturbation condition 

IY,,,I<IIB,,-Evl (a=1.2;y-Fy.,y,) 

and the adiabatic perturbation condition 

(1.4) 

-tv~li!IIB •• -E.I, (a=1.2;y-Fy,,y.), (1.5) 

where TV is the characteristic variation time of V(t). 
2. A radiative collision is conveniently characterized 

by its cross section, i.e., the cross section for the exci
tation transfer (I) in the field of a plane monochromatic 
wave of frequency w. Assuming in advance that the 
wavelength 27rc/w of the field greatly exceeds the char
acteristic separations of the atoms involved in (1), we 
use 

E(t) =E,cos(oot) (2.1) 

to describe the electric field in the collision region. 
This is considered to be a classical field; in the present 
problem a quantum field leads only to a complication of 
the notation. 

Assuming also classical motion of the nuclei, we 
represent the radiative collision cross section by 

o(v, oo,E,) = 2n J w·(p, v, ro,E,)pdp, (2.2) 
0 

where w(p, u, w, Eo) is the probability of transition (I) 

"\.j' 

FIG. I. Atomic levels. 
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in an atomic collision with the impact parameter p and 
relative velocity v within the field defined by (2.1). 

Assuming a dipole-dipole interaction,31 we write 
the Hamiltonian of the system in the form 

H=Ho+V(t), k,=kz+flr, (2.3) 

V(t) = n-'(t)u:k"dl + w + dr)E(t). (2. 4) 

Here :HX and :HY are the Hamiltonians of noninteract
ing atoms X and Y; d~ and df are the vector operators 
of the dipole moments; R is the vector separation of the 
atomic nuclei; Yij = o ij - 3eiej, where oij is the 
Kronecker symbol and ei = ~/R is a unit vector along 
the axis connecting the nuclei. Here and henceforth we 
shall understand that summation is performed over re
peated "spatial" indices [over i and j in (2.4)], in ac
cordance with the usual convention of tensor algebra. 

To determine the probability of the transition (I) we 
use a system of equations analogous to (1.2): 

where 

ui, = v,a, + v e"'•'a,, 
a1 (-oo) = 1, 

V, = ~: + B,E,', 

t~, = V ,a, + V e-'"•'a,, 
a1 (-oo) =0, 

c, 
V=-Eo 

R' 

(2.5) 

(2.6) 

are the matrix elements of the perturbation (2.4), taken 
in the second order of perturbation theory. The coeffi
cients C and B represent the following expressions[2J: 

c _ .!._ ~ I Y;; <;'I elf"> <YJ' I aT IYJ> I' 
- 1i f.; ~f.. + ~~. . 

with C1 = C(( = 2, TJ' = 1), C2 = C(~' = 1, TJ' = 2); 
1 A A 

B =4h[I(S'ja,..z((I))U')J'+ J(TJ'Ja,.,.r((l)) JYJ')j'], 

with B1 = B(( = 2, T/ 1 = 1), B2 = B(( = 1, T/ 1 = 2); 

1 A . A c, = 4hY•J[(tjd{j2)((2j a..:z((l).,rn 1) + (2ja..:z((l)) jt)) 

+ (2j d,Z jf)( (1 ~~Jar (oi,.z) j2) + (1J.;~a" ((I)) j2)) ]. 

Here a~(w), the tensor polarizability operator for an 
atom having charge Z in a field of frequency w, is given 
by the matrix 

<t11ii~<mm.> = ~ ( <!:tlllf 1p <1: I df It.> + <ttl at1p <t 1 afl t.>) 
t Et.t + lioo Et.t - /i(l) 

(the index E of the polarizability operators designates 
the component along the vector E 0). We shall, for the 
time being, ignore angular dependences in the coeffi
cients C and B and also the variation in the velocity of 
atomic approach,41 assuming R = .;pr:tV2F. In this 
paper the cross section and other characteristics of the 
radiative collision will be calculated only for the fre
quency 

(1)1 = OOo + (B,- B,)E,', (2.7) 

which will here be called the "center" of the line (see 
Section 3). 

3Yfhe applicability of the dipole-dipole approximation will be discussed 
in Sec. 3. 

4>The applicability of these assumptions will also be discussed in Sec. 3. 

The system (2.5) was solved asymptotically in[3J, 
where the formula derived for the transition probability 
w = ja2(oo) 12 is 

. ~ t 

w =I L V(t)cos{ I [(A(I)+ l'~- v~)'+4V']"•dt'}dt!'. (2.8) 

The limitations on the applicability of this formula are 
not entirely clear, although it includes the Born ap
proximation as a special case, agrees with the exact 
solution at resonance (D-w = 0, V1- V2 = 0) and for a 
rectangular potential [V1- V2 = 0, V(t) = const for ltl 
< T, V(t) = 0 for jtj > T], and for crossing the levels 
gives values close to the Landau- Zener formula. 

For w = w' Eq. (2.9) yields 
~ C,E, t c.. 2 2C,E, • .,, I ' • 

. w =I J R'(t) cos{ J ([R'(t) ] + [R'(t') ] ) dt }dt I• (2.9) 
-~ 0 

C.,= IC,- C,j. 

We shall now consider the two limiting cases of large 
and small fields Eo. The second term of the radical in 
(2.9) exceeds the first term when the nuclear separation 
exceeds a certain value: 

R >a, a""' (2C,./E,C,)'i•. (2.10) 

Consequently, with sufficiently large Eo the first term 
is significant only for small values of R, which do not 
contribute appreciably to the cross section. In this case 
the probability of (I) is 

w =sin' (l~~;) dt) =sin'( 2~:·), (2.11) 

so that for the radiative collision cross section we ob
tain 

0'1 = n'C,E, I v. (2.12) 

The "strong field" condition required for the validity 
of these formulas is obtained from the relation 

(2.13) 

which gives51 

(2.14) 

In the case of relatively weak fields the second term 
of the radical in (2.9) may be neglected. The probability 
of transition (I) is then 

- t dt' dt ., 
w, = E,'C,'I Leos ( C,. J R'(t') ) R'(t) I 

"' 

where 

=Eo' (_0_)'1Jcos(/(x)C,.fvp')d:x I' 
vp' -~ (1 + x')'1• 

(2.15) 

z 3z 3 
f(x)FE5 4(i+x')' +S(t+x') +s-arctgx. (2.16) 

From (2.15) we obtain the cross section for (I) in weak 
fields: 

(2.17) 

Finally, with arbitrary Eo the cross section for (I) is 
given by the general expression 

(2.18) 

5>We note that the field is here assumed to be considerably weaker than 
the atomic field. 
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where 
~d ~ d 1" . . . .. .• 

x(a).= J...!!... I J-.x-cos {-J [(1 + z')-' + a'y'(1 + z')-']''•dz}l 
y' (1 + x')''• y' 

0 -~ 0 (2.19) 
When the argument of the function is much larger than 
unity (2.18) becomes (2.12); for small arguments it be
comes (2.17). 

3. We shall now discuss the applicability of the rela
tions derived in Section 2. The most important simpli
fying assumptions were: a) dipole-dipole interaction, 
b) rectilinear and uniform motion of the colliding atoms, 
and c) negligible angular dependence of the parameters 
cl2 and c3. 

Rectilinear trajectories are provided for by the left
hand member of the relation 

h/Mp,..,;g;v..,;g;v,=2.2·10' em/sec, (3.1) 

where M is the reduced mass of the colliding atoms and 
Po is the characteristic linear dimension of the region 
that contributes most to the probability of the transition 
being analyzed. 

The assumption of dipole-dipole interaction is justi
fied when the contribution to transition (I) with radiation 
of frequency w' comes from separations that greatly ex
ceed the atomic diameter. 6 > Regarding p0 as the inter
atomic separation at which the level shifts are of the 
order of the inverse "transit time," we obtain7 > 

(3.2) 

or 

v..,;g; C, I a,'~ v,, (3.3) 

which agrees with the right-hand member of (3.1). 
The neglect of the angular dependence of C12 and C3 

means, in fact, that the results of Sec. 2 are true except 
for a factor of the order of unity. In the formulas of 
Sec. 2 the roles of cl2 and c3 can be performed by their 
angular averages. 

In the present work the squares of the parameters 
were averaged. As previously, it is convenient to cal
culate for the limiting cases of strong and weak fields. 
In the strong-field case we shall assume that the atomic 
dipole moments are quantized along the z axis, in the 
direction of the vector E 0 ; their average values are 
projected upon the line connecting the nuclei: 

dE,= d,E,, y,,d,xdl = d,xd/(1- 3cos'G), 

where e is the angle between the field direction and the 
axis connecting the nuclei. In the weak-field case we 
take the direction of R as the quantization axis z': 

The averaging of the squares of the parameters is 
now reduced to the averages (1- 3 cos28) 2 = 4/5, 
cos281 = 1/3. 

For collisions in weak fields the atomic levels can 
be considered degenerate (to the same degree of accur
acy as the entire analysis) with respect to the dipole 
moment projection on the z' axis, because the field does 
not separate the levels strongly and in the region where 

6>Jn the present work we shall assume that at these distances the 
exchange interaction between the given atoms is unimportant. 

7>Jn connection with the condition (3.4) we note that for weak fields p0 

cannot be equated to the square root of the cross section. 

splitting due to interatomic interaction is important it 
does not determine the order of magnitude of the cross 
section. Here it is reasonable to introduce a radiative 
collision cross section that is averaged over the initial 
states of atoms X and Y and is summed over their final 
statesPJ 

In sufficiently strong fields 

(3.4) 

we find that as a result of Stark splitting only one tran
sition will, generally speaking, contribute to a line; the 
other transitions will not be resonant. 8 > 

We note that selection rules exist for radiative colli
sions. The probability of (I) vanishes when the following 
quantity equals zero: 

c, ~ <11 d,YI2> ((21\Jnz(w,r) 11> + (2la;.z( w) 11>) 

+ <2ld.-''l1>(<1l~;.r(wi,x) 12> + <11a,,r(w) 12>). (3.5) 

When we limit ourselves to the case where LS coup
ling can be assumed in the atoms we have the selection 
rules 

1:!8"', /';.SY = 0; 
f';.£Y = 0; 2 With /';.£"' = 1, 
f';.LZ = 0; 2 .With /:!£Y = 1. (3.6) 

In the strong field of (3.4), we add to (3.6) a set of 
selection rules with respect to the magnetic quantum 
numbers MX and MY. 

4. When the cross section for the radiative collision 
is known we can evaluate the influence of the reaction 
(I) on the kinetics of atomic level populations and on the 
field intensity. In the case of strong electric fields, 
which at the present time are provided by means of 
lasers, (I) can have large influence on the population 
kinetics. For example, if in (2.12) we assume 
u ~ 10 5 em/sec and Eo ~ 107 V/cm (which corresponds 
to the intensity I ~ 1010 W/cm) and let C3 ~ 10 at. units, 
we obtain the radiative collision cross section 
a ~ 10-14 cm2, which considerably exceeds the usual 
gas-kinetic cross sections. At the same time the cross 
section for direct excitation transfer (disregarding the 
special Landau- Zener or Rosen- Zener cases) is adia
batically small when the energy defects are of the order 
of a few eV.9 > 

To illustrate the possible effect of radiative colli
sions on a resonant field we shall now evaluate light 
amplification and absorption at the "center" of a line 
having the frequency (2. 7). Let us consider the weak
field case. The populations (Nf, NY) of the atomic 
levels are assumed to be given, ana the light is propa
gated along the z axis. Then for a change of light-wave 
intensity in a layer of thickness dz we have 

N,xN,Y N,xN,Y) 
dl = hw(cr,v)g (-----.- dz. g,xg1r g,xg2Y 

(4.1) 

Here g = ~~g;' g{ is the product of the statistical 
weights of the atomic levels in the initial and final 
states of reaction (I); a2 is the radiative collision cross 

8>This pertains to the monochromatic wave (2.4). Averaging over the 
projections of the moments can be performed in this case if the line 
width of the applied field greatly exceeds the Stark splitting. 

9>In the argument of the exponential factor in the transition probability 
a negative quantity of the order of Massey's parameter appears. For 
hw0 "'l eV, v"'l05 em/sec, and Po"'l0-7 em we have w0pofv"'l03• 
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K-jJo K 

FIG. 2. Levels of a quasimolecule. 

section averaged over the initial and final states; the 
angular brackets here denote averaging over the rela
tive velocities of the colliding atoms. 

When the atomic populations satisfy the condition 
N,xN,Y I g,xg,Y > N,xN,Y I g,xg,r, (4,2) 

light amplification ( JE?fl > IE XI) occurs; when the in
verse condition is satisfied light is absorbed. The rela
tion ( 4.2) can, in principle, be satisfied easily in a re
combination regime; for example, state 2 of atom X 
could be selected as a metastable state and state 2 of 
atom Y as a state that is well depopulated by electronic 
impacts. In weak fields the light amplification dl is 
proportional to the square of the field amplitude; we can 
use the concept of ''linear'' gain defined by 

d 
x = a;In/(z). (4.3) 

For a plane wave we have 

I= .!!_E,' (t) = ~E,', 
4n 8n 

and in accordance with (4.1) we obtain 

24n' ,1 ~ (N,zN,r N,Z'N,r) 
x=--<v- •)hroC,c;, g ------- , 

c g,xg1Y g,xg,Y 

where c is the velocity of light. Taking .,...n-w--=c="~-=c""i:~,...,7""5 
100 at. units and v R< 105 em/sec, we have 

(4.4) 

(4.5) 

Thus, with the quite high but actually achievable con
centrations NX/ gX R< 1015 cm-3 and N"f/ g; R< 3 x 1019 

em-\ it beco~espossible to reach a gain K ~ 10-3 cm-1 

that is sufficient for laser action on the basis of radia
tive collisions betweens atoms X and Y. The gain as
sociated with radiative collisions was calculated in[lJ 
using a somewhat different approach to the solution of 
the problem but obtaining close results. 

In strong fields the growth of radiation intensity is 
proportional to its square root; therefore the "linear" 
gain introduced formally by (4.3): 

2n''•Csl/_c_N xN r N xN r 
x=-v- V[( t, "' - t. "') 

is diminished as I increases. 

(4.6) 

In the present paper the different characteristics of 
radiative collisions have been considered only for the 
"center" of a line. This term is somewhat arbitrary, 
because the spectral line of a radiative collision can 
exhibit one or more peaks at frequencies different from 
w'. For example, this effect can be associated with an 
exchange interaction that shifts levels when the inter
atomic separations are much smaller (R « Po) while it 

l--t 
~ 
"" 

-z 
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FIG. 3 

enhances the probability of quantum emission at such 
distances. Moreover, when motion occurs in repulsive 
states the "turning points" (Fig. 2) can make apprecia
ble contributions to transitions at other frequencies. 
However, the proper allowance for these effects and the 
analysis of an entire line contour for radiative collisions 
probably requires numerical calculations for a specific 
pair of atoms. 

The inverse problem would undoubtedly be of inter
est, namely to investigate the character of an inter
atomic interaction on the basis of the radiative collision 
line shape (for emission or absorption). We now discuss 
briefly the scheme of experiments for observing radia
tive collisions and analyzing them in considerable de
tail. At the present time we can count on parametrically 
tuned lasers ~mitting pulses at about a megawatt in the 
8000-14000 A range. A mixture of dense alkali metal 
vapors would be suitable for the experiments. Pulsed 
irradiation of an alkali vapor by means of a laser tuned 
to the resonance frequency wX = JEJ'- E( J;11 of the ap
propriate atom can produce a sufficiently large popula
tion NJ' of its first excited state. A second laser tuned 
to the frequency w R< wo associated with process (I) can 
appreciably populate state 2 of atom X from state 2 of 
atom Y. 

In selecting specific pairs of atoms X and Y for such 
experiments the following considerations must be taken 
into account: a) Process (I) must be allowed [see (3.5) 
and (3.6)]; b) the frequencies wX and wo should not be 
close to other characteristic frequencies of the atoms; 
c) for observation of the concentration N~ it is desirable 
that between the X(2) state and the ground state of X 
there be an intermediate state to which an allowed spon
taneous optical transition goes from the X(2) state; 
d) it is desirable that the optical transition Y(1) - Y(2) 
be strong and that C3 be a sufficiently large constant 
(these constants are large for alkali metals). 

The foregoing considerations indicate that a mixture 
of cesium and potassium vapors, for example, is suit
able, with the 6p2 P 1;2 state of Cs for Y(2) and the 5s2S1 ;2 

state of potassium for X(2). 
In conclusion, we wish to draw attention to an addi

tional experimental possibility. If state 2 of atom X 
"lies in the continuum" of atom Y (see Fig. 3), then 
process (I) can greatly facilitate the photoionization of 
level 2 of atom Y by a quantum of frequency w R< Wo. In 
this case X(2) is like a self- ionized state of the XY 
quasi-molecule. Under suitable conditions (concentra
tions and selected states of X and Y etc.) this process 
will lower the critical value of the light field that is re
quired for the breakdown of an X- Y mixture at the focus 
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of a laser pulse with the frequency w Rl wo. This effect 
has apparently been observed experimentally (see[4 J 
and especiallf5J). 
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Presnyakov, and M. I. Chibisov for a valuable discussion 
of the results. 
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