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A phenomenological theory of Fermi-type quantum crystals with gapless Fermi excitations is constructed. 
Assumptions analogous to those used in the Landau theory of Fermi liquids form the basis of the theory. A 
system of equations is obtained for the spectrum of the long-wavelength and low-frequency vibrations of the 
crystal. Expressions are found for the compressibility, specific heat and spin susceptibility. 

1. The ground state of a classical crystal corresponds 
to an assembly of stationary atoms, localized at the 
lattice sites. Quantum effects lead to zero-point lattice 
vibrations and, associated with these, delocalization of 
the atoms. In the case when the interaction between the 
atoms is weak, and their mass small, the amplitude of 
the zero-point vibrations can become comparable with 
the lattice constant. In these conditions, overlap of the 
wave functions of neighboring atoms is important and, 
because of the principle of indistinguishability of iden
tical partie les, the !attic e sites can no longer be identi
fied with the atoms of the crystal. The properties of 
these systems must depend on the statistics by which 
the atoms composing them are described. The above 
effects make classical methods of treating these sys
tems invalid. Such crystals are called quantum crystals. 
The most striking examples of these are solidified He3 

and He 4 • 

The development of a microscopic theory of quantum 
crystals has been associated principally with the self
consistent field approximation. In this, the starting 
point used has been either a system of self-consistent 
single-particle levels, on the basis of which the vibra
tional spectrum of the crystal has been determined[ll:+ 
or an aggregate of interacting phonon vibrations r2 J. It 
is characteristic that, in both cases, phonons turn out 
to be the only type of weakly excited states of the sys
tem, as in a classical insulating and nonmagnetic 
crystal also. Andreev and Lifshitz[SJ first expressed 
the idea of a possible quantum-crystal state in which 
gapless single-particle excitations (defectons) occur. 
Their presence results in the number of sites being 
different from the number of atoms in the lattice, and 
leads to a qualitatively new classification of the low 
excited states of the crystal. 

In the present paper, a phenomenological theory of 
a Fermi-type quantum crystal (i.e., consisting of 
Fermi-particles) possessing gapless Fermi excitations 
will be constructed. As the basis of the theory, we 
make assumptions analogous to those used in the Lan
dau theory of an isotropic Fermi liquid[4l. 

In the second section, we shall formulate the basic 
postulates of the theory and obtain relations, stemming 
from the Galilean in variance, between the parameters 
introduced. 

In the third section, we shall find a system of equa
tions describing the long-wavelength (and low-frequency) 
vibrations of a quantum crystal. In essence, these 
vibrations are coupled excitations of the zero-sound 
and phonon types. 

In the fourth section, we shall obtain expressions 
for some thermodynamic quantities of a quantum 
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crystal--the compressibility, specific heat and spin 
susceptibility. 

2. In constructing a phenomenological theory of a 
quantum crystal of the Fermi type, we shall start from 
the assumption that any weakly excited state of the sys
tem can be characterized by an assembly of Fermi 
quasi-particles with quasi-momenta p lying in the 
vicinity of a certain surface, called the Fermi surface, 
and by the lattice deformation. We shall describe the 
latter by the deformation vector Ui ( x) ( x = { r, t} is 
the space-time coordinate) defining the displacement 
of the lattice sites, which, as already mentioned, can
not be identified with the atoms of the crystal. In view 
of the fact that we are interested in perturbed states 
with inhomogeneities of dimensions large compared 
with the period of the lattice, ui(x) depends on a con
tinuous space variable. 

Unlike the Fermi surface of an isotropic Fermi 
liquidr 4J, the Fermi surface of a quantum crystal is, 
in general, anisotropic. According to the theorem 
proved by LuttingerrsJ, the volume of the Fermi surface 
determines, to within an even integer (the particle spin 
S = %), the number of particles per unit cell of the 
crystal. We shall not use this relation here. We re
quire only that the change in the number of quasi-parti
cles for fixed lattice sites be equal to the change in the 
number of particles. By analogy with isotropic Fermi 
systems, the ground state of a quantum crystal can be 
represented conveniently in the form of a combination 
of the quasi-particles occupying all the states with 
quasi-momenta p lying within the Fermi surface and 
a subsystem, whose degrees of freedom are character
ized by the vector Ui(x} (in the ground state, ui(x) = 0), 
interacting with the quasi-particles. In the following, 
by convention we shall call this subsystem the lattice. 

We shall assume that the interaction between the 
quasi-particles is described by the self-consistent 
field acting on a quasi-particle and arising from the 
other quasi-particles. In this case, the energy of the 
system must obviously be a functional of the quasi
particle distribution function n ( p, x) and the deforma
tion vector Ui(x): E = E{n(p, x), Ui(x)}. For small 
deviations from equilibrium, the energy can be repre
sented in the form of a functional expansion in on( p, x) 
= n( p, x) - n0 ( p) ( n0 ( p) is the equilibrium distribution 
function) and in the derivatives auifat, auk/ari of the 
deformation vector (because of the invariance of the 
energy with respect to arbitrary uniform displacements 
that are independent of time, the quantities Ui (x) them
selves do not appear in the expansion). The most gen
eral expansion of the energy, exact to terms quadratic 
in on(p, x), aui(x)/at and ouk(x)/ari, if we take into 
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account the invariance under inversion of the space and 
time coordinates, has the form 

J { J dp 1sdpdp' · 
E = dr ~.+ (2n)' e(p)6n(p,x)+T (2n)' /(p,p')lln(p,x) 

, J dp [ au,(x) au.(x) ] Xlln(p ,x)+ (2n)' t;,(p)-a-t -+ ~ •• (p)----a;::- iin(p, x) 

i au,(x) au,(x) 1 I. au.(x) aum(x) } (2 i) +TP"_a_t ___ a_t-+2 ,.,m~--;;;:;- · · 
As in the Landau theory[4J, here we have used an 

assumption that the interaction between the particles 
is short-range, so that the expansion of the energy is 
local. The first three terms in the curly brackets of 
(2.1) are identical with the corresponding expansion in 
the Landau theory. ~ 0 is the energy density of the 
ground state of the crystal, c: ( p) is the unperturbed 
quasi-particle energy, and f(p, p') is the Landau func
tion defining the interaction between the quasi-parti
cles. The sum of the last two terms of (2.1) is the ana
log of the energy density in the classical theory of 
elasticity[61. The difference consists in the fact that 
the tensor Pik is proportional to the unit tensor only 
in the case of crystals of cubic symmetry and in this 
case, generally speaking, does not reduce to the mass 
density of the crystal. The structure itself of the last 
term of the expansion and the property of invariance of 
the energy with respect to rotations of the system as a 
whole lead to the usual symmetry conditions for the 
"elastic tensor" Xiktm: Xiklm = Xtmik = Xkilm· The 
fourth term of the expansion (2.1) defines the interac
tion of the Fermi excitations with the lattice deforma
tion. 

As in the Landau theory[41, the energy c:(p, x) of a 
quasi-particle with quasi-momentum p and coordinate 
x is determined by the variational derivative of the 
total energy of the system with respect to the distribu
tion function n( p, x) at fixed lattice deformation: 

J 
dp' au,(x) au.(x) 

e(p,x) = e(p)+ (2n)' f(p,p')lln(p',x)+ t;,(p)-a-t- + ~ .. (p)--a,:;-· 

. . . (2.2) 
In wnttmg the expanswn (2.1), we have made no 

assumptions concerning the tensor Pik and the func
tions f( p, p') and ;i (p ). In reality, these are not inde
pendent. We shall prove this, by using Galilean invari
ance. 

First, we shall determine the flux density h(x) of 
the quasi-particle number. It is clear that this is equal 
to 

. J dp ae(p,x) J,(x)= ------n(p,x). 
(2n)' ap, 

(2.3) 

Since, in the ground state in the coordinate system in 
which the crystal as a whole is at rest, h = 0 and there 
is no deformation, on the basis of the expression for 
c: ( p, x) (2.2), we obtain . 

j;(x) =J~[ v, + J dS'f(p, p')P/]Iln(p,x) 
(2n)' 

J ( .1u, (x) aum (x) ) 
+ dSv, t;,(p)-a-+~•m(P)-a-- · 

. t n 
(2.4) 

Here, Vi= vi(P) = ac:(p)/api is the unperturbed 
velocity of a quasi-particle with quasi-momentum p, 

J dS= J~(::),ll(e(p)-!1), 
and ll is the chemical potential. In deriving (2.4), we 

have used the fact that the equilibrium quasi-particle 
distribution function is of the Fermi type, no( p) 
= nF(c:(p)), and at zero temperature, anF(.;)jac: 
= -6(€ - ll ). We note that the equation c:(p) = IJ. de
fines the Fermi surface of the quasi-particles. 

We shall now find an expression for the momentum 
density .9'i(x) of the lattice. It is the momentum canon
ically conjugate to the generalized coordinate Ui(x). 
Obviously, for on( p, x) = 0, 

.9',(x) = p .. au,(x) I at. 

Since liP 
.9',(x) = 6 au,(x)/&t 

(2 is the Lagrangian function of the system), and the 
correction to 2' linear in On differs only in sign from 
the corresponding term in (2.1 ), we have 

au.(x) J dp 
.9',(x) = P••---at- (2n)' S,,(p)lln(p,x). (2.5) 

We shall obtain the first relation between the 
parameters of the theory by considering the change of 
energy of the quasi-particle subsystem due to the uni
form motion of the lattice sites with constant velocity 
c. In the reference system in which the lattice is at 
rest, the subsystem of quasi-particles moves with 
velocity -c. The corresponding correction to the 
energy of the quasi-particles in this coordinate system 
is equal to J 1\E,F =-me, dr j,(x) 

=-me, J dr J ( 2~, [ v, + J dS'j(p, p')v/16n(p, x). (2.6) 

In making the inverse coordinate transformation to the 
original reference system, it is necessary to add to the 
energy of the subsystem of quasi-particles the expres
sion 

e,J dr J (::)' P,(p)lln(p,x) 

(Pi ( p) is the average value of the momentum of a 
quasi-particle in a state with quasi-momentum p) and, 
thus, the total change of energy of the quasi-particle 
subsystem produced by the motion of lattice sites with 
velocity aui(x)/at = Ci is equal to 

liEF= J dr J (::)' [ P,(p)- m(v, + J dS'f(p, p')v/)] lln(p, x)e,. 

Comparing this expression with (2.1), we obtain 

£,(p) = P,(p)- m ( v, + J dS'j(p,p')v.'). (2.7) 

We note that in the case of the isotropic Fermi 
liquid, Pi(P) =Pi and, after equating h(p) to zero, 
we obtain the usual Landau-theory relation for the 
effective massf4 l. 

To find the second relation, we note that the mass 
flux density of the particles of the crystal is equal to 
the sum of the flux density mh(x) of the mass carried 
by the quasi-particles and the mass flux density asso
ciated with the lattice, 

J,(x) = mj,(x) +.9',(x). (2.8) 

On transforming to the coordinate system moving 
with velocity c, the mass flux density of the crystal 
changes by an amount Mi = -Nomci (No is the parti-
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cle-number density of the system, and m is the mass 
of an individual particle). On the other hand, this same 
change in the mass flux density can be determined from 
the formulas (2.8), (2.4) and (2.5), if we take into ac
count the law of transformation of the quantities n(p, x) 
and aui(x)/at: 

iiu,(z) iiu,(z) 
n(p,z)--+n(p+mc,z), ---.----c,. 

lit iit 

Equating the two expressions for OJi(x), we obtain a 
relation for the tensor Pik: 

p .. = N,mfl .. - m' J dS v, ( v. + J dS'f(p, p') v.'), (2.9) 

In essence, the tensor Pik defines that part of the 
crystal density which is associated with the lattice. 

For the isotropic Fermi liquid, taking into account 
the relation for the effective mass, we obtain the 
natural result: Pik = 0. But in the absence of a Fermi 
surface, Pik. as in a classical crystal, determines the 
density of the crystal: Pik = Nomoik· 

3. We turn to the derivation of the equations of 
motion describing the weakly nonequilibrium proper
ties of the crystal. One of these, obviously, is the 
kinetic equation for the quasi -particle distribution 
function: 
iin(p,x) + iln(p,z) iie(p,x) iin(p,x) o;(p,x) =l(n), (3.1) 

at or, op, op, r, 

where l(n) is the collision integral. 
For the second equation of motion, we take Hamil

ton's equation for the lattice: 
o9",(x) 6E 
_a_t_ =- 6u,(z) · (3.2) 

After substituting (2.2) into (3.1) and (2.5) into (3.2), 
using the expansion (2.1) and linearizing Eq. (3.1), we 
obtain a system of equations of motion for the quantum 
crystal: 

a a { iin,(e) [ J dp' 
Tt6n(p,z)+v'ar, 6n(p,z)---a;- (2n)' f(p,p')6n(p',z) 

au,(z) iium(x) ] } + 6,(p)-0-t -+ ~.m(P)-a,:;-' = l(n), (3.3) 

iJ'u,(z) 02Um(Z) 
p .. -,-,- = Aol.lm-,-iJ-+ 

ut urk n 
lip iJ iJ 

+ J (2n)' [ 6,(p)at6n(pz)+ ~.(p) or, 6n(p, x)]. (3 .4) 

We shall study the determination of the vibrational 
eigenfrequencies of a quantum crystal. For this, we 
shall seek a solution of the system of _equations (3.3), 
(3.4) in t.he form on(p, x) = on(p, k)elkX, Ui(X) 
= ui(k)e1kx (kx = k·r- wt). We are interested in 
frequencies w that are high compared with the charac
teristic inverse collision time of the quasi-particles, 
so that the collision integral in the right-hand side of 
Eq. (3.3) can be neglected. As follows from (3.3), the 
quantity On( p, k) can be represented in the form 

1\n(p,k)= - 0:: v(p,k). (3.5) 

After this, the system of equations for v(p, k) and 
ui ( k) takes the form 

(oo- vk) v (p, k) = vk [ J dS'f(p, p') v (p', k) 

+i(-w£,(p)u,(k)+k,~ .. (p)u,(k)) ]. (3.6) 

(p .. w'- l,.,,.,k,km)u,(k) 

=-iS dS(- oos,(PJ+ k,~.(p))v(p,k). (3.7) 

Eliminating Ui(k), we obtain an equation for 11(p, k): 

where 
(oo- vk) v(p, k) = vk JdS'F(p, p'; k) v(p,k), 

F(p, p'; k) = f(p, p') + (oo~,(p) - k,~u(p) )D,,'(k) 

X (wS.(p')- k,.~,.,(p')), 

and Dik( k) is the solution of the equation 

(3.8) 

(3.9) 

(3.10) 

Equation (3 .8) has a form that is usual for the theory 
of Fermi liquids [71. However, the function F( p, p'; k), 
which plays the role of the Landau function, depends on 
the wave vector and the vibration frequency. This 
means that, along with the zero-sound solutions, the 
system (3.8) can possess an additional family of solu
tions. 

One can convince oneself of this by eliminating the 
variable v(p, k) from the system (3.6), (3.7), which 
leads to the following equation for Ui ( k): 

[p,..oo'- T,.(k)]u,(k) = 0, (3.11) 

where 

S vk 
+ dS(w£,(p)- k,~u(p))--k(oo£,(p,k)-k,.~,.,(p,k)); (3.12) 

Cil-V 

~i(P, k) and ~ik(P, k) are determined from the equa
tions 

S v'k 
;,(p, k) = £,(p) + dS'f(p, p')--,k £,(p', k), 

(J)-V 

~ .. (p,k)= ~ .. (p)+J dS'f(p,p')~;-k ~ •• (p',k). 
(J)-V 

(3.13) 

(3.14) 

Equation (3.11) has the form of the dynamical equa
tion determining the spectrum of the lattice vibrations. 
The quantity Tik(k) appearing in it, which as the 
sense of the dynamical matrix, possesses frequency 
dispersion. This points to the fact that, apart from the 
three solutions corresponding to acoustic phonon 
modes, the vector equation (3.11) has an additional 
class of solutions. Thus, Eqs. (3.8) and (3.11) deter
mine the spectrum of coupled vibrations of the zero
sound and phonon types. It is not difficult to see that 
the dispersion law corresponding to these is linear. 

4. We proceed to examine the thermodynamic 
properties of the quantum crystal. In the first place, 
we shall express the compressibility of the crystal in 
terms of the quantities appearing in the theory. For 
this, we make use of the relation 

liP = N, (liN,)-' 
lip m Of.! <4•1) 

(P is the pressure, and p =Nom is the density of the 
crystal) and of the fact that, in the presence of a weakly 
nonuniform external scalar field cp( r) that does not 
depend on time, the equilibrium condition p. + !p(r) 
= const is fulfilled, whence follows 

iJN 6N 
a;-=- 6rp(r) L)-oon•t (4 '2) 

In accordance with the basic assumption of our 
theory, the change of the particle-number density is 
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equal, obviously, to the sum of the change of the quasi
particle number density and the change of the lattice 
density. 

The most general expression for oN(x) in the ap
proximation linear in the deformation has the form 

J dS(;,.(p)X(p) = J dSs,.(p), 

which stems from (4.8), (4.9) and (3.14). 
Defining the tensor Aiklm by 

(4.13) 

(4.14) 

S dp iiu,.(x) 
1\N(x)= ~-.1\n(p,x)+ll,,--.-

( .lrr) ·· rlr, 
(4 ·3) we obtain from (4. 7) and (4 .10) 

where 11 ik is a second-rank symmetric tensor (propor
tional to the unit tensor for crystals of cubic sym
metry). In the presence of the field cp ( r ), to the energy 
(2.1) we must add the interaction energy 

SdrN(x)'Jl(x)=Jdr[N,+ s-~1\n(p,x)+I'J,. iiu,,~] 'Jl(x). 
(2n)" fir, 

The expression for the energy of the quasi-particles 
takes the form 

dp' 
e(p, x) = e(p) + 'Jl(x) +J (2rr), f(p, p')lin(p', x) 

fiu,(x) iiu,(x) 
+£,(p)--+(;,.(p)--. (4.4) 

fit iJr, 

In the limit where the external field cp ( r) is inde
pendent of time and tends to a constant, the crystal 
goes over into a new equilibrium state, to which corre
spond a certain uniform deformation of the lattice and 
a new quasi-particle distribution, differing from the 
original one by the replacement of " ( p) by " ( p) 
+ o"(p). The connection between o~(p), auk/aq and 
cp will be determined from the relation (4 .4) 

\·s, ') ') ()au, (45) 6e(p) = r~-. d f(p, p oe(p + ~ik p a;:; . 

(we have taken into account that on(p) = n0(~(p) 
+ o"(p))- no(~(p)) = o"(p) (ana/a~)). 

As the second equation for o~(p) and auk/dq, we 
take the condition that the energy be a minimum with 
respect to an infinitesimal change of auk/ari in the 
presence of the field cp : 

(4.6) 

We shall express the change of energy o" ( p) from 
Eq. (4.5): 

au, 
1\e(p) = X(p) rp + ~.,(p)·;;-. 

or, 

Here X( p) satisfies the equation 

X(p)+ J dS'f(p, p')X(p') = 1, 

(4.7) 

(4.8) 

and the function 'fik( p) is the solution of the equation 

~,.(pH J as't(p,p')s,.(p') = (;,.(p). (4.9) 

which, as can be seen from (3.14), coincides with the 
k-limit (w = 0, k- 0) of the function l:ik(P, k): 

s,(p) = (;,/(p) ·== lim Sik(P. k). 
!J='-'· k--Jo-0 

By substituting (4.7) into (4.6), we obtain 

where 

X,,"'= it,.,"'- f dS~,.(p)f:,m(P), 
fl" = 11·•- f dS\;,,(p). 

(4.10) 

(4.11) 

(4.12) 

In deriving (4.10), we have made use of the relation 

lle(p) = [X(p)- s,.(p)A,.,mft,m]'l', 

au, I Dr, = - A,"m ft,m<p· 

(4 .15) 

(4.16) 

Substituting (4.15) and (4.16) into (4.3), taking ac
count of the relation between on( p) and o~ ( p) and the 
formula (4.2), we shall have 

aN (aN) - --= - +1li.~tAot~m'l1m, 
a11 D 11 F 

(4 .17) 

where we have introduced the notation 

(aN/ii!lh= J dSX(p). (4.18) 

Substituting (4.17) into (4.1), we obtain an expres
sion for the compressibility 

aP N/m 

ap (aN/ii~t),·+I'JikAwml']lm 
(4 .19) 

In the absence of the subsystem of quasi-particles 
(which may be regarded as the limit of zero volume of 
the Fermi surface), (aN/aJl)F = 0 and, as we shall 
see below, 11ik = NoOik· Therefore, the expression 
(4.19) goes over into the usual formula of the classical 
theory of elasticity. The quantity A iklm has, in this 
case, the meaning of the inverse tensor of the elastic 
moduli. 

The tensor Tlik that we have introduced above is not, 
in reality, independent. It can be expressed in terms 
of other parameters of the theory, on the basis of the 
following arguments. When an external scalar field with 

potential cp eik · r-iwt is switched on with the condition 
that 1 k 1/ w- 0, 1 k I L « 1 ( L characterizes the 
dimensions of the system), the crystal will perform 
periodic oscillations as a whole, since the above-men
tioned field corresponds to an electric field of fre
quency w, uniform over the dimensions of the system; 
the product of the amplitude of the field intensity with 
the charge of a particle is equal to k cp. According to 
classical mechanics, the time-averaged correction, 
associated with the field, to the energy density is equal 
to 

(4 .20) 

At the same time, 1)0 can be determined by using 
the equations of motion for on(p, x) and Ui(x) in an 
external field. By means of simple but cumbersome 
calculations, which we shall not give here, one can 
obtain 

60 = {S dS v1 ( v, + J dS' f(p, p') v,') + ( 11" + J dS v,;_,(p)) P1m _, 

( S ))} k,k, 2 (4.21) 
X l']m> + dSv, £m(P -;>'Jl, 

After equating (4.20) and (4.21), taking (3.4) and (3.6) 
into account, we obtain 

(4 .22) 

One further relation between the parameters of the 
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theory follows from Eq. (4.15): 

ae(pl • -----a;-- X(p) = s .. (p)A,.,,.'I'J,m· 
(4 .23) 

In the case of an isotropic Fermi liquid, from (4.22), 
taking into account that Pi(P) =Pi. we obtain Tlik = 0, 
by virtue of which (4.23} goes over to the relation for 
ap0 /all (p0 is the Fermi momentum) which arises from 
the Landau theoryf4l. As the volume of the Fermi sur
face tends to zero, Tlik- NoOik; then iii.k -llik, and 
from (4.23) it follows that Iik(P}- 0. 

We proceed to the determination of the spectric heat. 
According to (2.1), in lowest order in the temperature, 

Cv=(~) =J~e(p)(!!:..) = .n'rJds. (4.24) ar N.v (2n) ar N 3 

The integral 

J dS = J (~~)'b(e(p)- ~t) 
determines the density of states at the Fermi surface. 

It is obvious that a term (~T3 ), corresponding to 
the contribution of the Bose branches of the excitations 
to the specific heat of the crystal, must be added to the 
expression (4.24). The correct allowance for these lies 
beyond the limits of accuracy of the phenomenological 
theory, and this limits the applicability of formula 
(4 .24) to the region of extremely low temperatures: 

(4.25) 

where TF is the Fermi degeneracy temperatures, NF 
is the number of quasi-particles (expressible by the 
volume of the Fermi surface) and Tn is the tempera
ture determbed by the limiting frequency of the phonon 
excitations. 

Up to this point, we have omitted for brevity the 
symbols for the spin indices of the quantities appear
ing in the theory. If the spin is taken into account, all 
the results remain valid, if along with the integrations 
over dp and dS it is implied that the trace is to be 
taken over the spin indices of the integrand. In particu
lar, for example, the integral 

S dS=J dp -b(e(It)- ~t) 
(2n)' 

is the total density of states of quasi-particles with 
both spin directions (we are considering a crystal 
consisting of particles with spin Y2) at the Fermi sur
face. 

If the interaction of the spins has an exchange origin, 
the Landau function, as in the isotropic caser 4l, has the 
following structure: 

(4.26} 

Here a are the Pauli matrices. In accordance with 
what we have stated above, the quantity fo(P, p') occurs 
in the expressions (2.7) and (2.9) for ~i(P) and Pik· It 
is obvious also that ~~tl(p) and t?ktl(p) are propor-

1 1 
tional to OatJ· 

Finally, we shall give an expression for the magnetic 
spin susceptibility x of the crystal, which can be ob
tained by taking into account the structure of the Lan
dau function and the remarks made above: 

X= ~to's dS Y(p), (4.27) 

where Y(p) satisfies the equation 

Y(p)+ s dS'f,(p,p') Y(p') = 1, (4.28) 

and /J.o is the magnetic moment of an individual parti
cle. 

As can be seen from (4.27) and (4.28), the spin 
susceptibility is completely determined by the contri
bution of the Fermi excitations. This fact is a conse
quence of the assumption that the microscopic mag
netic-moment density of the crystal is equal to zero in 
the ground state at T = 0. Therefore, excitation of 
Fermi quasi-particles is the only possibility of forma
tion of a magnetic moment in the presence of a magnetic 
field. 

In conclusion, we shall discuss the connection be
tween the theory developed and the experimental data 
on solid He3 • Sample and Swensonr8 l, and also Pandorf 
and Edwards [9 1, performed calorimetric measurements 
of the specific heat of bee He3 and, assuming that this 
is determined by the contribution of the phonons, inter
preted their data by a cubic temperature dependence, 
Cy ~ (T/Tn)3 (Tn is the Debye temperature). It was 
ascertained that Tn has an appreciable dependence on 
temperature; on decrease of the temperature, Tn(T) 
does not tend to a constant, but continues to fall after 
passing through a maximum (Tmax ~ 10-2 Tn). It is 
characteristic that, in experiments with solid He4 

with the same apparatus, it was found that Tn(He4 ) 

becomes a constant. This gives grounds for supposing 
that the anomaly found in He3 , is not a consequence of 
spurious effects of the measurements. 

The anomalous behavior of the specific heat of bee 
He3 was also confirmed by measurement of the thermal 
conductivityf 101 under conditions in which the mean 
free path of the phonons does not depend on the tem
perature or on the thermal coefficient of the pressure 
(aP/aT)yr 11J. 

Greywall and Munarin[12 l measured the velocity of 
sound in bee He3 and showed that the Debye tempera
ture determined from these data differs from the Tn 
associated with the specific heat. 

In our opinion, the experimentally established 
anomaly in the specific heat of bee He3 is a conse
quence of the contribution of Fermi excitations; in 
other words, the fall of TD with decreasing tempera
ture is the result of a transition of the specific heat 
from a cubic dependence on T to the linear dependence 
determined by formula (4.24). Unfortunately, for the 
present there is no possibility of a quantitative com
parison of the theory with experiment. For this, it is 
necessary to extend the specific-heat measurements 
into the region of lower temperatures, where the con
tribution of the Fermi quasi-particles is dominant. 
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