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The emission by charged particles in the field of a plane electromagnetic wave in a medium with a refractive 
index n0 > I is considered. The features of "spontaneous" emission by a particle in a wave capture regime are 
investigated. Noncoherent emission at the frequency of the fundamental wave is strongly suppressed in 
comparison with the ordinary Cerenkov radiation. An initially homogeneous particle beam is modulated in 
the field of a linearly polarized wave. The self-consistent problem is used to show that the energy lost by 
decelerating particles (for the case v0 > c/no) is forcedly transferred to the wave, which is amplified as the 
result. Various conditions of light amplification in a medium with constant no are determined. Numerical 
computation shows that over the length of- I em the radiation transferred to the wave exceeds (by an 
order) the power of the fundamental wave. 

1. According to earlier papersr 1- 41 a reflection and 
capture of a particle by the wave takes place in a 
medium with a refraction index n0 .> 1 when a charged 
particle interacts with a plane electromagnetic wave 
whose field exceeds a certain critical value. Thus an 
"external" (in relation to the wave) particle cannot 
penetrate the wave, while an "internal" particle cannot 
escape from the wave. After reflection the "external" 
particle accelerates its initial velocity is less than the 
phase velocity of light ( v0 < c/no), or decelerates (if 
v0 > c/n0 ), releasing energy to the wave in the form of 
stimulated Cerenkov radiation. The "internal" particle 
oscillates about the equilibrium phase and moves along 
with the wave on the average; ( Vx) = c/no, ( vy) = 0, 
i.e., it periodically loses and acquires energy within 
the wave. If the wave is linearly polarized the frequency 
of these oscillations depends on the initial phase of the 
particle, so that the initially homogeneous beam be­
comes modulated. In the case of circular polarization 
this frequency is constant so that all particles are 
simultaneously either accelerated or decelerated. In 
this manner one can amplify light (or accelerate a 
particle) in such a case even in a medium with constant 
n0 (the theory of such an amplification is fully analo­
gous to that of a quantum amplifier). 

Since all particles coherently emit into the wave 
upon deceleration, the gain depends on the beam density 
and if the latter is high the incremental energy of the 
wave may exceed the energy of the fundamental emis­
sion. Relatively high gain is possible if the refractive 
index is varied along the direction of wave propagation. 
Light is thus continuously amplified in the direction of 
increasing n(x) (and the particles are accelerated in 
the direction of decreasing n(x)). As for the "spon­
taneous" emission by a particle in the capture mode, 
coherence is disrupted since the particle velocity os­
cillates within the wave leading to a strong damping of 
ordinary Cerenkov radiation at the fundamental wave 
frequencyrs,sJ. 

2. We consider emission in a medium by a particle 
captured by a plane electromagnetic wave. Let the 
wave propagate along the x axis. Then the particle 
equations of motion are 

dp, e 
dt = -;;-no(v.Eu + v,E,), 

dp, ( v,) -=e 1-n,- E 
dt C M (2.1) 
dp, ( Vx) . dt = e 1- no-;;- E,, 

where n0 is the refractive index of the medium at the 
fundamental wave frequency w 0 • We assume initially 
that the wave is linearly polarized along the y axis: 

E = E, = E, cos (ro,n,xl c- root). (2.2) 

We also assume that the initial velocity of the particle 
is directed along x and differs little from the Cerenkov 
velocity: 

Vo =Vox= c(1 + ~-t) I no, I'~ 1. (2.3) 

It follows directly from (2.1) that for IJ. = 0 we have 

v, = Vox = c In,, Vu = 0, X = Xo + ct I no 

( x0 , y0 , and z 0 define the position of the particle for 
t.= 0 and Yo= z 0 = 0). For IJ. « 1 we represent the 
solution of (2.1) in the form Vx = c(1 + !J.Ux)/n0 , Vy 
= C!J. uy· Linearizing (2.1) with respect to IJ. we find 

, e(no'-1)''• 
u" = Eo cos cl>ou11, 

mcno2 

, e(n,'-1)'1• 
Uu = - Eo cos <D,u., 

me 

<Do = (i)onoXo I c, 

which we solve for the initial conditions uax = 1 and 
u0y = 0. Thus we find the velocity of the particle in the 
capture mode: 

v, =~(1 + f.tCosQt), 
no 

c . 
v, =- (no'_ 1) ,1, f.t Sin Rt, 

Q = e (no'- 1)Eo I cos <I>, I I men,. 

The computation is based on the approximation 

f.tWoiR~1, 

(2.4) 

(2.5) 

(2.6) 

which does not hold for cos <I>o = 0. The stability in the 
capture mode (2.4) is readily understood if we change 
to a system of coordinates that travels with the parti­
cle. In such a system E' = 0 and B' = B(n~- 1)112/no, 
so that for small deviations from the equilibrium posi­
tion the particle revolves about field B'. Since stability 
is provided by the magnetic field B' the point cos <1> 0 
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= 0 (B' = 0) is obviously unstable. 
According to (2.4) the velocity of the particle oscil­

lates within the wave at a frequency 0 that depends on 
the initial phase <1> 0 • If we have a beam of particles, 
then different particles fall into the well with different 
phases and have different frequencies. This means that 
the beam becomes spatially modulated, resulting in 
modulation of current density. According to (2.5) the 
modulation frequency is 

Q "=' ro,(no'- 1Hicos lllol, 

where ~ = eEo/mcw 0 is the relativistically invariant 
parameter of intensity. Since it is realistic to expect 
that ~ «: 1 even for high-power lasers, it follows that 
0 «: Wo. 

The intensity of radiation from a charge in a medium 
at a frequency w, in a frequency interval dw and solid 
angle do, is given by the expression [7J * 

e'n(ro) ~+~ I' dl(ro)=--ro'drodo J [w]e'"•l•>-'•'dt , 
4:rt'c' -~ 

where k = n(w)wu/c, 11 is the unit vector along the 
wave vector of the radiation, and n( w) is the refractive 
index at the frequency w. Assuming a linear approxi­
mation in J.l. (and also considering that J.J.W/0 «: 1) and 
using (2.4) we obtain 

dl(ro) = dl,(ro) + dl+(ro) + dL(ro), (2.7) 

dl,(w)=- 1--.-0 - rodro, e1 
( n 2 

) 

en, n'(ro) (2.8) 

e' 1 
dl±(ro) = fl.' 4 ( z 1) c no no-

·{ '+no'+n'(ro)-2 [·ro' _ ___!!i:__(1+E_)']} dro(29) 
no 2 W n'(ro) !Jl !Jl ' • 

and in (2.9) 
Q 

ro=± ' 1-n(ro)cosSino 
(2.10) 

where () is the angle between the emission direction 
and the x axis. The function di0 ( w) corresponds to 
Cerenkov radiation by a particle moving with the 
velocity v = c/n0 inside the wave. The function dl±(w) 
determines the radiation due to oscillatory motion. 

The approximation J.J.W/0 « 1 used in the computa­
tion, which is equivalent to (2.6), is necessary for the 
analytic solution of the problem (in the general case 
the particle velocity is expressed by elliptic integrals, 
making it difficult to obtain an analytic solution). 

Since 0 depends on the initial phase of the particle, 
in the case of a particle beam in a linearly polarized 
wave a whole frequency spectrum is radiated at every 
angle () , rather than a single frequency as in the 
ordinary Cerenkov radiation. We compare the radia­
tion at the fundamental wave frequency wo with the 
ordinary Cerenkov radiation at the same frequency 
(without the field). The function dio( w) vanishes at 
w = wo and in dL( w) the conservation law breaks down 
at the frequency w0 • We obtain from (2.9) for n(w) 
=no 

(2.11) 

If v = c(l + J.1.)/n 0 is substituted into the Tamm-Frank 
formula and the approximation linear in J.l. is used, we 

*[vv] =v X v. 

obtain 2e2 

d/(ro,)=-[Lro,dro. 
en, 

(2.12) 

A comparison of (2.11) with (2.12) shows that the emis­
sion by a particle at the frequency w0 in the capture 
mode is much weaker than the ordinary Cerenkov radi­
ation (since IJ.Wo/0 « 1). This reduction of emission 
is due to disruption of coherence, owing to oscillation 
of the particle velocity inside the wave. The funda­
mental frequency w 0 in the capture mode is emitted at 
the angle () ~ ( 20/ w0 ) 112 • The ordinary Cerenkov angle 
ec ~ (J.J./2)1/2 and since J.l. «: O/wo we get () >> ec, 
i.e., the angle of emission of the fundamental wave fre­
quency increases in comparison to the ordinary Ceren­
kov angle (without field). For the remaining frequencies 
( n >" n0 ) the emission is mainly determined by the term 
di0 ( w) which practically coincides with the Tamm­
Frank formula. 

We now consider the case when the fundamental wave 
is circularly polarized: 

E.= E,cos ( ro;no x- root ),E, =Eosin ( ro;no x -Ol,t). (2.13) 

Linearizing the equations of motion in the field (2.13) 
with respect to J.l., taking (2.3) into account, we find the 
particle velocity in the capture mode: 

Vx =•~ (1 +[!COS !Jt), 
no 

(2.14) 

v. = - fl. c cos Ill, sin !Jt, 
}'no'- 1 

v, =-fl. c sinlll,sin!Jt, 
l'no'-1 

where 0 = e(n~- 1)E 0 /mcn0 no longer depends on the 
initial phase <1> 0 • The computation of the spectral emis­
sion distribution from (2.14) yields exactly formulas 
(2.7)-(2.10) for the linear polarization case, except for 
the fact that in our case 0 is constant for all particles 
within the wave, and in the case of a beam of particles 
a single particular frequency is emitted at a given 
angle. In other respects the emission resembles the 
case of linear polarization. 

3. We consider stimulated emission of a particle 
beam captured by a wave. Equations (2.4) and (2.14) 
show that the particle enerP"v in the wave field 

rs, .. - mc'no 
fS=fSo+[L--Cos!Jt, <Do- (3.1) 

no'- 1 }'no' - 1 

oscillates between the values 

tsmin =fS, (1--J.L-) and tsm,. =ts.(1 +-J.L-) 
no'- 1 no' -1 

so that 
!:J.[S = 2 mc'n, 

fl. (no' -1)'" 
(3.2) 

According to (3.1) the particle periodically loses and 
acquires energy inside the wave. We can prove rigor­
ously that energy lost by decelerating particle is 
forcedly transferred to the wave (this, in particular, 
is the cause of the strong suppression of "spontane­
ous" emission at the fundamental frequency w0 ). 

We now proceed to a quantitative analysis of the 
self-consistent problem. In this case the field ampli­
tude varies slowly with x and t. Let the wave be at 
first circularly polarized: 

E,(x, t) = E(x, t)cos (ro,n,x I c- ro,t), 

E,(x, t) = E(x, t)sin (ro,n,x I c- ro 0t). (3.3) 
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We select the boundary conditions in the form 

E,(O, t) = E, cos w,t, E,(O, t) = -E, sin w,t. (3.4) 

We assume that particles cross the boundary of the 
medium x = 0 at a time t = t 0 with an initial velocity 
Vo = Vox = c( 1 + fJ. )/no. 

Linearizing the equations of motion and taking (3 .3) 
into account we find the velocity of a single particle in 
the field: 

e ( [ e(n,' -1) s' ( ' ) '] v,=- , ftCOSWoto)sin Et,xdt, 
fno -1 men, 

t, 

(3.5) 

e [e(n,'-1Js' (')a'] v, = 2 j.tsin(woto)sin E t ,x t . 
fno -1 men, ,, 

To determine the current created by the flow of parti­
cles we assume that all space is continuously filled 
with charged particles. Then at the time t 0 in the point 
x there are only particles for which t 0 = t - n0 x/ c 
(with an accuracy to fJ. w0 /0 « 1). Thus we have 

eep, ( w,n, ) [ e (no'- 1) j,(x, t) =- j.t 
2 

cos --x- w,t sin 
fn, -1 e men, 

t 

X JE (t', :, (t'- t)+ x )at']. 
1-n0x, c 

(3.6) 
. eep, ( w,n, ) [ e(n,'- 1) J,(x,t)=-[1, 

2 
sin -x-w,t sin 

}no -1 e men, 

X J E(t',.~,(t'-t)+x)dt'], 
1-n0x/c 

where po is the average particle density in the initial 
beam that we consider constant (for fJ. « 1 we can 
neglect the change in po). 

We are interested only in the stimulated part of the 
emission and therefore we do not consider the scalar 
potential field and the axial field along the x axis. 
Substituting (3.6) into Maxwell's equation and taking 
into account the slow variation of field amplitude: 
I a E/ at I « Wo I E I , I a E/ ax I « Wo no I E I/ c, we obtain a 
simplified equation for the self-consistent field: 

iJE n, iJE 
a;--+'7'"31 

2nep, . [ e(n,'-1) s' (' c ' ) '] = 2 [!Sill E t,.-,(t -t)+x dt . (3.7) 
noVno -1 mcno t-noxlc no 

Equation (3.7) assumes a simpler form in the wave 
coordinates T = t- n0 x/c, 11 = x, E(t, x) = f(T, 1J ). 
rhen 

iJ 2nep, [ e(n,'- 1) s" ] ( -/(t,l']) = [!Sin /(T,I'J')d!']' . 3,8) 
iJ!'] n,}no' -1 men, , 

A simple analytic solution is obtained for the case of 
a monochromatic incident wave: f( T, 0) = E0 • In the 
case, according to (3 .8 ), f( T, 1J) = f(17 ) is independent 
of T and the quantity 

e(n' 1) " 
'P = 0 --:- s /(!']') dY]' 

me 0 

(3.9) 

is expressed by the nonlinear equation of anharmonic 
oscillations 

(3.10) 

whose general solution is the incomplete elliptic inte­
gral of the first kind: 

E •I' d 8 2 

~(n,'-1)~=s z ,w= Jtj.t mcp'.(3.11) 
2 me' ,f1+~'sin'z n,(no'-1)'" Eo' 

We investigate particular cases of (3.10). In the 
linear case, when cp << 1, we have 

E(x)=Eo{ ch (x/l), ft > 0 
cos (x/l), ft < 0. 

(3 .12) 

Thus for fJ. > 0 the light is amplified exponentially. 
For fJ. < 0 there is no amplification on the average. 
The quantity 

( mc'n, )''• 
l = 2ne'l'no'- 1 Po!! 

(3 .13) 

contained in (3.11) is the coherent amplification length. 
Analysis of the above formulas shows that the linear 
r~me occurs for E S e;\0po(mc 2/~ 0)3 and that 
l ~ mc 2(~ 0/mc 2?/e 2 A0p 0 in that case. Here Ao 
= 2rrc/ w 0 is the wavelength of the fundamental emission. 
In the saturation region, (3.8) gives 

2nme'po 1 { [ eE,x ]} ( ) E(x)=Eo+~t , , 1-cos (no'-1)-, . 3.14 
n,(n, -1)" E, me 

The resulting wave-energy increment corresponds to 
the energy lost by particles (per unit volume) accord­
ing to (3 .2): 

~W = p,~e = 2[1eopo/ (no' -1). (3 .15) 

Equation (3.14) is valid for E ~ e;\0p 0 ~ 0/mc 2 • 
Equation (3 .8) is fully analogous to the quantum­

amplifier equation. The parameter fJ. plays here the 
role of the population excess. 

We now examine the case in which the fundamental 
wave is linearly polarized along the y axis: 

E, = E (x, t) cos (w,n,x / e- w,t). (3 .16) 

We use the same method to find the velocity of a 
single particle in such a field: 

v, =-It (no'~ 1)'/, sin [J Q(t'.x)dt'], ., 
where the modulation frequency 

e(no'-1) 
Q(t,x)= E(x,t)cosw0t0 

me no 

(3 .17) 

depends here on the initial phase <1> 0 = w 0t 0 • Therefore 
in this case all harmonics are present in the emission 
from a particle beam. Similarly, if we determine the 
current produced all particles and expand it in a Bessel 
function series, we find that the stimulated portion of 
the emission (due to current jy) contains only odd 
harmonics, and the noncoherent portion (axial field 
along the x axis) contains only even harmonics. Just 
as in the case of circular polarization, we consider the 
coherent emission. Substituting the current 

. eep, ~ . {. ( n, ) } ;,(x,t)=- (no'- 1)'!, f'•~~~·~•J,(Z)exp tsw, ---;;x-t , 

s = 2k- 1; k = 0, ± 1, ± 2 ... 
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Z(x, t) = e(no' - 1) j E( t',~(t'- t)+ x} dt' (3.18) 
mcno t-noxlc no 

into Maxwell's equation and simplifying, we obtain for 
the amplitudes Es(x, t) 

. ( n0 iJE, n,' iJE, } s'wo' 2 2 
21sw0 ---+--- +--(n, -no)E, 

c iJx c' iJt c' 

= i' 4nepoSWo I (Z) 
c(n0'-1)'f,l.l' ' 

(3.19) 

where ns is the index of refraction of the medium at 
the s -th harmonic. 

We consider (3.19) for the cases of present and ab­
sent velocity matching. If ns ,.t n0 (no match), we ob­
tain because of the slow amplitude variation 

E,=i'l.l 4necpo 1 1 /(Z) (3.20) 
(n02 -1)'1•sw0 n,'-n0' ' • 

This formula shows that the radiation field weakly de­
pends on the harmonic number. On the other hand, in 
the case of a match (ns =no) we have 

iJE, no iJE, _ .,_, 2nepo I (Z) -+---! l.l •. 
iJx c iJt n0 (n02 - 1) '/, 

(3 .21) 

For the first harmonic (coherent portion) all results 
follow exactly the case of circular polarization in (3.11) 
-(3.13) except for the fact that the coherent gain length 
increases by a factor of f2 in this case: llin = lcr 12. 
To determine emission for the remaining harmonics in 
the matching case we consider the problem for a given 
field. Then for large x (e(n~- 1)E 0 x/mc 2 » 1) we 
obtain 

2nmc'po 1 
E = i'-' l.l---::-_:..,-:-

, no(no' -1)'h Eo 
(3.22) 

Hence the harmonic radiation power is (in order of 
magnitude) 

P, =-=-IE.!'~ e'ct.,-'(t.,'p,)'(e,/mc')'. 
8n 

(3 .23) 

Let us obtain some estimates. The estimating 
formulas as well as (3.15) and (3.23) have been obtained 
for the condition i.J. ~ !;(me 2/ E 0 ) 2 which follows from 
the capture condition. Since the coherent length in the 
linear regime increases as the square of energy and 
the particle losses depend logarithmically on the en­
ergy, energy increase is of no particular benefit to the 
amplification of weak signal. The optimum energy is 
E 0 ~ mc 2 • Then l ~ 1012(Aopot 1 • For example, l ~ 1 em 
for Ao ~ 1 i.J. and po ~ 1016 cm-3 , and l ~ 1 mm for Ao 
~ 10 i.J.· To reduce electron energy loss it is desirable 
to use gases that resonate at the incident radiation fre­
quency (large index of refraction with relatively low 
densities). For the above parameters, the linear 
regime occurs up to fields of 105 V /em. In the satura­
tion regime for po ~ 1016 cm-3 additional emission in­
put to the wave amounts to 108 W/cm2 , which is larger 
by one order than the power of incident emission. For 
the same parameter values harmonic emission (in the 
match case) is of the order of 107 W/cm2 • These com­
putations show that the amplification effect (in the 
case of constant n0 ) can be utilized in the optical range 

if we have an electron beam with an energy of several 
MeV and a density ( 1015-1016 ) cm-3 • 

4. The situation is considerably improved if we use 
a medium with a variable index of refraction n(x). In 
this case the particles continuously decelerate and the 
light is continuously amplified in the direction of in­
creasing n(x). On the other hand, the particles are 
accelerated in the direction of decreasing n(x). In this 
case the solution of the self-consistent problem is ex­
ceedingly difficult and therefore our results are pre­
sented in the given-field approximation. The most 
favorable situation occurs for a particle with P 0y ,.t 0, 
The change of energy of an equilibrium particle is then 
given by the relation 

e- e,. = eE, (y- y,)cos <I>., (4.1) 

Hence it follows that cos ci>s > 0 corresponds to the 
particle acceleration regime, and cos <l>s < 0 to the 
light amplification regime. ·Equation (4.1) determines 
the actual transverse dimension of the system. The 
character of variation of n(x) is given by 

1 { n(O) n(x) } + 1 1 [n(x)+ 1][n(O) -1] 
2 n'(0)-1 n'(x)-1 4 n[n(0)+1][n(x)-1] 

eE0cP,.(x- x;)cos <ll, 

m'c' + c'P,u' 
(4.2) 

The longitudinal dimension of the system is deter­
mined by the relation 

n'(x) 
e 2 = (m'c' + c'P ')-::-:--:~-:-
• '• n'(x)-1 

(4.3) 

Equations (4.1)-(4.3) are valid for an equilibrium 
particle whose phase satisfies the relation is = ~s = 0 
(vx = c/n(x)). If E 0 ~ 107 V/cm and the transverse 
dimension of the laser y - y0 ~ 1 em, then ~E ~ 10 
MeV for each electron. Selecting cP0y we can make 
the axial dimension (x - x 0 ) of the order of the trans­
verse dimension (at least a few times larger). This 
shows that a beam with a total number of electrons of 
1012 (and energy of ten MeV) emits an additional energy 
of the order of 1 j into the wave. 
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