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An Ising lattice with superexchange is investigated. The intermediate atom responsible for the exchange 
interaction may be in either of two states that differ by an energy E and have different exchange integrals 
between the neighboring nodes J 1 and J2• For certain relations between the parameters E, J 1, and J2, the 
system under consideration may possess three phase-transition temperatures. 

IN certain magnetic materials with a complicated crys­
tal lattice, the exchange interaction between the spins of 
magnetically active nodes proceeds via magnetically neu­
tral intermediate ions or atoms. Such a transfer of ex­
change interaction is called superexchange. We consider 
the simplest model of a lattice with superexchange, as­
suming that it is described by the Ising model, in which 
the interaction of each pair of sites (circles with arrows 
on Fig. 1) is "transferred" by means of a single inter­
mediate atom (circles without arrows in Fig. 1). We 
shall assume that the intermediate atmn, which ensures 
the exchange interaction, can be in one of two states, 
which differ in energy by E, and which have different ex­
change integrals with the neighboring sites J 1 and J 2 • 

If O"n and O"n +1 are the spin variables of the two neighbor­
ing sites in the Ising lattice (a = ± 1 ), then the energy for 
each single bond (i.e., the line connecting O"n and an. 1) 

can be written as 6 1 =- J 1anan+ 1 or 62 =- JzO"nO"n+l 
- E, depending on the state of the intermediate atom. 

The partition function of the entire system can be 
written in the form 

z = 1: II z· ( <1n<1n+I)' 

{a} o,J 

(1) 

where n is the vector of the corresponding lattice site 
and j is a vector connecting the given site with one of 
its nearest neighbors. In writing (1), use has been made 
of the notation 

z· ( a,a,) = exp {~1,<J,a,} + exp {~1,a,a, + ~e} 
== Q exp {~1'a,a,}; 

the quantities J* and Q in this formula are easily found 
by using the theorem of the "transformation" of the 
Ising lattice. l 1J It is seen that 

e-2x+ ex(i'-ct) 

TJ = e-'P" = -..,-.,---...,.--...,. 
- 1 + er(v+a) ' 

Q = {1 + ex(v+a>}\'•{1 + ex<v-a+Zl}'b; 

a = 1, I 1,, y = e I 1,- 1, x = ~1,; 

(2) 

({3 = 1/kT). The partition function of the Ising lattice 
with superexchange Z is easily expressed in terms of 
the partition function of the ordinary Ising lattice 
Z0(e- 2{3J) by means of the formula 

Z = QNZ,(TJ), 

where N is the number of intermediate atoms in the lat­
tice. The function Q has no singularities; therefore all 
the singularities of Z as a function of e-z{3J* are iden­
tical with the singularities of the function Z 0 (7]). We re­
call some properties of Z 0 (7]). If 0 < 11 < 1, then a phase 
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FIG. I 

transition of the ferromagnetic-paramagnetic type takes 
place for 11 = 7]0 < 1. If 1 < 11 < oo, then, for 11 = 1/7]0 > 1, 
the transition is of the antiferromagnetic-paramagnetic 
type. It is important to note that the quantity 7]0 is a 
number characteristic of the lattice type under consid­
eration: for example, for primitive, body-centered, and 
face-centered cubic lattices, the corresponding values 
of '17o are 0.641, 0.727 and 0.815, respectively. [ZJ 

For the ordinary Ising lattice, the quantity 11 changes 
monotonically with increasing T. Here only a single 
Curie point or Neel point is possible. In the model for­
mulated by us, as follows from (2), the quantity 11 can 
in principle change nonmonotonically with changing T. 
It can therefore be shown that several points of phase 
transition from the ordered to the disordered states and 
vice versa can be realized in a similar system. The 
number of possible types of phase transitions in the 
studied system depends on how many times the curve 
77 = 7](X) crosses the lines 11 = 7]0 and 11 = 1/7]0 when x 
varies in the interval (0, oo). Analyzing the function 11 
= 11(x), we shall show that there are actually sets of 
values of the parameters a and y for which the system 
possesses three phase-transition points. 

First of all, we note that in the analysis below it suf­
fices to limit ourselves to the E > 0 and x > 0 (which 
corresponds to J 1 > 0). Actually, the substitutions 
J 1 - - J 1 and J 2 - - J 2 transform 11 into 1/7], the case 
x < 0 reducing thereby to the case x > 0. Proceeding 
to the analysis of the function 7](x), we consider the ex­
pression for the derivative d7]/dx = a(x) .\.(x), where 
a< 0 always, and 

f,(x) = 2e-<t+vlx + 2ae(l+vlx + (2 +a+ y)e<•-llx +(a- y) e1'-"'". (3) 

An elementary investigation of this expression shows 
that a nonmonotonic behavior of .\.(x) is possible only 
for - 1 < a < 1. It is convenient to carry out further 
detailed study of (3) in three different cases, which per­
mit in principle the existence of three phase-transition 
points. 

1. Case a< 0 andy< a. In this case J 2 < 0, i.e., 

the exchange integrals in the different states of the in-
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termediate atom differ in sign (we recall that J1 > 0). 
The ground state of the system (for T = 0) is ferromag­
netic. The greatest nonmonotonicity of 77(x) occurs at 
I C: - Y I « I a + Y I « 2. A schematic plot of 17 = 77(x) 
Will have the form of Fig. 2. It is easy to see that there 
exist such values of the parameters a and y for which 
77min< 77o< 77max· For example, let y= -0.11 and a 
= - 0.10. Then, at x = 2 and x = 15, the corresponding 
values of 17 are 0.602 and 0.825. Thus, for these values 
of the parameters a and }', three phase-transition points 
are possible in all three cubic lattices. The locations of 
the corresponding phases on the temperature axis are 
shown in Fig. 3 (we recall that x = {3J1). The letters F 
and P in this figure refers to the ferromagnetic and the 
paramagnetic phases. 

2. The case a < 0 and a < y < I a 1. The ground 

state of the system is antiferromagnetic in this case. 
The schematic plot of 77(x) now has the form of Fig. 4. 
The most favorable conditions for the appearance of a 
strong nonmonotonicity (i.e., the sharp drop of the plot 
of 77(x) in Fig. 4) are realized as a ~ 0. For example, 
for a = - 0.05, y = 0 and x = 2, we obtain 17 = 0.589, 
which satisfies all three cubic lattices with something 
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a I Y I "min I "max I ~ I BCC II a I V I "min I "max I ~ I BCC 

0.01 0.31 0.617 0.791 + +. 0.03 0.43 0.626 0679 + -0.01 I 0.21 10.585,0.7371 +I + 'I I I I I I 
o.o; o.32 0.606 0.696 + - I o.o2 I o.s2 o.656 o: 768 - + 
0.0~ 0.42 0.633 0. 737 + + 0.04 0.54 0.636 0.670 + -

to spare. The locations of the phases on the tempera­
ture axis for the primitive and body-centered cubic lat­
tices in this case are shown in Fig. 5, where A is the 
symbol for the antiferromagnetic state. 

3. The case a > 0 and y > a. The exchange integrals 

J 1 and J 2 in this case are of the same sign (positive). 
The ground state of the system is ferromagnetic. The 
greatest nonmonotonicity of the plot of 77(x) occurs upon 
satisfaction of the inequalities a << y << 2. The sche­
matic dependence of 77(x) for such conditions is similar 
to that shown in Fig. 2 with the corresponding phase 
locations (Fig. 3). Since very small values of a are 
necessary to achieve strong nonmonotonicity in this 
case, we have carried out a numerical treatment of 77(x) 
for the purpose of finding 17 min and 17 max for different 
values of the parameters a and y. In the table we show 
a and y for which phase transitions take place in primi­
tive and body-centered cubic lattices. (The plus signs 
in the last two columns indicate the presence of three 
phase-transition points.) 

In conclusion, we note that the problem of the appear­
ance of several phase-transition points in modified Ising 
lattices has been discussed by many authors. r31 How­
ever, the model assumed by us differs from what has 
been considered previously by the fact that in it the ex­
change between the sites takes place through "nonmag­
netic" ions, with "internal" degrees of freedom. 
1M. E. Fisher, The Nature of the Critical State, (Russ. trans!.), Mir, 
1968. 
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