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The interaction between a weak gravitational wave (GW) and a gas is considered. The problem is solved on 
the background of a flat Minkowski space-time. It is shown that if prior to the passage of the GW the 
distribution function f0 of the gas was isotropic, then the phase velocity of the GW is v >c. An anisotropy of 
f0 can lead to Pvp<c. In this connection we consider the interaction of a GW with a beam of ultrarelativistic 
particles. It is proved that in a collisionless gas there is no specific damping of the G W analogous to Landau 
damping of waves in a plasma. The complex index of refraction for GW in a gas is computed, taking into 
account the collisions. For comparison we consider the collisionless interaction of short-wave adiabatic 
perturbations (AP) of the metric during the early stages of expansion of the Universe with a neutrino gas. It 
is shown that in distinction from GW, damping of the adiabatic perturbations is possible, damping which is 
analogous to Landau damping. A condition is derived for which a sufficiently large anisotropy of f0 of the 
neutrinos leads to replacement of the collisionless damping of these perturbations by their growth. 

IT is known that gravitational waves (GW) do not inter
act with a homogeneous Pascal fluid in the absence of 
dissipative processes[HJ. In a viscous but homogeneous 
medium the energy of the GW is converted into heat, 
without provoking macroscopic motions of the med
iumC4'5J. In the case of nonhomogeneous viscositf6J, 
as well as for nonhomogeneous elasticityC7J , the energy 
of the GW can also be converted into acoustic vibra
tions. In addition, a recent papez!8 J has rigorously 
solved the problem of refraction of GW in a medium 
filled by quadrupoles. 

In the present paper we consider the interaction of 
GW with a gas, when the model of a continuous medium 
is not applicable and the motion of the individual parti
cles leads to a refractive index n differing from one. In 
particular, refraction occurs even for a collisionless 
gas1>. 

In order to compute n we make use of a dispersion 
relation derived from the kinetic equation and the 
linearized Einstein equations. The problem uses a 
small parameter a which reflects the weakness of the 
gravitational interaction: a = (w 0 /w) 2, where w is the 
frequency of the incident wave and w 0 is the analog of 
the plasma frequency: wg = 47TGE/c2, where E is the 
energy density of the gas, and G the gravitational con
stant; w~ ~ 10-6 p, p = E/c2 [g-em -3]. It is clear that a 
wide range of values w and p corresponds to a « 1. (In 
cosmological applications a· « 1 means in addition that 
;\ « ct, i.e., the wavelength of the GW is much smaller 
than the optical horizon.) 

In a collisionless ultrarelativistic gas Im n ~ O(a 2), 
i.e., in the approximation used here, the collisionless 
damping is absent, which is a direct consequence of the 
small difference between vp (the phase velocity) and c. 

The computed dependence of the refractive index on 
the collision frequency v in the isotropic case is such 
that for v/w » 1 

IRe n- 11 ~ •ls, Jm n ~ avsiw; (1a) 

1>A growth of GW has been discussc:d in Bashkov's thesisC9l. For a 
certain dependence of the collision frequency on the particle energy in 
the gas he has obtained some growth for ultrarelativistic particles. The 
problem of collisionless damping of gravitational waves was for the 
first time posed by Shvarts. 
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and for v/w » 1 

1Ren-11~as(w/v)', Irnn~asw/v. (1b) 

Here ~ ~ 1 in the ultrarelativistic case, and 
~ ~ kT/mc2 « 1 in the nonrelativistic case (kT is the 
mean kinetic energy and m is the mass of one particle). 

Here always Re n < 1 and Im n > 0. In other words, 
in the isotropic case vp > c2 >. 

In addition to the problem of GW, the same method is 
used to consider the following problem. During the early 
stages of expansion of the Universe short-wave adia
batic perturbations (AP)[l' 2J, which represent sound 
waves (their velocity is Vsound = c/¥'3), interact with 
neutrinos through metric perturbations that are related 
to the excitation of such waves. For the case of suffi
ciently short wavelengths the collisionless kinetic equa
tion holds for the neutrino gas. 

Since vsound < c, there will always be individual 
neutrinos traveling in resonance with the wave. For 
this the neutrinos must form with the wave an angle 
13 = cos-1 3-112. Thus, in the isotropic case there appears 
a damping which is analogous to Landau damping[1oJ. 

For strong anisotropy one may expect the damping to 
be replaced by growth of the wave. Let us derive a con
dition for this to become possible. 

1. In a flat metric on which perturbations are super
imposed, i.e. in a metric of the form 

ds' = dt'- (b.~+ h,,)dx"dx~, 
c = 1; a, j3 =:= 1, 2, 3 

the kinetic equation has the formC 11 ' 12J (the dot means 
differentiation with respect to time) 

;, + sn"of, I ox"- 1f2Lf, = [!],,, (2) 

where f0 is the unperturbed distribution function and f1 
is the perturbation of the distribution function. Here 
[f) tis the collision integral, ~ = (E2- m2)112/E, E is the 
en~rgy of one particle and m is its mass. 

In the ultrarelativistic case~~ 1, na = pa/p, pais 
the momentum of one particle, p2 =papa. The operator 
L which describes the interaction of the gas with the 

2>At the same time, of course, the group velocity v8,=d"'/dk is smaller 
than c. 



THE INTERACTION OF WEAK GRAVITATIONAL WAVES WITH A GAS 835 

perturbations of the metric in (2) has the form 
~ i) i) 
L = F~'e·- + E~-

iJe iJn"' (3) 

The linearized Einstein equations can be written in the 
following form 

'j,(-ft.~ + ft.\)=y6T.', 

'/,(2h- h.~'+ h~~) = y6Tv', 

'/ (-h' +h'·' +h'' -h'·'-h''')- oT' 2 a a.,v ,(1; a.,v v,a - 'V a. 

V = 8nG/c', h = h,'; 

(4) 

(5) 

(6) 

(a+ n (7) 

61: = J J Jp,p•J,dP, dP = !;'ed(!;e)dQ, (8) 

i, k == 0, 1, 2, 3; 

dP is the volume element in momentum space and dQ is 
the element of solid angle in this space. 

We expand the equations {3)-(7) in a Fourier integral 
over space. For convenience we introduce spherical 
coordinates: 

COS 8 = X = na.ea., 

n"R~ = (1- x') '1• cos<p, n"R.' = (1- x') '"sin rp, (9) 

where the following notations are used: kO! = keD! is the 
wave vector, RO! and R'O! are unit vectors perpendicular 
to eO! and to one another. 

One can further expand Eqs. (3)-(7) into a Fourier 
integral with respect to time. Although this procedure 
is not correct (as was shown by Landau[10J) it still 
leads to the correct dispersion law, if one chooses the 
integration path correctly (according to the Landau 
rule). 

Then (2) yields (the tilde denotes the Fourier trans
form) 

2. We now consider the interaction of GW with a 
collisionless gas. It is convenient to write 'ha in the 
following form: (3 

7i~ = h,(R"R,- R'"R,') + h,(R"R,' + R'"R,). 

Contracting (7) first with RO! R(3- R' a R~ and then 

with R' a R 8 + R~Ra 3 >, we obtain · 

(10) 

(1-n')h,= (a/E)Ith., i, k== 1, 2, (11) 

where E is the energy density of the gas, and 
00 211 i 

It=- J !;'e'd(~e) J dq> J dx(1- x') 'b, 
0 0 -1 

X [ eiJfo/iJe + niJfo/iJx b• + iJfo/iJrp d•] 
1- snx 1-x' , 

b, = ( c~s 2<p } , 
sm2rp 

d,=(sin2rp}. 
cos 2<p 

(12) 

3>Here there is no contradiction with the fact that in (7) a=l=/3 since 
before carrying out the contraction one would have to add a term with 
llfi, but the contraction with llfi vanishes. 

Finally, equating the determinant of the system (11) to 
zero, we obtain 

a 
1-n±'= 2E {J,'+Iz'±[(J,'-/,')'+41,'1,']''•}. (13) 

In the simplest case of an ultrarelativistic gas(~ = 1) 
with an isotropic distribution f0 , we obtain I~ = I~ = 0, 
It = I~ = I. To first order in a we obtain 

n = 1- 'f,.a, ?Al. Vp = c In> c. (14) 

For anisotropic f0 , birefringence occurs. 
The absence of Landau damping to first order in a 

follows formally from the fact that the integral I has no 
singularities. We now consider a beam of ultrarelativis
tic particles. Then fo = W'0{E)O(K- Ko)o(cp- cp 0). Comput
ing I~ we obtain 

1 
It= E(i + Xo) { (5- 3x0 - 4x0') • 

( cos' 2<p0 

'/,sin4cpo 
'/,. s~n 4<p,) + 2( 1 _ xo) ( ~os 4<p, -sin 4<p0 )}, 

Sill Zf{!o Sill 4<p0 COS 4<p, 

and finally 

n±= 1-'/<a(1+xo){(5-3x,-4xo') +4(1-xo)cos4<p, {15) 
± [ (5- 3xo- 4xo')'- 16(1- x,)sin' 4<p0 ] "'}. 

For example, for Ko = 1 (the beam goes along the wave) 
we have n. = 1, n_ = 1 + 2a. 

However, there is still no damping to first order in 
a, which is a consequence of the transversality of the 
GW. It can be seen that in the anisotropic case both 
vp > c and vp < c are possible. 

3. For comparison we consider the problem of inter
action of AP with a neutrino gas during the early stages 
of expansion of the Universe (the formulation of the 
problem was already described above)4 >. 

From {4) and (6) as well as (7), projecting the latter 
equation onto e O!e f3, we obtain 

{~- 1/ak'!l.) = y/(n)D., ~ + 'f,k'!J. = 0. (16) 

Here t.. = A + iJ. ~ op (op is a perturbation of the radia
tion density in the sound wave) 

/(n)!J. = i j J j e'x'dedrpdx FeiJfo/iJe+E"iJf,/iJn" , (17) 
o , _1 w(1-l'3nx) 

F = 1/siwD.[l + 3x'(2n' -1)]; E" = 1/siwD.{(1- 2n')3xe~ 

-- n" + j3n(xn"- e")}. 

Here we have introduced by analogy the refractive index 
n = Vsound/vp = kc/3 112w. We obtain, finally, 

n'-1 =·'L,/(1) 
w' ' (18) 

1 go 211 t za 
/(1)=-=-J e'de s d<pP s X X -

3-.'3 , , _1x- 1/l'3 

x{(t + 3x')e·iJ/o+ [4x + -.'3(1- x') l iJf,} 
iJe ax (19) 

2in s~ 3 s'" ( ato - iJf,\ --= e de drp e-+1'3- , 
9,13 ae ax I •~11 v:i I o o 

where P designates a principal value integral. 

•>1n spite of the fact that it is important, we first neglect the expansion, 
and take it into account later. 
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-
Let for example, f0 = >l!(E)X(K). Then the damping o is 

6 = Zn~y (~ 'F (~) r3dr) (4x- V3 fJfJX) • (20) 
9 ]l3w2 0 X x~l/Y3 

For an isotropic distribution (X = 1) we have 
o = 41Ta/9!3 > 0, corresponding to damping. 

It can be seen that the condition for growth of the 
sound waves is the inequality 

(21) 

This condition can be explained in the following manner. 
If the distribution is isotropic there will always be 

damping, owing to the fact that, as a consequence of the 
Doppler effect, the particles having their velocity pro
jection on the direction of propagation of the wave equal 
to c/3112 + t:. v transfer to the wave less energy than is 
taken up by the particles which have their velocity pro
jection on the wave equal to c/3112 - t:. v. But if there 
are more particles with velocity projection c/3112 + t:.v, 
than particles with velocity projection c/3 112 - t:.v, the 
total contribution to the energy of the wave by all reson
ant particles can be positive. However, for this we see 
it is not sufficient that the inequality (aX/aK)K = 3-112 

> 0 be verified, it is also necessary that (a X/aK)K = 3-1!2 

>A > 0, which is expressed by Eq. (21). 
The example involving the AP was discussed here 

only for the purpose of comparison with the case of GW, 
since Zel'dovich has noted that a collisionless interac
tion is of no significance in cosmology, where the pres
ence of expansion leads to a decrease of hB with time, 
and the term in Eq. (3) which correspondsqo the collis_. 
ionless interaction also deereases rapidly. 

4. Let us return to the GW. We consider a collision
less nonrelativistic gas and limit ourselves to an iso
tropic Maxwellian distribution function 

f, =A exp(-p' / 2mkT) =A exp(-flp'), 

where A is determined by the normalization condition: 

Here 

A J exp(-j)p')p'rdQ = E = Ne; 

( fl )'/, 
A= N --;- , e""" me'. 

2 :ty Joo dfo 
n - 1 = -- p' dp -I (p, n), 

2w'e 0 dp 

l (1 ')' 
I(p, n) ~= J - x I dx. 

_ 1 1- pxn e 
(22) 

In the nonrelativistic case the main contribution to the 
integral comes from the region p/ E « 1: 

l(p,n}""" j (1- x')'dx + ~ n f x(1-x')'dx+ 0 ( ~: ). 
-1 -1 

however the second term canishes, since the integrand 
is odd. We obtain finally 

n = 1-2a6. (23) 

Thus, as expected, an additional small factor 
~ = kT/mc2 « 1 appears due to the nonrelativistic limit. 

5. We now take collisions into account by setting 
[f] t = f1 /r(p) =- v(p)f1; here v(p) is the frequency of 
cofl\sions, which in general depends on p (Tis the time 
between two collisions). 

In the isotropic nonrelativistic case we have 

(24) 
1 (1-x')'dx 

/(p)=J . 
_, (1-px/e)+iv(p)/w 

A computation yields 

v' _, 16 
Re/(p)= (1 +-} -+0(6'), 

w' 15 

Im/(p)= (1+~} -~~~+0(6'). 
w' w 15 

This transforms (22) into the following expression 

n- 1 = 4ny Joo p' dp df, (1 + v'(p) } _, (1- i v (p) } . (25) 
15w'e , dp w' w 

Let v(p) = llo(tf 12p{. Introducing the notation vo/w 
= JJ., we have 

Here 

16 Wo2 

Ren-1 = ---=-s<ll,(f!}, (26) 
15fn w' 

8 w,' 
Imn = --=..-sf!'l',(f!). 

15yn w' 

(27) 

It is clear that the refractive index has the asymptotic 
behavior (1) independently of the value of r. 

The same asymptotic behavior is also valid in the 
ultrarelativistic isotropic case, if one sets ~ = 1. 
Indeed, in this case 

2yn Joo 
n-1 = --- dee'/o(e)/(e), 

' (1)2 0 

/(e)= s' (1- x')'dx 
_,1-x+iv(e)/w 

The computation yields for v independent of E: 

(28) 

(29) 
4 v' [ v' - 4w' v' + 4w' 4v 2w ] 

Re/ = -:-+·---, 6 + ln . --arctg- , 
3 w 2w' v· w v 

v { 20 v' [ v' + 4w' ( v 4w } 2w ] } Im/= -- -+·----, -2+ln + --- arctg- . 
w 3 w v' w v v 

A direct expansion of these clumsy expressions for 
v/w « 1 and v/w » 1 leads again to the asymptotic be
havior (1). 

The behavior of n(w/v) is illustrated in the figure. 
We see that for large collision frequencies, i.e., for 
small mean free paths, the GW does not interact at all 
with matter, in agreement with[1'2J. 

As expected, the absorption exhibits a nonmonotone 
dependence on v. In the nonrelativistic case the absorp
tion attains a maximum for a value of z; satisfying the 
equation 

-a( 
Re n-1 

The dependence of the real and imaginary parts of the refractive 
index on the frequency of collisions. 
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Soo 1]'/,+•e-" 1- fL'fJ' d = 0 
0 (1+fL'fJ')' 1] . 

(30) 

The integral can only be computed for p-independent 
v. Then, for r = 0 we obtain 1J. max= 1, i.e., v = w. 
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